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Abstract 

Degraded speech intelligibility is one of the most frequent complaints of sensorineural 

hearing-impaired listeners, both in noisy and quiet situations. An understanding of the 

effect of hearing impairment on speech intelligibility is therefore of large interest 

particularly in order to develop new hearing-aid algorithms for rehabilitation. However, 

sensorineural hearing impairment is often found to be very individual in terms of the 

functional deficits of the inner ear and the entire auditory system. Important individual 

factors to be considered when modeling the effect of sensorineural hearing impairment 

on speech intelligibility are the audibility of the speech signal, different compressive 

properties, or different active processes in the inner ear. The latter two can be termed 

supra-threshold factors, since they affect the processing of speech well above the 

individual absolute threshold. It is not possible to directly (i.e. invasively) measure and 

study the influence of these supra-threshold factors on human speech recognition (HSR) 

for ethical reasons. However, computer models on HSR can provide an insight in how 

these factors may influence speech recognition performance. 

This dissertation presents a microscopic model of human speech recognition, 

microscopic in a sense that first, the recognition of single phonemes rather than the 

recognition of whole sentences is modeled. Second, the particular spectro-temporal 

structure of speech is processed in a way that is presumably very similar to the 

processing that takes place in the human auditory system. This contrasts with other 

models of HSR, which usually use the spectral structure only. This microscopic model 

is capable of predicting phoneme recognition in normal-hearing listeners in noise 

(Chapter 2) along with important aspects of consonant recognition in normal-hearing 

and hearing-impaired listeners in quiet condition (Chapter 5). Furthermore, an extension 

of this model for the prediction of word recognition rates in whole German sentences is 

capable of predicting speech reception thresholds of normal-hearing and hearing-

impaired listeners as accurately as a standard speech intelligibility model (Chapter 3). 

Parameters reflecting the supra-threshold auditory processing are assessed in normal-

hearing and hearing-impaired listeners using indirect psychoacoustical measurement 

techniques such as a forward masking experiment and categorical loudness scaling 

(Chapter 4). Finally, the influence of including supra-threshold auditory processing 

deficits (assessed using the aforementioned measurement techniques) in modeling 

speech recognition is investigated (Chapter 5) primarily realized as a loss in cochlear 

compression. The results show that implementing supra-threshold processing deficits 
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(as found in hearing-impaired listeners) in a microscopic model of human speech 

recognition improves prediction accuracy. However, the advantage of taking these 

additional suprathreshold processing parameters into account is marginal in comparison 

to predicting speech intelligibility directly from audiometric data. 
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Zusammenfassung 

Eins der Hauptprobleme von Leuten mit einer Schallempfindungsschwerhörigkeit ist 

eine verschlechterte Sprachverständlichkeit sowohl in Ruhe, als auch in Umgebungen 

mit Störgeräusch. Ein Verständnis davon zu gewinnen, wie Schwerhörigkeit 

Sprachverständlichkeit beeinflusst, ist daher von großer Wichtigkeit für die 

Rehabilitation Schwerhörender, z.B. in Form der Entwicklung neuer Hörgeräte-

algorithmen. Schallempfindungsschwerhörigkeit kann allerdings sehr individuell sein, 

wenn man die Art und Anzahl der geschädigten Komponenten des Innenohres und des 

gesamten auditorischen Systems betrachtet. Wichtige individuelle Faktoren der 

Schallempfindungsschwerhörigkeit, welche Sprachverständlichkeit beeinflussen, 

können zum Beispiel sein: die Hörbarkeit des Sprachsignals, unterschiedliche 

kompressive Eigenschaften in der Verarbeitung des Innenohres oder unterschiedlich 

starke aktive Prozesse im Innenohr. Die letzteren beiden können als überschwellige 

Faktoren bezeichnet werden, da sie die Verarbeitung von Sprache oberhalb der 

Hörschwelle beeinflussen. Es ist aus ethischen Gründen nicht möglich den Einfluss 

dieser überschwelligen Faktoren auf die menschliche Spracherkennung direkt (also 

invasiv) zu messen und zu studieren. Allerdings können Computermodelle der 

menschlichen Spracherkennung einen Einblick geben, wie diese Faktoren die 

Sprachverständlichkeitsleistung beeinflussen können. 

Diese Dissertation präsentiert ein mikroskopisches Modell der menschlichen 

Spracherkennung, mikroskopisch in dem Sinne, dass erstens die Erkennung von 

einzelnen Phonemen anstelle der Erkennung von ganzen Wörtern oder Sätzen 

modelliert wird. Zweitens wird die genaue spektro-temporale Struktur von Sprache auf 

eine Art und Weise verarbeitet, die sehr ähnlich zu der Verarbeitung ist, wie sie auch im 

menschlichen auditorischen System stattfindet. Andere gängige Modelle der 

menschlichen Spracherkennung nutzen im Gegensatz dazu nur die spektrale Struktur 

von Sprache und einem optionalen Störgeräusch aus. Dieses mikroskopische Modell ist 

dazu in der Lage Phonemerkennungsraten für Normalhörende unter Einfluss von 

Hintergrundrauschen (Kapitel 2) und wichtige Aspekte der Konsonanterkennung für 

Normal- und Schwerhörende in Ruhe (Kapitel 5) vorherzusagen. Außerdem kann eine 

Erweiterung dieses Modells auf die Erkennung von Wörtern (eingebettet in ganzen 

deutschen Sätzen) die Sprachverständlichkeitsschwellen von Normal- und 

Schwerhörenden mit ebenso großer Genauigkeit vorhersagen wie ein anderes gängiges 

Sprachverständlichkeitsmodell (Kapitel 3). Parameter, die die überschwellige 
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auditorische Verarbeitung in Normal- und Schwerhörenden quantifizieren, wurden mit 

Hilfe von indirekten psychoakustischen Messungen, nämlich einem 

Nachverdeckungsexperiment und der kategorialen Lautheitsskalierung geschätzt 

(Kapitel 4). In Kapitel 5 wurde dann schlussendlich untersucht, welchen Einfluss eine 

Veränderung der überschwelligen Verarbeitung (geschätzt aus den Messungen aus 

Kapitel 4) auf die modellierte Sprachverständlichkeit hat. Die Ergebnisse zeigen, dass 

der Einbau einer überschwelligen Verarbeitung, so wie sie in Schwerhörenden 

beobachtet wird, die Vorhersage der Sprachverständlichkeit verbessert. Allerdings ist 

der Vorteil, der durch den Einbau der genauen überschwelligen Verarbeitung (geschätzt 

durch überschwellige psychoakustische Messungen) erreicht wird, marginal im 

Gegensatz zu einer alleinigen Schätzung dieser überschwelligen Verarbeitung durch das 

Audiogramm. 
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1 General Introduction 

 

A large proportion of the population of industrialized countries shows a significant 

hearing impairment (in Germany, for instance, hearing impairment among the 

population amounts to about 19%; Sohn, 2001). This hearing impairment affects the life 

of these people in various ways. For example, many people with hearing impairment 

complain about insensitivity to soft sounds, a degradation of their ability to localize the 

direction of a sound, and, most importantly, a degradation of their ability to understand 

speech, especially in noisy conditions. The assessment of speech intelligibility has 

therefore become an instrument for the diagnosis of hearing impairment and an 

instrument for the evaluation of rehabilitative strategies, e.g. in hearing-aids. 

Consequently, an understanding of the effect of hearing impairment on speech 

intelligibility (i.e. finding appropriate models of the function and dysfunction of human 

speech recognition) is of large interest. 

The first predictions of speech intelligibility using quantitative models were 

done in the Bell Telephone Laboratories by H. Fletcher, N.R. French and J.C. Steinberg 

in the 1920s to 1940s. Their research focused on understanding the impact of various 

distortions on speech intelligibility, especially distortions typical of telephone 

transmission. The result of their research, the Articulation Index (AI) (French and 

Steinberg, 1947; Fletcher and Galt, 1950), is a measure for speech intelligibility based 

on four independent factors: (1) audibility of speech, (2) speech-to-noise-ratio, (3) 

sensitivity of the auditory system, and (4) a frequency distortion factor. The AI can be 

termed as the first ―macroscopic‖ model of speech recognition. The term ―macroscopic‖ 

in relation to speech intelligibility models can be defined twofold. First, a macroscopic 

model provides a prediction of the average speech recognition performance measured 

using a complete speech test. This contrasts with predicting the recognition of single 

words, syllables or phonemes, which is termed ―microscopic‖ in the context of this 

dissertation. Second, a macroscopic model such as the AI is based on the audibility of 

parts of the speech signal primarily in the frequency domain, i.e. those parts of the long-

term spectrum that can be heard by the subject. A microscopic approach, on the 

contrary, bases its computation on those spectro-temporal features of speech that a 

listener perceives. The work of French and Steinberg (1947) later on became a standard 

of the American National Standards Institute (ANSI, 1969). A further improvement 
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(regarding the type of speech material used) resulted in the Speech Intelligibility Index 

(SII) (ANSI, 1997). AI and SII work well for normal-hearing (NH) listeners in various 

stationary noise conditions and extensions have been done to model speech 

intelligibility in fluctuating noise (Rhebergen and Versfeld, 2005) and in different room 

acoustics (Beutelmann and Brand, 2006).  

Another model of human speech recognition that evaluates slow (i.e. < 16 Hz) 

speech modulations is the Speech Transmission Index (STI) (Houtgast and Steeneken, 

1984). The STI is capable of predicting the distortion of speech intelligibility in room 

acoustics, but needs long (> 60 s) speech waveforms to reliably estimate the speech 

modulations. Therefore, the STI can also be termed a macroscopic model of human 

speech recognition. Although modifications of the STI to model the recognition of 

smaller speech segments have been investigated (Kollmeier, 1990), however, from a 

physiological point of view, all these macroscopic models can only be a rough 

approximation to the human speech recognition process, because of the following 

reasons. 

1. No stage is involved that models the matching of speech to be recognized with the 

listener‘s speech knowledge (i.e. the speech memory). Such a stage is assumed to 

represent the pattern recognition in the human cortex.  

2. Many details about the auditory periphery are not included in such a macroscopic 

model. If a model of human speech recognition shall be applied to model the 

consequences of hearing impairment on speech intelligibility these details of the 

auditory periphery may particularly be crucial.  

3. The recognition of speech consisting of, e.g., sentences, is not split up into the 

recognition of smaller speech items, such as words or phonemes. It is very likely that 

human speech recognition includes analyzing and evaluating single phonemes for the 

recognition of words and sentences. 

 

Another research field associated with human speech recognition is the 

application of speech feature extraction for digital transcription, i.e. Automatic Speech 

Recognition (ASR). Although both, a large commercial interest exists in obtaining a 

reliable ASR system that matches human performance, and, in addition, a long history 

of ASR research exists, there still is a large performance gap between human and 

automatic speech recognition (for an overview see Scharenborg (2007) or Meyer et al. 
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(2007a)). Common ASR systems consist of a feature extraction part, i.e. the 

transformation of a speech waveform to a set of numbers that represents this speech 

signal, and a recognizing part that uses statistical models about previously processed 

speech utterances. Such ASR systems work well if very limited speech response 

alternatives with high redundancy are used. However, they show surprisingly poor 

performance compared to humans if less redundancy is associated with the speech 

material, for example if single phonemes have to be recognized (Meyer, 2009). 

Furthermore, the robustness of ASR systems against external distortions such as 

background noise is by far poorer than the robustness of the human auditory system 

against these distortions (Stern et al., 1996). The strategies usually used by ASR 

systems resemble human speech recognition in important aspects, some of these 

strategies implement many research findings about the human auditory system (e.g., 

Hermansky, 1990; Tchorz and Kollmeier, 1999). For instance, ASR systems use a 

memory of speech, mostly realized as a statistical model of previously processed speech 

recordings, and they subdivide the speech recognition process to smaller temporal 

speech objects, such as syllables and phonemes. Although two out of the three 

aforementioned drawbacks of macroscopic models are not present in ASR systems, it is 

however difficult to apply ASR to the prediction of human speech intelligibility, 

because the aim of ASR systems is not to provide a good model of human speech 

recognition, but to yield maximum speech recognition rates for applications. 

Furthermore, the development of ASR systems aims at robustness against disturbances 

such as background noise or reverberation. As these ASR systems do not even provide a 

good model of normal-hearing listeners‘ speech recognition, it is also difficult to 

implement hearing impairment in these models. 

Holube and Kollmeier (1996) were the first to implement a more microscopic 

model of speech recognition by using an auditory model that extracts an ‗internal 

representation‘ from a speech signal to be recognized, and a speech recognizer as a 

pattern matching backend. This model overcomes all the three drawbacks identified 

with macroscopic speech intelligibility models mentioned above and was used for 

modeling speech recognition results of a rhyme test, i.e. recognition of single 

meaningful words. Furthermore, it allows for adjusting the auditory model due to the 

dysfunction of model stages as observed in HI listeners. However, in the study of 

Holube and Kollmeier (1996), only average intelligibility prediction results were 

reported and compared to average measured speech intelligibility, i.e., no detailed 

assessment of the observed and predicted recognition of single phonemes was 
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performed. The current thesis therefore analyzes speech intelligibility in a more detailed 

way by using the Oldenburg Logatom speech corpus (OLLO) (Wesker et al., 2005) to 

test the performance of an advanced auditory processing model on the level of single 

phoneme recognition. 

Due to the variety and complexity of factors that contribute to hearing 

impairment, the way to implement (particularly sensorineural) hearing impairment into 

a speech recognition model is not completely clear. The contributing factors are 

partially difficult to assess in individual listeners and much more difficult to model (for 

an overview cf. Moore (1998) or Kollmeier (1999)). Audibility seems to be the most 

important part contributing to reduced speech intelligibility, but even people with 

similar audiograms may show different performances of speech recognition. Kollmeier 

(1999) therefore proposed four factors accounting for sensorineural hearing impairment 

that should be implemented within an auditory model: (1) loss of audibility, (2) loss of 

dynamic range, (3) increase of an ‗internal noise‘, and (4) one factor that detriments 

binaural functions. The three latter factors affect the processing of sound well above the 

individual hearing threshold and can thus be termed ―supra-threshold‖ factors. A supra-

threshold processing different from normal might contribute to differences in speech 

recognition of hearing-impaired listeners with the same audiometric thresholds. Such a 

supra-threshold processing deficit may be associated with a pathological loudness 

perception that can be assessed using adaptive categorical loudness scaling (ACALOS) 

(Brand and Hohmann, 2001). A supra-threshold processing deficit may also manifest in 

a different input-output (I/O) function of the basilar membrane, which can be estimated 

using psychoacoustic masking experiments (e.g., Plack et al., 2004). Although both of 

these measurement methods have frequently been used to characterize an individual‘s 

hearing deficit beyond the audiogram, no systematic model-driven investigation has yet 

been done on whether these supra-threshold processing deficits (estimated using the 

aforementioned measurement methods) affect speech recognition. The objectives of this 

dissertation therefore are:  

(1)  To develop a microscopic model of human phoneme and sentence recognition, 

which incorporates both a model about the auditory periphery and a speech 

recognizer. The analysis of the recognition and confusion of single phonemes 

is used to compare both model and human phoneme recognition thoroughly to 

get a better understanding about similarities and differences between model 

and human speech recognition.  
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(2) To find out in a systematic way how different factors of sensorineural hearing 

impairment, such as audibility of the speech and an altered peripheral 

compression, affect modeled speech recognition. 

Chapter 2 introduces the microscopic model for the prediction of phoneme recognition 

in normal-hearing listeners in noise. Different model configurations are used to quantify 

the performance gap between human and automatic speech recognition. The impact of 

different perceptive distance measures used within the recognizing stage on predicted 

speech recognition is analyzed. The microscopic model is evaluated using nonsense 

speech material, and phoneme confusion matrices of normal-hearing listeners are 

compared with that of the model. As a predecessor to the model approach and to the 

complete results described in Chapter 2, the difference between human speech 

recognition and automatic speech recognition was already assessed within initial work 

using only one perceptive distance measure. The paper describing this initial work is 

reprinted in the appendix of this dissertation (Chapter 7). 

Chapter 3 extends the model of Chapter 2 by implementing hearing impairment 

into the auditory model and by modeling single-word recognition in whole sentences 

rather than phoneme recognition as in Chapter 2. Furthermore, a comparison of the 

predictive power of this extended microscopic model of speech recognition to the 

Speech Intelligibility Index (SII) is done. In this chapter hearing impairment is 

accounted for only by the audibility (i.e. the absolute hearing threshold) of the speech 

quantified by the pure-tone audiogram. Supra-threshold factors that might influence 

individual speech intelligibility results are not regarded. Therefore, this model approach 

resembles the approach standardized within the SII that also regards only the individual 

audibility of hearing-impaired listeners. 

A method of assessing supra-threshold factors in normal-hearing and hearing-

impaired listeners is described in Chapter 4. In addition to assessing the audibility using 

the pure-tone audiogram only, parameters of the supra-threshold processing, such as 

outer hair cell loss and inner hair cell loss, are assessed using adaptive categorical 

loudness scaling (ACALOS). ACALOS has the advantage of being a fast and efficient 

measurement method that has the potential of being used widely in clinical practice. The 

results are compared to results from temporal masking curves (TMCs), a forward-

masking experiment that is widely accepted in the literature for inferring I/O function of 

the auditory system, but requires much more measurement time compared to ACALOS. 
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In Chapter 5 different model versions of the auditory periphery are realized within the 

microscopic model of speech recognition. Some of these versions incorporate 

parameters inferred from the method introduced in Chapter 4. Consonant recognition of 

normal-hearing and hearing-impaired listeners in quiet condition is predicted and the 

impact of adjusting supra-threshold parameters on predicted consonant recognition is 

investigated.  

At large, this dissertation covers a wide range of topics from psychoacoustics 

to human speech recognition and automatic speech recognition in order to obtain a 

better understanding of the normal and impaired human auditory system. 
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2 Microscopic prediction of speech recognition for 

listeners with normal hearing in noise using an 

auditory model
1
 

 

Abstract 
 

This study compares the phoneme recognition performance in speech-shaped noise of a 

microscopic model for speech recognition with the performance of normal-hearing 

listeners. ―Microscopic‖ is defined in terms of this model twofold. First, the speech 

recognition rate is predicted on a phoneme-by-phoneme basis. Second, microscopic 

modeling means that the signal waveforms to be recognized are processed by 

mimicking elementary parts of human‘s auditory processing. The model is based on an 

approach by Holube and Kollmeier [J. Acoust. Soc. Am. 100, 1703–1716 (1996)] and 

consists of a psychoacoustically and physiologically motivated preprocessing and a 

simple dynamic-time-warp speech recognizer. The model is evaluated while presenting 

nonsense speech in a closed-set paradigm. Averaged phoneme recognition rates, 

specific phoneme recognition rates, and phoneme confusions are analyzed. The 

influence of different perceptual distance measures and of the model‘s a-priori 

knowledge is investigated. The results show that human performance can be predicted 

by this model using an optimal detector, i.e., identical speech waveforms for both 

training of the recognizer and testing. The best model performance is yielded by 

distance measures which focus mainly on small perceptual distances and neglect 

outliers.  

 

 

 

 

 

                                                 
1
 This chapter was published as Jürgens and Brand (2009), reprinted with permission from Jürgens T., 

Brand T., J. Acoust. Soc. Am., Vol. 126, Pages 2635-2648, (2009).   

Copyright 2009, Acoustical Society of America. 
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2.1 Introduction 

The methods usually used for speech intelligibility prediction are index-based  

approaches, for instance, the articulation index (AI) (ANSI, 1969), the speech 

transmission index (STI) (Steeneken and Houtgast, 1980), and the speech intelligibility 

index (SII) (ANSI, 1997). AI and SII use the long-term average frequency spectra of 

speech and noise separately and calculate an index that can be transformed into an 

intelligibility score. The parameters used for the calculation are tabulated and mainly 

fitted to empirical data. These indices have been found to successfully predict speech 

intelligibility for normal-hearing subjects within various noise conditions and in silence 

(e.g., Kryter, 1962; Pavlovic, 1987). The STI is also index-based and uses the 

modulation transfer function to predict the degradation of speech intelligibility by a 

transmission system. All of these approaches work ―macroscopically‖, which means 

that macroscopic features of the signal like the long-term frequency spectrum or the 

signal-to-noise ratios (SNRs) in different frequency bands are used for the calculation. 

Detailed temporal aspects of speech processing that are assumed to play a major role 

within our auditory speech perception are neglected. Some recent modifications to the 

SII improved predictions of the intelligibility in fluctuating noise (Rhebergen and 

Versfeld, 2005; Rhebergen et al., 2006; Meyer et al., 2007b) and included aspects of 

temporal processing by calculating the SII based on short-term frequency spectra of 

speech and noise. However, even these approaches do not mimic all details of auditory 

preprocessing that are most likely involved in extracting the relevant speech 

information. Furthermore, the model approaches mentioned above are ―macroscopic‖ in 

a second sense as they usually predict average recognition rates of whole sets of several 

words or sentences and not the recognition rates and confusions of single phonemes. 

 The goal of this study is to evaluate a ―microscopic‖ speech recognition model 

for normal-hearing listeners. We define microscopic modeling twofold. First, the 

particular stages involved in the speech recognition of normal-hearing human listeners 

are modeled in a typical way of psychophysics based on a detailed ―internal 

representation‖ (IR) of the speech signals. Second, the recognition rates and confusions 

of single phonemes are compared to those of human listeners. This definition is in line 

with Barker and Cooke (2007), for instance. In our study, this kind of modeling is 

aimed at understanding the factors contributing to the perception of speech in normal-

hearing listeners and may be extended to other acoustical signals or to understanding the 

implications of hearing impairment on speech perception (for an overview see, e.g., 
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Moore (2003)). Toward this goal we use an auditory preprocessing based on the model 

of Dau et al. (1996a) that processes the signal waveform. This processed signal is then 

recognized by a dynamic-time-warp (DTW) speech recognizer (Sakoe and Chiba, 

1978). This is an approach proposed by Holube and Kollmeier (1996). The novel aspect 

of this study compared to Holube and Kollmeier (1996) is that the influence of different 

perceptual distance measures used to distinguish between phonemes within the speech 

recognizer is investigated in terms of the resulting phoneme recognition scores. 

Furthermore, we evaluate the predictions of this model on a phoneme scale, which 

means that we compare confusion matrices as well as overall speech intelligibility 

scores. This is a method commonly used in automatic speech recognition (ASR) 

research. 

2.1.1 Microscopic modeling of speech recognition 

There are different ways to predict speech intelligibility using auditory models. Stadler 

et al. (2007) used an information-theory approach in order to evaluate preprocessed 

speech information. This approach predicts the speech reception threshold (SRT) very 

well for subjects with normal hearing for a Swedish sentence test. Another way was 

presented by Holube and Kollmeier (1996) who used a DTW speech recognizer as a 

back-end to the auditory model proposed by Dau et al. (1996a). They were able to 

predict speech recognition scores of a rhyme test for listeners with normal hearing and 

with hearing impairment with an accuracy comparable to that of AI and STI. Both 

Stadler et al. (2007) and Holube and Kollmeier (1996) used auditory models that were 

originally fitted to other psychoacoustical experiments, such as masking experiments of 

non-speech stimuli, for instance.  

Several studies indicate that temporal information is essential for speech 

recognition. Chi et al. (1999) and Elhilali et al. (2003), for instance, compared the 

predictions of a spectro-temporal modulation index to the predictions of the STI and 

showed that spectro-temporal modulations are crucial for speech intelligibility. They 

concluded that information within speech is not separable into a temporal-only and a 

spectral-only part but that also joint spectro-temporal dimensions contribute to overall 

performance. Christiansen et al. (2006) showed that temporal modulations of speech 

play a crucial role in consonant identification. For these reasons, this study uses a 

slightly modified version of the approach by Holube and Kollmeier (1996). The 

modification is a modulation filter bank (Dau et al., 1997) extending the perception 

model of Dau et al. (1996a), which gives the input for the speech recognition stage. It 
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provides the recognizer with information about the modulations in the different 

frequency bands. The whole auditory model is based on psychoacoustical and 

physiological findings and was successful in describing various masking experiments 

(Dau et al., 1996b), modulation detection (Dau et al., 1997), speech quality prediction 

(Huber and Kollmeier, 2006), and aspects of timbre perception (Emiroğlu and 

Kollmeier, 2008). Using a speech recognizer subsequently to the auditory model, as 

proposed by Holube and Kollmeier (1996), allows for predicting the SRT of an entire 

speech test. This approach can certainly not account for syntax, semantics, and prosody 

that human listeners take advantage of. To rule out these factors of human listeners‘ 

speech recognition, in the experiments of this study nonsense speech material is 

presented in a closed response format. The use of this speech material provides a fair 

comparison between the performance of human listeners and the model (cf. Lippmann, 

1997). Furthermore, a detailed analysis of recognition rates and confusions of single 

phonemes is possible. Confusion matrices can be used in order to compare phoneme 

recognition rates and phoneme confusions between both humans and model results. 

Confusion matrices, like those used by Miller and Nicely (1955), can also be used to 

compare recognition rates between different phonemes provided that systematically 

composed speech material such as logatomes (short sequences of phonemes, e.g., 

vowel-consonant-vowel-utterances) is used.  

The nonsense speech material of the Oldenburg logatome (OLLO) corpus 

(Wesker et al., 2005), systematically composed from German vowels and consonants, is 

used for this task. This corpus was used in a former study (cf. Meyer et al., 2007a) to 

compare human‘s speech performance with an automatic speech recognizer. The OLLO 

speech material in the study of Meyer et al. (2007a) allowed excluding the effect of 

language models that are often used in speech recognizers. Language models store 

plausible possible words and can use this additional information to crucially enhance 

the performance of a speech recognizer. Nonsense speech material was also used, for 

instance, in speech and auditory research to evaluate speech recognition performance of 

hearing-impaired persons (Dubno et al., 1982; Zurek and Delhorne, 1987) and to make 

a detailed performance comparison between automatic and human speech recognition 

(HSR) (Sroka and Braida, 2005).  Furthermore, nonsense speech material was used, for 

instance, to evaluate phonetic feature recognition (Turner et al., 1995) and to evaluate 

consonant and vowel confusions in speech-weighted noise (Phatak and Allen, 2007). 
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2.1.2 A-priori knowledge 

A model for the prediction of speech intelligibility, which uses an internal ASR stage 

deals with the usual problems of such ASR systems: error rates are much higher than 

those of normal-hearing human listeners in clean speech (cf. Lippmann, 1997; Meyer 

and Wesker, 2006) and in noise (Sroka and Braida, 2005; Meyer et al., 2007a). Speech 

intelligibility models without an ASR stage, e.g., the SII, are provided with more a-

priori information about the speech signal. The SII ―knows‖ which part of the signal is 

speech and which part of the signal is noise because it gets them as separate inputs, 

which is an unrealistic and ―unfair‖ advantage over models using an ASR stage. For 

modeling of HSR the problem of too high error rates when using a speech recognizer 

can be avoided using an ―optimal detector‖ (cf. Dau et al., 1996a), which is also used in 

many psychoacoustical modeling studies. It is assumed that the recognizing stage of the 

model after the auditory preprocessing has perfect a-priori knowledge of the target 

signal. Limitations of the model performance are assumed to be completely located in 

the preprocessing stage. This strategy can be applied to a speech recognizer using 

template waveforms (for the training of the ASR stage) that are identical to the 

waveforms of the test signals except for a noise component constraining the 

performance. Holube and Kollmeier (1996) applied an optimal detector in form of a 

DTW speech recognizer as a part of their speech intelligibility model using identical 

speech recordings that were added with different noise passages for the model training 

stage and for recognizing. Hant and Alwan (2003) and Messing et al. (2008) also used 

this ―frozen speech‖ approach to model the discrimination of speech-like stimuli. 

Assuming perfect a-priori knowledge using an optimal detector (i.e., using identical 

recordings as templates and as test items) is one special case of modeling human‘s 

speech perception. Another case is using different waveforms for testing and training, 

thus assuming only limited knowledge about the target signal. This case corresponds not 

to an optimal detector but to a limited one. The latter is the standard of ASR; the former 

is widely used in psychoacoustic modeling. In this study, we use both the optimal 

detector approach and a typical ASR approach. In this way it is possible to investigate 

how predictions of these two approaches differ and whether the first or the second 

method is more appropriate for microscopic modeling of speech recognition. 

2.1.3 Measures for perceptual distances 

Because the effects of higher processing stages (like word recognition or use of 

semantic knowledge) have been excluded in this study by the use of nonsense speech 
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material, it is possible to focus on the sensory part of speech recognition. As a working 

hypothesis we assume that the central human auditory system optimally utilizes the 

speech information included in the IR of the speech signal. This information is used to 

discriminate between the presented speech signal and other possible speech signals. We 

assume that the auditory system somehow compares the incoming speech information to 

an internal vocabulary ―on a perceptual scale.‖ Therefore, the following questions are of 

high interest for modeling: What are the mechanisms of comparing speech sounds and 

what is the best distance measure, on a perceptual scale, for an optimal exploitation of 

the speech information? For the perception of musical tones Plomp (1976) compared 

the perceived similarity of tones to their differences within an equivalent rectangular 

bandwidth (ERB) sound pressure level spectrogram using different distance measures. 

Using the absolute value metric, he found higher correlations than using the Euclidean 

metric. For vowel sounds, however, he found a high correlation using the Euclidean 

metric. Emiroğlu (2007) also found that the Euclidean distance is more appropriate 

than, e.g., a cross-correlation measure for the comparison of musical tones. The 

Euclidean distance was also used by Florentine and Buus (1981) to model intensity 

discrimination and by Ghitza and Sondhi (1997) to derive an optimal perceptual 

distance between two speech signals. Although the Euclidean distance was preferred by 

these authors for modeling the perception of sound signals, especially of speech, it still 

seems to be useful in this study to analyze the differences occurring on the model‘s 

―perceptual scale.‖ By using an optimal distance measure, deduced from the empirically 

found distribution of these differences, the model recognition performance can possibly 

be optimized. 

2.2 Method 

2.2.1 Model structure 

2.2.1.1 The perception model 
 

Figure 2.1 shows the processing stages of the perception model. The upper part of this 

sketch represents the training procedure. A template speech signal with optionally added 

background noise serves as input to the preprocessing stage. The preprocessing consists 

of a gammatone-filterbank (Hohmann, 2002) to model the peripheral filtering in the 

cochlea. 27 gammatone filters are equally spaced on an ERB-scale with one filter per 
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Figure 2.1: Scheme of the perception model. The time signals of the template recording added with 

running noise and the time signal of the test signal added with running noise are preprocessed in the same 

effective ―auditorylike‖ way. A gammatone filterbank (GFB), a haircell (HC) model, adaptation loops 

(ALs), and a modulation filterbank (MFB) are used. The outputs of the modulation filterbank are the 

internal representations (IRs) of the signals. They serve as inputs to the Dynamic-Time-Warp (DTW) 

speech recognizer that computes the ―perceptual‖ distance between the IRs of the test logatome and the 

templates. 
 

 

 

ERB covering a range of center frequencies from 236 Hz to 8 kHz. In contrast to 

Holube and Kollmeier (1996), gammatone filters with center frequencies from 100 to 

236 Hz are omitted because these filters are assumed not to contain information that is 

necessary to discriminate different phonemes. This is consistent with the frequency 

channel weighting within the calculation of the SII (ANSI, 1997) and our own 

preliminary results. A hearing threshold simulating noise that is spectrally shaped to 

human listeners‘ audiogram data (according to IEC 60645-1) is added to the signal 

before it enters the gammatone-filterbank (GFB) (cf. Beutelmann and Brand, 2006). The 

noise is assumed to be 4 dB above human listeners‘ hearing threshold for all 

frequencies, as proposed by Breebaart et al. (2001)
1
. Each filter output is half-wave 

rectified and filtered using a first order low pass filter with a cut-off frequency of 1 kHz 

mimicking a very simple hair cell (HC) model. The output of this HC model is then 

compressed using five consecutive adaptation loops (ALs) with time constants as given 

in Dau et al. (1996a) (τ1=5 ms, τ2=50 ms, τ3=129 ms, τ4 =253 ms, and τ5=500 ms). 

                                                 
1Breebart et al. (2001) found out that a 9.4 dB SPL Gaussian noise within one gammatone filter channel just masks a sinusoid with 2 

kHz frequency at absolute hearing threshold (5 dB SPL, which is about 4 dB lower). This approach was extrapolated for other 
audiometric frequencies. 
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These ALs compress stationary time signals approximately logarithmically and 

emphasize on- and offsets of non-stationary signals. Furthermore, a modulation 

filterbank (MFB) according to Dau et al. (1997) is used. It contains four modulation 

channels per frequency channel: one low pass with a cut-off frequency of 2.5 Hz and 

three band passes with center frequencies of 5, 10, and 16.7 Hz. The bandwidths of the 

band pass filters are 5 Hz for center frequencies of 5 and 10 Hz, and 8.3 Hz for the band 

pass with center frequency of 16.7 Hz. The output of this model is an IR that is 

downsampled to a sampling frequency of 100 Hz. The IR thus contains a 

twodimensional feature-matrix at each 10 ms time step consisting of 27 frequency 

channels and four modulation frequency channels. The elements of this matrix are given 

in arbitrary model units (MU). Without the MFB 1 MU corresponds to 1 dB sound 

pressure level (SPL). 

2.2.1.2 The DTW speech recognizer 
 

The IR is passed to a DTW speech recognizer (Sakoe and Chiba, 1978) to ―recognize‖ a 

speech sample. This DTW can be used either as an optimal detector by using a 

configuration that contains perfect a-priori knowledge or as a limited detector by 

withholding this knowledge (for details about these configurations see below). The 

DTW searches for an optimal time-transformation between the IRs of the template and 

the test signal by locally stretching and compressing the time axes.  

The optimal time-transformation between two IRs is computed by first creating 

a distance matrix D. Each element D(i, j) of this matrix is given by the distance between 

the feature-matrices of the template‘s IR (IRtempl) at time index i and the feature-matrix 

of the test item‘s IR (IRtest) at time index j. Different distance measures are possible in 

this procedure (see below). As a next step a continuous ―warp path‖ through this 

distance matrix is computed (Sakoe and Chiba, 1978). This warp path has the property 

that averaging the matrix elements along the warp path results in a minimal overall 

distance. The output of the DTW is this overall distance and thus is a distance between 

these IRs. From an assortment of possible templates the template with the smallest 

distance is chosen as the recognized one. 

2.2.1.3 Distance measures 
 

In a first approach the Euclidean distance 
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between the feature-vectors IRtempl and IRtest was used with f denoting the frequency 

channel and fmod denoting the modulation-frequency channel of the IRs (Jürgens et al., 

2007). In many studies this Euclidean distance is used when comparing perceptual 

differences (e.g., Plomp, 1976; Holube and Kollmeier, 1996). The Euclidean distance 

measure implies a Gaussian distribution of the differences between template and test IR. 

As an example, Figure 2.2 panel 1 shows the normalized histogram of 

differences Δd between the IRs (IRtempl and IRtest) of two different recordings of the 

logatome 

),,(),,(),,,( modmodmod ffjIRffiIRjiffd testtempl                            (2.2). 

 

 

Figure 2.2: Distribution of differences (in MU) between IRs of two different recordings of the logatome 

. The recordings were spoken by the same male German speaker with ―normal‖ speech 

articulation style and mixed with ICRA1-noise at 0 dB SNR. A Gaussian, a two-sided exponential, and a 

Lorentz-function were fitted to the data, respectively. Panel 1: complete distribution; panel 2: detail 

(marked rectangular) of panel 1. 

 

In this example, the logatomes were spoken by the same male German speaker and 

mixed with two passages of uncorrelated ICRA1-noise (Dreschler et al., 2001) at 0 dB 

SNR. The ICRA1-noise is a steady-state noise with speech-shaped long-term spectrum. 

Note that Δd corresponds to all differences occurring within a distance matrix, even 

those that are not part of the final warp path. However, the shape of the histogram is 

typical of almost all speakers and all SNRs. To investigate the shape of the histogram of 

differences Δd between these two IRs a Gaussian probability density function (PDF) 
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is fitted to the distribution which corresponds to the Euclidean metric (Eq. (2.1)) and a 

two-sided exponential PDF 
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and a Lorentzian probability density function 
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are also fitted to the distribution, respectively. Two fitting parameters, the width of the 

fitted curve given by σ and the position of the maximum Δdmax, must be set. The fits in 

Figure 2.2 panel 1 show that the distribution is almost symmetrical with Δdmax = 0 and 

that high distances of about 50 MU or more are very much more frequent than expected 

when assuming Gaussian distributed data. Especially, very high distances of about 80 

MU or more (cf. Figure 2.2 panel 2) are present in the tail of outliers. The Lorentzian 

PDF provides a better fit than the Gaussian function. However, it slightly overestimates 

the amount of outliers. The two-sided exponential function provides the best fit to the 

data. The two-sided exponential function is capable of reproducing the shape of the 

mean peak at 0 MU as well as the shape of the tail of outliers. 

By taking the negative logarithm of a PDF (Eqs. (2.3)–(2.5)) and summing up 

the distances across all frequency channels and modulation frequency channels, a 

distance measure is obtained (cf. Press et al., 1992)  that can be used within the speech 

recognition process. This gives the Euclidean distance metric (Eq. (2.1)) (for Gaussian 

distributed data), the absolute value distance metric 
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and the Lorentzian distance metric 
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Note that the prefactors that normalize the PDFs are not included within Eqs. (2.1), 

(2.6), and (2.7) because they represent a constant offset in the distance metric which has 

no effect on the position of the minimum of the overall distance. The parameter σ is set 

to 1 MU for simplicity. For Eqs. (2.1) and (2.6) the value of σ is not relevant to finding 

the best warp path through the distance matrix (i.e., solving a constrained minimizing 

problem). However, in Eq. (2.7), σ is relevant to finding the best warp path because it 
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cannot be factored out as it can for the Euclidean and the absolute value metric. 

Choosing σ equal to 1 MU results in a very flat behavior of the distance metric for 

middle and high distances. Other values of σ in the range from 60 to 0.1 MU showed 

only minor influence to the performance results in preliminary experiments. 

A hypothesis for the present study is that using either Eq. (2.6) or Eq. (2.7) 

instead of the Euclidean distance (Eq. (2.1)) within the DTW speech recognition process 

may better account for the characteristic differences of the IRs and may improve 

matching. 

2.2.2 Speech corpus 

Speech material taken from the OLLO speech corpus (Wesker et al., 2005)
1
 is used in 

this study. The corpus consists of 70 different vowel-consonant-vowel (VCV) and 80 

consonant-vowel-consonant (CVC) logatomes composed of German phonemes. The 

first and the last phoneme of one logatome are the same. The middle phonemes of the 

logatomes are either vowels or consonants which are listed below (represented with the 

International Phonetic Alphabet, (IPA, 1999)). 

• Consonants: 

,,,,,,,,,, ,,,

• Vowels: 

,,, ,,,,,,

Consonants are embedded in the vowels , ,,, and , respectively, 

and vowel phonemes are embedded in the consonants 

,,,,,,,and , respectively. Most of these logatomes 

are nonsense in German
2
. The logatomes are spoken by 40 different speakers from four 

different dialect regions in Germany and by ten speakers from France. The speech 

material covers several speech variabilities such as speaking rate, speaking effort, 

different German dialects, accent, and speaking style (statement and question). In the 

present study, only speech material of one male German speaker with no dialect and 

with ―normal‖ speech articulation style is used. 

                                                 
1 The OLLO corpus is freely available at http://sirius.physik.uni-oldenburg.de. 
2 Even if very few logatoms in this corpus are forenames or may have a meaning in certain dialect regions in Germany these 
logatoms are not excluded in this study to preserve the very systematic composition of this speech corpus. 
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2.2.3 Test conditions 

Calculations with the perception model as well as measurements with human listeners 

were performed under highly similar conditions. The same recordings from the 

logatome corpus were used. The logatomes were arranged into groups in which only the 

middle phoneme varied. With this group of alternatives a closed testing procedure was 

performed. This means that both the model and the subject had to choose from identical 

groups of logatomes. This allowed for a fair comparison of human and modeled speech 

intelligibility because the humans‘ semantic and linguistic knowledge had no 

appreciable influence. Furthermore, it allowed the recognition rates and confusions of 

phonemes to be analyzed. The speech waveforms were set to 60 dB SPL. Stationary 

noise with speechlike long-term spectrum (ICRA1-noise, Dreschler et al., 2001) 

downsampled to a sampling frequency of 16 kHz was added to the recordings and 400 

ms prior to the recording. The whole signal was faded in and out using 100 ms 

Hanning-ramps. After computing the IR of the speech signals as described in Section 

2.2.1.1, the part of it corresponding to the 400 ms noise prior to the speech signal was 

deleted. This was done in order to give only the information required for discriminating 

phonemes to the speech recognizer and not the preceding IR of the preceding 

background noise. 

2.2.4 Modeling of a-priori knowledge 

Two configurations of a-priori knowledge of the speech recognizer were realized. 

• In configuration A five IRs per logatome calculated from five different waveforms 

were used as templates. The waveforms were randomly chosen from the recordings 

of one single male speaker with normal speech articulation style. None of the five 

waveforms underlying these IRs (the vocabulary) was identical to the tested 

waveform. The logatome yielding the minimum average distance between the IR of 

the test sample and all five IRs of the templates was chosen as the recognized one. 

This limited detector approach mimics a realistic task of automatic speech 

recognizers because the exact acoustic waveform to be recognized was unknown. 

• Model configuration B used a single IR per logatome as template. The waveform of 

the correct response alternative was identical to the waveform of the test signal. 

Thus, the resulting IRs of test signal and the correct response alternative differed 

only in the added background noise and hearing threshold simulating noise that 

were uncorrelated in time. In contrast to configuration A, this configuration 

disregards the natural variability of speech. Thus, it assumes perfect knowledge of 
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the speech template to be matched using the DTW algorithm and corresponds to an 

optimal detector approach. 

The calculation was performed ten times using different passages of background noise 

and hearing threshold simulating noise according to the individual audiograms of 

listeners participating in the experiments. The whole calculation took 100 h for 

configuration A (ten times for 150 logatomes at nine SNR values) and 13 h for 

configuration B on an up to date standard PC. 

2.2.5 Subjects 

Ten listeners with normal hearing (seven male, three female) aged between 19 and 37 

years were employed. Their absolute hearing threshold for pure tones in standard 

audiometry did not exceed 10 dB hearing level (HL) between 250 Hz and 8 kHz. Only 

one threshold hearing loss of 20 dB at one audiometric frequency was accepted. 

2.2.6 Speech tests 

The recognition rates of 150 different logatomes were assessed using Sennheiser HDA 

200 headphones in a sound-insulated booth. The calibration was performed using a 

Brüel&Kjaer (B&K) measuring amplifier (Type 2610), a B&K artificial ear (Type 

4153), and a B&K microphone (Type 4192). All stimuli were free-field-equalized using 

an FIR-filter with 801 coefficients and were presented diotically. SNRs of 0, −5, −10, 

−15, and −20 dB were used for the presentation to human listeners. For each SNR a 

different presentation order of the 150 logatomes was randomly chosen. For this 

purpose, the 150 recordings were split into two lists, and the order of presentation of the 

recordings within the two lists was shuffled. Then all ten resulting lists of all SNRs 

were randomly interleaved for presentation. Response alternatives for a single logatome 

had the same preceding and subsequent phoneme (closed test); hence, the subject had to 

choose either from 10 (CVC) or 14 (VCV) alternatives. The subject was asked to 

choose the recognized logatome from the list and was asked to guess if nothing was 

understood. The order of response alternatives shown to the subject was shuffled as 

well. Before the main measurement all subjects were trained with a list of 50 logatomes. 

For characterizing the mean intelligibility scores across all logatomes the 

model function 

g
LSRTs

g
L 






))(4exp(1

1
)(                                                  (2.8) 

 



Chapter 2: Microscopic modeling of speech recognition 

 
36 

was fitted to the mean recognition rate (combined for CVCs and VCVs) for each SNR 

by varying the free parameters SRT and s (slope of the psychometric function at the 

SRT). The SRT is the SNR at approximately 55% recognition rate (averaged across all 

CVCs and VCVs), which is the midpoint between the guessing probability and 100%. L 

corresponds to the given SNR and g is the guessing probability averaged across all 

CVCs and VCVs (g = 8.9%). The fit is performed by maximizing the likelihood 

assuming that the recognition of each logatome is a Bernoulli trial (cf. Brand and 

Kollmeier, 2002). Note that this fitting function assumes that 100% recognition rate is 

reached at high SNRs. This is feasible for listeners with normal hearing and for speech 

recognition modeling using an optimal detector, but is not necessarily the case for a real 

ASR system as such an ASR system will still show high error rates on speech material 

with a low redundancy even when the SNR is very high (Lippmann, 1997). For model 

configuration A the fitting curve is therefore fixed at the highest recognition rate that 

occurred in the ASR test. 

2.3 Results and discussion 

2.3.1 Average recognition rates 

 

 
 
Figure 2.3: Panel 1: Psychometric function (recognition rate versus SNR) of ten normal-hearing listeners 

using logatomes in ICRA1-noise. Error bars correspond to the inter-individual standard deviations across 

subjects. Lines show the fit by Eq. (2.8). Panel 2: Psychometric function of the perception model with 

configurations A and B derived with the same utterances of the OLLO speech corpus as for the 

measurement. The measured psychometric function (taken from panel 1) is additionally shown for 

comparison as gray line (HSR). For a further comparison, data of Meyer et al. (2007a) are plotted (ASR). 

 

 



2.3  Results and discussion 37 

Figure 2.3 panel 1 shows the mean phoneme recognition rates in percent correct versus 

SNR across all phonemes. Error bars denote the inter-individual standard deviations of 

the ten normal-hearing subjects. Furthermore, the recognition rates of CVCs and VCVs 

are plotted separately. The recognition rates for CVCs are higher than for VCVs except 

for −20 dB SNR. The fitting of the psychometric function to the data yields a slope of 

5.4 ± 0.6%/dB and a SRT of −12.2 ± 1.1 dB. Note that even the recognition rate at −20 

dB SNR is significantly above chance and therefore included in the fitting procedure. 

 

Table 2.1: List of fitted parameters characterising observed and predicted psychometric functions for the 

discrimination of logatomes in ICRA1 noise. Rows denote different distance measures used by the 

Dynamic-Time-Warp speech recognizer and different model configurations (see Section 2.2.1 and 2.2.4 

for details) as well as values of human listeners. Pearson‘s rank correlation coefficients (last column) 

were calculated using the observed data of individual human listeners. * denotes significant (p < 0.05) 

and ** highly significant (p < 0.01) correlations. 

 

 SRT / dB 

SNR 

Difference to 

observed SRT / dB 

Slope / 

(%/dB) 

Pearson‘s 

r
2
 

Human listeners -12.2 0
†
 5.4 1

† 

Euclidian, Conf. A -0.4 11.8 5.7 0.64** 

Euclidian, Conf. B -8.1 4.1 10.0 0.83** 

2-sided exp., Conf. A -0.4 11.8 5.8 0.65** 

2-sided exp., Conf. B -10.6 1.6 8.4 0.92** 

Lorentzian, Conf. A -0.6 11.6 3.5 0.83** 

Lorentzian, Conf. B -13.2 -1.0 6.8 0.97** 

†: by definition
 

 

The observed and the predicted results calculated with different distance measures and 

model configurations are shown in Table 2.1. The smallest differences from the 

observed SRT values are found for configuration B. Using this configuration, the slope 

of the predicted psychometric function is slightly overestimated. However, model 

configuration A, which performs a typical task of speech recognizers, shows a large gap 

of about 12 dB between predicted and observed SRTs, which is typical of ASR (see 

below). This gap is nearly independent of the type of distance measure, while the slope 

is slightly underestimated. The last column of Table 2.1 shows Pearson‘s squared rank 

correlation coefficient r
2
 between the individual observed and predicted speech 

recognition scores. The Lorentzian distance measure using model configuration B 

shows the highest r
2
 of 0.97 (p<0.01), whereas the two-sided exponential and the 

Euclidean distance measure show somewhat lower correlation coefficients and higher 
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differences between observed and predicted SRTs. Different distance measures do not 

substantially affect the prediction of the SRT using model configuration A.  

The predicted psychometric function of this best fitting model realization 

(configuration B with Lorentzian distance measure) is displayed in Figure 2.3 panel 2. 

In addition, the fitted psychometric function of Figure 2.3 panel 1 is replotted (HSR), 

and the predicted psychometric function of model configuration A with Lorentzian 

distance measure is shown. Furthermore, ASR-data of Meyer et al. (2007a) were 

included for comparison (see Section 2.4.1). For model configuration B the resulting 

SRT using the Lorentzian distance measure is −13.2 dB SNR and thus within the 

interval of the subjects‘ inter-individual standard deviation. The ranking of the 

recognition of vowels and consonants (i.e., that CVCs are better understood than VCVs) 

is predicted correctly except for −20 dB SNR. Model configuration A, which performs a 

typical task of speech recognizers, shows a SRT of −0.6 dB and a slope of 3.5%/dB 

using the Lorentzian distance measure. With this configuration the ranking of the 

recognition of vowels and consonants could not be predicted, i.e., the model shows 

higher recognition rates for consonants than for vowels. 

2.3.2 Phoneme recognition rates at different SNRs 

 

 

Figure 2.4: Recognition rates of consonants, separately, as a function of SNR for ten normal-hearing 

listeners (panel 1) and for model configuration B with Lorentzian distance measure (panel 2). As an 

example the psychometric function for the discrimination of  in noise is shown (solid line). 

 

Figure 2.4 shows the recognition rates of single consonants embedded in logatomes as a 

function of SNR for normal-hearing listeners (panel 1) and for model configuration B 

using the Lorentzian distance measure (panel 2). Picking out one phoneme, the 

psychometric function for this specific phoneme can be seen. The solid lines in panels 1 

and 2 show these psychometric functions for the phoneme  as an example. Normal-
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hearing listeners show quite poor recognition rates for the phonemes ,, or 

at the SNRs chosen for measurement. However, there are also some phonemes like , 

, and  that show very high recognition rates at these SNRs. The predicted 

recognition rates for the latter phonemes (see panel 2) fit the observed recognition rates 

quite well. This is also the case for ,, ,, and . For the other 

phonemes there is a discrepancy between observed and predicted recognition rates 

especially at high SNRs. For instance, at 0 dB SNR the predicted recognition rate is 

almost 100% for all phonemes, but normal-hearing listeners actually show poor 

recognition rates of 58% for  or 70% for . The recognition rates for vowels 

across SNR are shown in Figure 2.5. Normal-hearing listeners show quite a steep 

psychometric function for the phonemes ,,, and  but a shallower 

psychometric function for the other phonemes. The predicted recognition rates for  

and  fit the observed recognition rates quite well across all SNRs investigated in 

this study. However, for ,, , and the predicted psychometric functions 

are too shallow. Note that for vowels, contrary to consonants, at 0 dB SNR almost 

100% recognition rates are reached by both normal-hearing listeners and model 

configuration B.  

 

 

Figure 2.5: Recognition rates of vowels. The display is the same as in Figure 2.4. 

 

2.3.3 Phoneme confusion matrices 

Confusion matrices are calculated for all SNRs, which were used in the experiment. In 

the following section the confusion matrices at -15 dB SNR are analyzed. The 

recognition rates at this SNR are the least influenced by ceiling effects (see Figure 2.4 
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and Figure 2.5) and show the largest variation across phonemes. Therefore, at this SNR, 

the patterns of recognition are most characteristic. Figure 2.6 panel 1 shows the 

observed confusion matrices of the VCV discrimination task and panel 2 the 

corresponding predictions using the Lorentzian distance measure with model 

configuration B. Each row of the confusion matrix corresponds to a specific presented 

phoneme and each column corresponds to a recognized phoneme. The diagonal 

elements denote the rates of correct recognized phonemes and the non-diagonal 

elements denote confusion rates of phonemes. All numbers are given in percentages.  

 

 

Figure 2.6: Confusion matrices (response rates in percent) for consonants at −15 dB SNR for normal-

hearing subjects (panel 1) and for model configuration B with Lorentzian distance measure (panel 2). 

Row: presented phoneme; column: recognized phoneme. For better clarity, the values in the cells are 

highlighted using gray shadings with dark corresponding to high and light corresponding to low response 

rates. Response rates below 8% are not shown. 
 

At -15 dB SNR the average recognition rate for all consonants is 33% (human) and 36% 

(model configuration B, see also Figure 2.3). In the following text the comparison of the 

two matrices will be described element-wise. Two elements differ significantly if the 

two-sided 95% confidence intervals surrounding the respective elements do not overlap 

(cf. Section 2.7). The observed and the predicted correct consonant recognition rates do 

not differ significantly, except for the phonemes , and , and . Rates below 

17% do not differ significantly from the guessing probability of 7% (cf. Section 2.7). 

Hence, almost all non-diagonal elements of the model confusion matrix do not differ 

significantly from the corresponding elements of the human listeners‘ confusion matrix. 

One exception is the confusion ‗presented   recognized ‘, found in the 
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observed confusion matrix, which cannot be found in the predicted confusion matrix. 

Other exceptions like ‗presented  recognized ‘ differ just significantly and 

shall not be discussed in detail in this section. Unfortunately, the size of confidence 

intervals of the matrix elements decreases very slowly with an increasing amount of 

data. Therefore, it is not possible to find many significant differences between predicted 

and observed matrix elements although the amount of data is already relatively large. 

However, if we compare the correct recognition rates within one matrix many 

phonemes can be found that differ significantly in recognition rate. Note that within one 

single matrix only matrix elements from different rows should be compared (cf. Section 

2.7). 

 

 

Figure 2.7: Confusion matrices (response rates in percent) for vowels at −15 dB SNR for normal-hearing 

subjects (panel 1) and of model configuration B (panel 2). The display is the same as in Figure 2.6. 
 

 

Figure 2.7 panel 1 shows the observed confusion matrices of the CVC discrimination 

task and panel B the corresponding predictions using the Lorentzian distance measure 

with model configuration B. At -15 dB SNR the average recognition rate for all vowels 

is 52% (human) and 46% (model configuration B, see also Figure 2.3) panel 2. The 

ranking of the best recognized phonemes  and as well as the ranking of the 

worst recognized phonemes  and  is predicted correctly. However, the overall 

―contrast‖ (i.e. the difference between best and worst recognized phonemes) of the 

predicted matrix is much less pronounced than in the observed matrix. The largest 

number of confusions occurred between the phonemes , , , and for 
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both predictions and observations. However, the significant observed confusion 

‗presented   recognized ‘ cannot be found in the predicted confusion matrix. 

Furthermore, the phonemes  and  are recognized with a bias, i.e., no matter 

what phoneme is presented, the model shows a slight preference for these phonemes. 

Pearson‘s φ
2
 (Lancaster, 1958) index was used for comparing the similarity 

between measured and modeled confusion matrix data. This index is based on the chi-

square test of equality for two sets of frequencies and provides a normalized measure 

for the dissimilarity of two sets of frequencies. A value φ
2
 = 1 is related to complete 

dissimilarity, whereas a value of φ
2
 = 0 is related to equality. Table 2.2 shows φ

2
 values 

for comparing the confusion patterns, i.e. each φ
2
 value is a measure for the 

dissimilarity of the x-th row of the observed confusion matrix and the x-th row of the 

predicted confusion matrix of Figure 2.6 and Figure 2.7 respectively. For the consonant 

confusion matrices highest similarity is found for the confusion patterns of , , 

and . This very high similarity is mainly due to the high correct response, i.e. the 

diagonal element.  

 

Table 2.2: Pearson‘s φ
2
 index, a measure of dissimilarity, for comparing the confusion patterns, i.e. one 

row of a confusion matrix, of observed and predicted phoneme recognition from Figure 2.6 and Figure 

2.7, respectively. 

 

Presented consonant φ
2
 Presented vowel φ

2
 

 0.21      0.10 

 0.12      0.24 

 0.24      0.19 

 0.20      0.21 

 0.16      0.11 

 0.12      0.24 

 0.15      0.14 

 0.16      0.15 

 0.14  0.14 

 0.25  0.10 

 0.21       

 0.14       

 0.08       

 0.18   

 

 

Generally, many observed and predicted confusion patterns show high similarity due to 

low φ
2
–values. However, the observed and predicted confusion patterns of show 
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the lowest similarity. This is mainly due to the significant confusion of ‗presented 

recognized ‘, which was not predicted by the model. The confusion patterns 

of the phonemes , , and  show moderate similarity. These phonemes also 

show a poor recognition rate at -15 dB SNR and thus higher percentages in the non-

diagonal-elements. This gives support to the supposition that the model is not able to 

predict the consonant confusions of normal-hearing listeners. For comparing the 

patterns of recognition, i.e. the diagonal of the confusion matrix, the correlation 

coefficients between observed and predicted data are shown in Table 2.3 as a function 

of SNR. For an SNR of -15 dB this correlation coefficient amounts to r
2
 = 0.91 (p < 

0.01). This strong correlation means that the model is quite good in modeling the 

correct responses. For observed and predicted consonants there are also highly 

significant correlations found at -10 dB and -20 dB SNR. The correlation decreases 

rapidly for higher SNR mainly due to ceiling effects, i.e. many phoneme recognition 

scores are in the range of 100%. Note that at 0 dB SNR a correlation coefficient for 

consonants could not be assigned due to the fact that at this SNR all consonants are 

predicted at a recognition rate of 100%, whereas some were observed at lower 

recognition rates. 

 

Table 2.3: Correlation coefficients r
2
 for comparing observed and predicted recognition scores from 

Figure 2.4 and Figure 2.5, i.e. the diagonals of confusion matrices, as a function of SNR. * denotes 

significant (p < 0.05) and ** highly significant (p < 0.01) correlations. 

 

SNR (dB) r
2
 for consonants r

2
 for vowels 

0 not assigned 0.09 

-5 0.34* 0.52* 

-10 0.78** 0.56** 

-15 0.91** 0.57* 

-20 0.86** 0.26 

 

For the vowel confusion matrices highest similarity is found for the observed and 

predicted confusion patterns of , , and. Many confusion patterns show a 

high similarity except for those of , and which show only modest 

similarityThe high similarity for the former phonemes is mainly due to the correct 

modelling of confusions ‗presented recognized ‘, ‗presented recognized 

‘, and ‗presented recognized ‘ and the correct responses, respectively. 

The modest similarity for , and is mainly due to the high discrepancy in 

predicting the correct diagonal element score. Correlating the diagonals at this SNR (cf. 
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also Table 2.3) shows that the patterns of recognition are significantly (r
2
 = 0.57, p < 

0.05) correlated but not as high as for the consonant recognition patterns. This also 

holds for -10 dB and -20 dB SNR. For higher SNRs, i.e. higher average recognition 

scores, the correlation of predicted and observed vowels is higher than the correlation of 

consonants. This leads to the assumption that the model can better predict the confusion 

patterns for vowels than for consonants at low recognition rates as, e.g. for and 

. In predicting the correct responses, however, the model is not as good for the 

vowels as for the consonants. 

The fact that the model is not able to predict confusion patterns correctly, 

especially for consonants, may be due to two reasons: The first reason may be that the 

model is partly not able to exploit similarities between the internal representations of 

phonemes that might in fact be similar to one another for normal-hearing listeners. This 

is supported by a confusion that is not predicted (‗presented  recognized ‘), but 

not e.g. by the confusions between and that are almost correctly predicted. 

The second reason may be simply due to the high ranges of confidence intervals (see 

Section 2.7) due to the inherent binomial statistics of this speech test. 

2.4 General discussion  

2.4.1 Microscopic prediction of speech intelligibility 

This study compares the recognition performance in noise of a microscopic speech 

intelligibility prediction model to the phoneme recognition performance of human 

listeners. The model was also used with the same approach as in this study to predict 

speech intelligibility of a rhyme test (Holube and Kollmeier, 1996). Our results, as well 

as the results of Holube and Kollmeier (1996), show that this combination of perception 

model and DTW speech recognizer is able to discriminate noisy speech signals in a 

closed-set testing procedure. The model used here is also similar to the microscopic 

model used by Barker and Cooke (2007). Their model is inspired by ASR techniques 

and evaluates speech parts that ‘glimpse‗ the spectro-temporal pattern of the signal to be 

recognized out of background noise. One main novelty of this study is that the use of 

the speech database of Wesker et al. (2005), which provides many recordings of the 

same logatome, allows the investigation of the influence of a-priori-knowledge about 

the speech. This investigation is possible because the speech recognizer is realized with 

two model configurations. In model configuration B templates are used, which are 
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identical to the test items; this corresponds to maximum a-priori-knowledge. In model 

configuration A the recognizer used templates, which are not identical with the test 

items corresponding to less a-priori-knowledge.  

Assuming limited a-priori-knowledge within model configuration A results in a much 

poorer performance than observed in the results of human listeners. This reflects the gap 

between human and machine speech reception (cf. Jürgens et al., 2007) because 

configuration A is the standard case for ASR. The gap of about 11 dB to 12 dB SNR is 

consistent with findings of other studies employing common speech recognition 

systems like Hidden-Markov-Models (HMM). Meyer et al. (2007a) found a gap of 

about 10 dB SNR (averaged across different speakers) between human listeners‘ SRT 

and the SRT of a speech recognizer using Mel-Frequency-Cepstral-Coefficients and an 

HMM using the same OLLO speech corpus and very similar listening experiments. As a 

direct comparison, a subset of the ASR-data of Meyer et al. (2007a) is plotted as an 

additional psychometric function in Figure 2.3. The subset of speech material to be 

tested is limited to the same speech material that was used in the present study. For this 

speech material the gap in SRT between ASR and normal-hearing listeners‘ 

performance extends to about 8 dB. The difference of 3 to 4 dB from our results might 

be due to different speech recognizers used. Meyer et al. (2007a) used a speech 

recognizer that benefitted from decades of research. Also the amount of training 

material in their study was much larger (49 speakers with different articulation styles) 

than in the present study.  

Speech intelligibility can be predicted with greater accuracy using model 

configuration B in which the amount of information about the speech signal prior to the 

recognizing process is assumed to be perfect. It has to be stated that in this point the 

model differs from human listeners‘ speech processing because human listeners have 

not stored the exact internal representation of the signal to be recognized. Human 

listeners are able to generalize their internal representation of a speech utterance to 

different speech waveforms, even if different articulation styles or speakers are 

involved. However, our speech recognition model includes a pattern recognizer that has 

to find a speech pattern among different alternatives, which is closer to human speech 

processing than, for example, the Speech Intelligibility Index (ANSI, 1997). This 

optimal detector concept is a standard in psychoacoustic modeling and predicts, e.g., 

forward, backward and simultaneous masking thresholds (Dau et al., 1996b), 

modulation detection thresholds (Dau et al., 1997), and the time resolution of the 

binaural system (Breebaart et al., 2002). As this speech recognition study is in line with 
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other psychoacoustic experiment studies, because of the closed test paradigm and the 

nonsense speech material used here, such an approach seems to be appropriate. The 

very accurate agreement of observed and predicted phoneme recognition rates using 

model configuration B does not mean that human listeners have a perfect decision 

device. Humans‘ limitations in discriminating speech in noise are certainly due to 

energetic masking of the speech signal by background noises and also due to errors in 

the inherent processing in the subsequent word recognition stage. However, the speech 

discrimination performance of the model is very similar to that of human listeners if all 

limitations of performance are assumed entirely in the preprocessing stage of the model. 

For the experiments presented here this may be interpreted as that lifelong training of 

humans in speech makes the pattern recognizing part of human speech recognition 

perform as well as the model's optimal detector.  

With configuration B the model is capable of predicting the SRT of this speech 

test with an accuracy of about 1 dB. The SII (ANSI, 1997) predicts the SRT within the 

same accuracy range: For -15 dB SNR the SII-value is found to be 0.045, for instance, 

and for -10 dB the SII is 0.18. Transformed to intelligibility scores by using the SII 

transfer function for Hagerman‘s sentences in noise (Magnusson, 1996), the resulting 

SRT is -11.2 dB SNR. The main advantage of the microscopic modelling approach 

compared to the SII is that, whereas the SII is able to predict only average recognition 

scores, this approach is able to predict the recognition scores for each phoneme 

separately. Furthermore, this approach draws out some characteristic phoneme 

confusions that are commonly seen. 

2.4.2  Distance measures 

The type of distance measure crucially influences the performance of the speech 

recognizer when using model configuration B. The Euclidian distance used by e.g. 

Plomp (1976), Holube and Kollmeier (1996), and Jürgens et al. (2007) shows the 

poorest performance among the distance measures investigated here. In this study, there 

is a gap of more than 4 dB between the SRT of model configuration B and human 

listeners‘ SRT. Using the Euclidian distance, outlying passages are strongly weighted 

and consequently the DTW algorithm tries to minimize the occurrence of outlying 

passages as far as possible. This may cause the warp path, i.e., the temporal matching 

function between two internal representations, to be fitted more to the passages 

containing different speech or noise. Passages with low distances are disregarded. By 

applying a distance measure that is less sensitive to outliers in the matching procedure 
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of two internal representations (i.e., using the two-sided exponential measure or the 

Lorentzian measure) this gap is substantially decreased or vanishes. Using the two-sided 

exponential distance measure, all distances are weighted with their usual occurance 

probability (cf. Figure 2.2). Therefore, this can be called a ‘natural‗ distance measure 

for speech in noise. Although no substantial influence of the type of distance measure 

was found on the performance of model configuration A, it was found for model 

configuration B. One could argue, since configuration A is typical of an ASR system, 

that other ASR systems may not benefit from an optimization of the distance measure 

they use. However, as this approach uses a speech recognizer that does not require a 

large amount of training material as common ASR systems do, this is speculative. 

Nevertheless, for further optimizing of ASR systems it may be useful to study the 

influence of different distance measures on the ASR systems‘ performance.  

Using the Lorentzian distance measure, all outlying passages get approximately 

the same constant weight because of the flatness of the logarithm for large input values. 

Therefore, the overall distance between two internal representations is mainly 

dominated by the smallest elements of the distance matrix. In other words, the steepness 

of the logarithm at low values causes similar passages of the internal representations to 

be matched as closely as possible. This may particularly be an advantage for 

discriminating noisy speech samples because the speech recognizer is dominated by 

matched (i.e., similar speech) patterns and neglects unmatched (i.e., noise or different 

speech) patterns. Hence, the detector can separate the objects ‗matched speech‘ 

passages from ‗unmatched speech‘ or ‗noise only‘ passages more appropriately. If we 

conceive of noise and speech as different acoustical objects this mechanism may have 

some similarities to the mechanism of acoustical object separation within the human 

auditory system. Neglecting passages that do not match passages of stored response 

alternatives is a candidate for modeling human‘s mechanism of object separation. In 

that way the distinction between a ‗matchable speech object‘ and a ‗not matchable 

speech object‘ or ‗noise-only object‘ may be enhanced. Using model configuration B, 

the Lorentzian distance measure performs best and results in a high agreement in 

phoneme recognition. Therefore, this set-up was chosen for the prediction of speech 

recognition in noise of listeners with normal hearing. 

2.4.3 Phoneme recognition rates and confusions 

In this study both human listeners and the model show the highest performance at the 

same consonants ,,, and as in the study of Phatak and Allen (2007), 
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who investigated consonant recognition rates in speech weighted noise. The results 

obtained in this study are in line with those of Phatak and Allen (2007), although they 

used speakers and listeners of a different native language and different speech material. 

Furthermore, the amount of alternatives that could be recognized was completely 

different from our measurements. However, the separation of consonants into a low 

scoring and a mid scoring group with the same phonemes as in Phatak and Allen (2007) 

could not be observed in this study. They concluded that differences in recognition rates 

can mainly be explained by differences in the long-term spectra of speech and noise. 

However, this may not account for consonants with characteristics that are mainly 

determined by the temporal structure as, e.g., for plosives like ,, or . Our 

approach regards this temporal structure by the temporal matching performed in the 

DTW speech recognizer. 

By and large, the confusion matrices of human listeners and of model 

configuration B with Lorentzian distance measure are very similar. Except for a small 

number of elements, the consonant confusion matrices do not differ significantly 

element-wise regarding the binomial statistics valid for these discrimination tasks (see 

Section 2.7). The correlation between predicted and observed recognition rates of single 

phonemes is very high. This is promising and it may indicate that for all phonemes 

speech information is conserved or emphasized during the modeled ‘effective‗ auditory 

preprocessing in a way similar to human listeners. 

The vowel confusion matrix of the model shows a slight preference, i.e. a bias, 

concerning the vowels , ,, and  independent of the presented vowel. 

This is one main difference between the predicted and observed vowel confusion 

matrices. Meyer et al. (2007a) found that the phonemes  and  within this 

speech corpus have the least distinctive average spectrum compared to speech-shaped 

noise. Consequently, these phonemes are the phonemes best masked in the background 

noise at low SNRs. If the speech recognizer is not able to match a presented phoneme, it 

is very probable that it matches the internal representation that is the most similar to the 

internal representation of the background noise. These are the internal representations of 

logatomes with  and  as middle phonemes. In some cases the procedure 

probably matches mainly the background noise characteristics of the internal 

representations and is not able to focus on the speech characteristics any more. One 

reason why the prediction of vowel recognition rates is poorer than for consonants, 

while the prediction of vowel confusions is better than for the consonants, may be the 
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spectrotemporal structure of these two phoneme groups. Generally, vowels are more 

stationary signals than consonants. Furthermore, there is no clear separation between 

different vowels but a continuous transition in the frequency range. Therefore, it seems 

reasonable to assume that two different vowels are ‘perceptually‗ more close to one 

another than are two different consonants. This may explain why confusions occur more 

frequently in both normal-hearing listeners‘ and modeled data. 

2.4.4 Variability in the data 

Data obtained by speech tests using human listeners always show both intra-individual 

and inter-individual variability. One factor for the inter-individual variability is the 

variability of the hearing threshold across listeners. Preliminary simulations, however, 

showed that adapting only the hearing threshold simulating noise results in less 

variability than found in normal-hearing listeners‘ speech recognition data. This can be 

explained by the low RMS level of the hearing threshold simulating noise, which is 

masked by the much higher level of the background noise. For this reason a much more 

effective way to include variability was to use running background noise. In other 

words the variability in the simulations originates almost exclusively from the statistics 

of the background noise. However, this is somewhat unrealistic, because in the 

measurements the background noise stimuli were identical for every participant 

whereas, in reality the auditory processing varied. It still remains an open question how 

to obtain a comparable variability by modifying the auditory processing without using 

this workaround. For speech intelligibility modelling in silence, e.g., Holube and 

Kollmeier (1996) achieved some variability using a fluctuating absolute threshold of 

hearing which improved their predictions in silence. Due to the small influence of the 

exact form of the absolute hearing threshold in our study, this procedure was not applied 

here.  

2.4.5 Practical relevance 

There are at least two different applications that may benefit from this modelling 

approach. Firstly, this approach may be used to model sensorineural hearing loss by 

appropriate manipulation of the auditory preprocessing. Hence, consequences of the 

auditory preprocessing on speech recognition for listeners with impaired hearing can be 

investigated. As a long-term aim the model may serve as a tool for distinguishing 

between reduced speech recognition caused by impaired preprocessing or by further 

problems in the patient‘s central processing. A further long-term aim is to find 
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processing strategies that substantially enhance the recognition performance of certain 

phonemes and that can be used in hearing-aids. Secondly, automatic speech recognizers 

may be improved especially for functioning in noise if they focus on passages fitting 

well to their vocabulary and if they neglect outlying passages in a manner similar to that 

used in the weighting of the perceptual distance in this study.   

2.5 Conclusions 

(1) The microscopic approach for predicting speech intelligibility by using an 

auditory model as a pre-processor to a DTW speech recognizer is capable of 

discriminating CVC and VCV logatomes in noise. 

(2) If the detector stage is assumed to be optimal by using identical templates for 

test signal and vocabulary, the speech discrimination performance of the model 

is very similar to that of human listeners. This means that the recognition of 

logatomes by humans can be modelled effectively by assuming a limited 

auditory-like preprocessing stage and a perfect speech matching process. In 

other words: The prediction of normal-hearing listeners‘ speech recognition is 

only possible if exactly the same stimulus is available as a-priori-knowledge. 

(3) No substantial improvement in performance of the model with imperfect 

knowledge about the speech signal was found when changing the distance 

measure. 

(4) For the model with perfect knowledge about the speech signal, the Lorentzian 

measure is the best distance measure where outlying passages have the smallest 

weight compared to the other distance measures such as the Euclidian or the 

two-sided-exponential.  

(5) Predicted recognition rates of each single phoneme are very similar to observed 

recognition rates but some of the observed characteristic patterns of human 

confusions did not occur within the predictions.  

2.6 Acknowledgements 

We thank Birger Kollmeier for his substantial support and contribution to this work and 

Bernd Meyer for making available the ASR data. Thanks to Mitchell Sommers, Amy 

Beeston, and one anonymous reviewer who helped to greatly improve the manuscript. 

We also like to thank the EU HearCom Project, the 'Förderung wissenschaftlichen 



2.7 Appendix 51 

Nachwuchses des Landes Niedersachsen' (FwN), and SFB/TR 31 'Das aktive Gehör' 

(URL: http://www.uni-oldenburg.de/sfbtr31) for funding the research reported in this 

paper. 

2.7 Appendix: Significance of confusion matrices elements 

For deciding whether or not two matrix elements differ significantly, a statistical 

analysis has to be made. One element of a confusion matrix is given by p = x/n, with x 

denoting the number of recognitions of the phoneme specified by the column and n 

denoting the number of presentations specified by the row of the matrix. There are n = 

50 (VCV) and n = 80 (CVC) presentations respectively of each phoneme at each SNR 

(i.e. each confusion matrix). Each single presentation is followed by a subjects‘ decision 

for one response alternative given in the list. Therefore, each decision is a Bernoulli-

trial with an unknown underlying probability π for the correct item and (1-π) for all 

other items. Note that p is just an estimate of π. By estimating π using p, both-sided 

95%-confidence intervals can be calculated based on binomial statistics (Sachs, 1999). 

The upper boundary is given by 
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with )}(2),1(2{ xnxupper FF   taken from Fisher‘s F-distribution. The lower boundary is 

given by  
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The range of confidence intervals for an observed percentage p in the speech test, i.e. 

(πupper - πlower), results in 4% to 22% for n = 80 (CVC presentation) and 6% to 29% for n 

= 50 (VCV presentation), whereas the wider range can be found at p = 50% and the 

smaller range at p = 0% and p = 100%. These confidence intervals contain the 

underlying probability π with a confidence of 95%. Furthermore, they offer a criterion 

to decide if two percentages, that are statistically independent of each other, differ 

significantly (i.e., their confidence intervals must not overlap). The precondition, 

statistical independence within one confusion matrix, is warranted only for two matrix 

elements that are not part of the same row because in this case completely different 
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phonemes were presented to obtain the two percentages. Two elements of the same row 

are not independent of each other because the recognition of one phoneme affects the 

percentages for the other phonemes of that row. A comparison of two elements being 

part of the same row requires a different statistical analysis that is not discussed here.  

Therefore, only elements of different rows (or different confusion matrices) can be 

tested for difference using the methods described in this section. When comparing two 

different confusion matrices (e.g., observed with predicted) this problem does not occur.



  53 

3 Challenging the Speech Intelligibility Index: 

Macroscopic vs. microscopic prediction of 

sentence recognition in normal and hearing-

impaired listeners
1
 

 

 

Abstract 
 

A ―microscopic‖ model of phoneme recognition, which includes an auditory model and 

a simple speech recognizer, is adapted to model the recognition of single words within 

whole German sentences. ―Microscopic‖ in terms of this model is defined twofold, first, 

as analyzing the particular spectro-temporal structure of the speech waveforms, and 

second, as basing the recognition of whole sentences on the recognition of single words. 

This approach is evaluated on a large database of speech recognition results from 

normal-hearing and sensorineural hearing-impaired listeners. Individual audiometric 

thresholds are accounted for by implementing a spectrally-shaped hearing threshold 

simulating noise. Furthermore, a comparative challenge between the microscopic model 

and the ―macroscopic‖ Speech Intelligibility Index (SII) is performed using the same 

listeners‘ data. The results are that both models show similar correlations of modeled 

Speech Reception Thresholds (SRTs) to observed SRTs. 
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3.1 Introduction 

The Speech Intelligibility Index (SII) (ANSI, 1997) is widely used to predict human 

speech recognition (HSR) in different noise conditions or for subjects with different 

audiometric hearing losses. The SII can be called a ―macroscopic‖ model, as it uses only 

the long-term spectra of speech and noise separately, whereas the particular temporal 

structure of speech and noise is disregarded. Speech intelligibility is predicted using a 

weighted sum over the Signal-to-Noise-Ratios (SNRs) in different frequency bands, 

resulting in an SII value between 0 and 1. The weighting factors are tabulated and 

depend on the context or the articulation style of the speech material used (ANSI, 

1997). Subsequently, the SII value is transformed to a speech recognition rate in percent 

using a nonlinear function that depends on the speech material. 

A psychoacoustically-driven, ―microscopic‖ model of HSR, on the other hand, 

models the recognition of single phonemes (Jürgens and Brand, 2009) by analyzing the 

particular spectro-temporal structure of speech and noise. An ―internal representation‖ 

(IR) is computed from the waveform of the speech/noise-mixture using an auditory 

model and employing a simple speech recognizer. Thus, it mimics the individual 

auditory signal processing in a much more realistic way than the SII. 

The main goal of this study is first, to adapt this microscopic model from 

phonemes to sentences and second, to compare the predictive power of this modeling 

approach with that of the SII. For the comparative challenge of the two models, an 

ambitious speech recognition data set is used with perceptually similar (rather than 

physically equal) acoustic measurement conditions for all listeners. This means that 

signals with higher levels were used for hearing-impaired listeners to ensure equal 

loudness perception of these signals. 

 

3.2 Measurements 

3.2.1 Subjects 

15 normal-hearing (NH) listeners aged from 24 to 34 years and 48 sensorineural 

hearing-impaired (HI) listeners aged from 17 to 82 years participated in this study. In 51 

listeners both ears were tested separately, resulting in a total of 114 investigated ears. 

NH listeners showed pure-tone thresholds of not more than 15 dB Hearing Level (HL) 

using standard audiometry (IEC60645-1). Figure 3.1 displays averaged audiogram data 
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of the NH group and two groups of HI listeners (black lines), including the ranges 

between the 5th and 95th percentiles. The first group of HI listeners showed nearly 

normal hearing at low frequencies (≤ 30 dB HL between 125 Hz and 1 kHz) and hearing 

loss at higher frequencies (HI-H). The second group showed a hearing loss both at low 

and high frequencies (HI-LH). Listeners were paid for their participation in the 

experiments.  

 

 

Figure 3.1: Average audiometric thresholds and ranges between the 5th and 95th percentiles for normal-

hearing listeners (NH, light gray) and two groups of hearing-impaired listeners (HI-H, hatched; HI-LH, 

dark gray). 

3.2.2 Apparatus 

All stimuli were presented monaurally via Sennheiser HDA 200 headphones that were 

free-field equalized using an FIR-filter with 801 coefficients, while the listeners were 

seated in a sound-insulated booth. The headphones were connected to a computer-

controlled audiometry workstation that was developed within a German joint research 

project on speech audiometry (Kollmeier et al., 1992). 

3.2.3 Speech intelligibility measurements 

Speech intelligibility in stationary ICRA1 noise (Dreschler et al., 2001) was measured 

using the Oldenburg sentence test (Wagener et al., 1999a) that is part of the Oldenburg 

Measurement Applications (OMA) software by HörTech gGmbH. The Oldenburg 

sentence test consists of German sentences with the fixed syntactic structure name-verb-
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number-adjective-object, e.g. ‘Peter gets five wet cars’, spoken by a male speaker. Each 

word of the sentence was chosen from ten alternatives, respectively. Such sentences 

were combined in lists consisting of 30 sentences each that were optimized with respect 

to equal speech intelligibility (Wagener et al., 1999b). Within one measurement run, 

one list of sentences was presented. An adaptive procedure (Brand and Kollmeier, 2002) 

was used to measure the Speech Reception Threshold (SRT), i.e. the SNR at 50% 

speech recognition rate for the sentences of this list as follows. After the presentation of 

each sentence, the level of the speech was adaptively varied in two randomly 

interleaved tracks. One track converged at 80% and the other track converged at 20% 

speech recognition rate. Both tracks started with an SNR of 0 dB. After each run the 

SRT was calculated by fitting a logistic function with the parameters SRT and slope to 

all collected data using a maximum likelihood estimator (Brand and Kollmeier, 2002). 

During the measurements the level of the noise was fixed at a level that individually 

corresponded to medium loudness. This means that all listeners were tested under 

perceptually similar, rather than physically equal conditions. At least two test lists were 

measured as training in advance. Subjects were asked to repeat each presumably 

understood word after presenting the whole sentence (open test). An investigator 

marked the correctly recognized words using a touch screen response box. 

3.3 Modeling 

3.3.1 Speech Intelligibility Index 

The SII was calculated according to the ANSI (1997) standard using the long-term 

spectrum of the ICRA1 background noise and the long-term spectrum of the complete 

speech material of the Oldenburg sentence test (Wagener et al., 1999a). The critical 

frequency band method was used and the standard speech spectrum level for stated 

vocal effort was chosen according to ‗normal‘ speech articulation. Individual audiogram 

data, interpolated at the center frequencies of the critical frequency bands, was used to 

calculate the equivalent hearing threshold level. As critical band importance function 

the values for SPeech In Noise (SPIN) were chosen. The modeled psychometric 

function, i.e. SII-values for each listener as a function of SNR, was calculated using the 

same fixed noise level as in the measurements and speech levels in the range of 40 to 

100 dB SPL in 2.5 dB steps. An SII-value of 0.24 was defined as the value 

corresponding to 50% speech intelligibility. Individually for each listener, the modeled 

SRT was obtained by an interpolation of the psychometric function at that SII-value.
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3.3.2 Microscopic model 

The microscopic model of speech recognition was implemented very similar to the   

approach of Jürgens and Brand (2009) for NH listeners and was extended to HI listeners 

and to a sentence test in the present study. A word from the Oldenburg sentence test, 

mixed with ICRA1 background noise with an SNR ranging from –15 to 15 dB in 3 dB 

steps is added to a hearing threshold simulating noise that is spectrally shaped to the 

individual audiogram data of the listener‘s ear (cf. Figure 3.2). Subsequently, the 

Perception Model (PeMo) (Dau et al., 1997) computes an IR from this signal.  

 

 

Figure 3.2: Block diagram of the auditory model (white blocks). Background noise and hearing 

threshold simulating noise are added to the speech waveform in advance. The auditory model 

computes an internal representation from the speech/noise mixture. 

 

The PeMo implementation used in the present study consists of a gammatone filter bank 

with 27 frequency channels ranging from 236 Hz to 7469 Hz center frequency. The 

gammatone filterbank models the peripheral filtering in the cochlea. A haircell-model 

computes the temporal envelope in each frequency channel and adaptation loops 

emphasize on- and offsets of the signal. A modulation filterbank with four modulation 

channels evaluates low speech modulations up to about 20 Hz. Consecutively, the IR is 

downsampled to a sampling frequency of 100 Hz and thus contains a feature-matrix of 

27 frequency channels and four modulation frequency channels at each 10 ms time step. 

PeMo is capable of modeling psychoacoustical data, e.g. of forward and backward 

masking experiments, and modulation detection in normal-hearing listeners (Dau et al., 

1997). 
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Figure 3.3: Microscopic modeling approach: An internal representation (IRtest) of the speech 

waveform to be recognized mixed with noise (top left) is computed by the auditory model. The IRs 

of ten different response alternatives (vocabulary, bottom) are also computed by the same auditory 

model. Both, IRtest and one of IR1 to IR10 are given pair wise to the DTW speech recognizer that 

computes a ―perceptive‖ distance of each pair. The word with the smallest distance is recognized. 

 

 

Figure 3.3 shows the approach for the recognition of one unknown word (in this 

example: /Peter/). For a given listener‘s ear and SNR the IRtest of the unknown word 

(same speech waveform as in the measurements) is computed (upper part). To initialize 

the adaptation loops of PeMo 0.4 s of preceding noise with the same level as the 

background noise are added to the waveform. The corresponding passage in the IR was 

deleted before entering the recognition stage. For each one of the ten possible words of 

the same clause, an IR was randomly chosen from the pool of all IRs calculated from 

the speech waveforms presented during the measurements, mixed with noise at the same 

SNR as the unknown word (vocabulary, lower part of Figure 3.3). A Dynamic-Time-

Warp (DTW) speech recognizer computes pair wise the Lorentzian distance 

(―perceptive‖ distance, cf. Jürgens and Brand (2009)) between IRtest and the IRs in the 

vocabulary by locally stretching and compressing the time axes. That word from the 

vocabulary with the smallest perceptive distance to the test word is taken as the 

recognized one. Note that the exact speech waveform to recognize is always also 

contained in the vocabulary, i.e. the detector stage is assumed to be optimal (cf. Jürgens 

and Brand (2009)). However, the waveforms of the speech/noise mixtures that enter 

PeMo are always different due to different temporal passages of the background noise 

and the hearing threshold simulating noise. For each test word the recognition procedure 

was conducted nine times using different temporal passages of background noise and 
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hearing threshold simulating noise. The speech recognition rate for a given listener and 

SNR was then calculated as the average over the nine repetitions, different parts of the 

sentence, and different sentences. The whole calculation was performed on a computer 

cluster of the University of Oldenburg. 

3.4 Results and comparison 

 

Figure 3.4: 20 observed (gray solid lines) and one modeled psychometric function (triangles and 

black solid line) of speech intelligibility of NH listeners using the microscopic model. 

 

Figure 3.4 shows the modeled recognition rates (triangles) using the microscopic model 

for a NH listener with 0 dB HL at all audiometric frequencies. Note that the modeled 

recognition rates were corrected for the random hit rate of 10% that is inherent in this 

modeling approach, but not inherent in the open-set speech intelligibility measurements. 

A fit to the modeled recognition rates using a logistic function (psychometric function, 

black solid line, cf. Jürgens and Brand (2009)) results in the optimal fit parameters SRT 

= -1.9 dB SNR and slope = 11.3 %/dB. Additionally, the psychometric functions of the 

20 NH ears are plotted as gray solid lines. Substantial inter-individual differences (about 

5 dB) in the SRT between NH ears can be observed. The modeled psychometric 

function shows an SRT that is about 5 dB higher than the average SRT of the NH 

listeners. Furthermore, the slope of the modeled psychometric function is slightly 

shallower than the slopes of the psychometric functions of the NH ears.  
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Figure 3.5: Observed vs. predicted SRTs using the SII (panel on the left) and the microscopic model 

(panel on the right). Different groups of listeners are denoted with different symbols and gray scales. 

The dashed lines show the confidence interval of the measurement procedure. 

 

Figure 3.5 presents the predicted SRTs using the SII (panel on the left) and the 

microscopic model (panel on the right) versus the observed SRTs for NH and HI 

listeners. Dashed lines indicate the 95% confidence boundaries that were calculated as ± 

twice the standard deviation of the test-retest SRT-difference (1.4 dB) measured in a 

subset of the listeners. The SII shows a correlation of r
2
 = 0.25 (p < 0.001) using 

Pearson‘s correlation coefficient r. 82% of the predicted SRTs fall within the 

confidence boundaries of the measurement procedure. HI-LH data (gray crosses) show 

the largest inter-individual variation in both, observation and prediction. NH data (light 

gray triangles) show only inter-individual variation in the observations, but almost no 

variation in the predictions. Most of the data are clustered in a region that covers about 

3 dB in the predictions and about 10 dB in the observations. The microscopic model 

shows a correlation of r
2
 = 0.28 (p < 0.001). 57% of the data points fall within 

confidence boundaries. The microscopic model, as well as the SII, is not able to predict 

the variation in NH listener‘s data according to different audiometric thresholds. 

However, using the microscopic model, HI data points show less clustering than 

observed using the SII, which indicates that the microscopic model predicts larger 

differences of SRTs due to individual audiometric thresholds and testing conditions (i.e. 

background noise levels) of the HI listeners. Concerning the individual slopes of the 

psychometric functions, the microscopic model shows only a poor correlation of r
2
 = 

0.09 (p < 0.01). On average, the modeled psychometric functions (average slope 

10%/dB) are shallower than the observed psychometric functions (16%/dB). 
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3.5 Discussion 

SII and microscopic model show similar correlations between predicted and observed 

SRTs. This indicates that it is possible to achieve the same performance as the SII, 

concerning individual differences of HI listeners, using a psychoacoustically-driven 

microscopic model. However, there is a difference between the models regarding the 

number of SRT values in confidence intervals. The fact that over 80% of the SII-

predicted SRT values fall within confidence boundaries was achieved by assuming an 

SII-value of 0.24 at the SRT. This value is adjustable and was set in order to reproduce 

the average SRT of all listeners. With the microscopic model such an optimization was 

not necessary or rational. However, both models are not able to model the remarkable 

inter-individual differences of listeners with nearly the same audiometric thresholds 

(e.g., of NH listeners), which indicates the existence of an important, not adequately 

modeled individual factor on speech intelligibility. Some of the following factors might 

explain parts of the differences between measurements and predictions. 

Semantic context effects might be responsible for the predicted SRTs of NH 

listeners being higher and for the predicted psychometric functions being shallower than 

the respective observed value. Although the sentences of the Oldenburg sentence test 

contain low semantic context, listeners might still benefit in their recognition 

performance due to co-articulation between subsequent words and due to the prosody of 

the sentence, which cannot be used by the model. The amount of this benefit might be 

subject-dependent and thus might explain parts of the remaining variance in the data. 

Too shallow psychometric functions are also reported in Stadler et al. (2007) when 

modeling human sentence recognition using an auditory model and an information-

theoretic framework. Within the scope of their framework, Stadler et al. (2007) 

attributed the too shallow modeled psychometric function to a non-optimal probabilistic 

speech model they used. However, since an ―optimal detector‖ approach is used in the 

present study, this reason does not hold here. 

The microscopic model assumes the Oldenburg sentence test to be a closed 

test, although the measurement was performed as an open test. Modeled psychometric 

functions that show a random hit probability of 10% at low SNRs are scaled to cover 

the whole range of possible recognition rates (cf. Figure 3.4). A closed test approach 

was also used in Jürgens and Brand (2009) and has the advantage that only limited 

speech material is needed as possible response alternatives for the speech recognizer. 
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Using this approach for the open speech test used here seems to be feasible, since a 

study comparing the results of the open and closed version of the Oldenburg sentence 

test for NH listeners revealed no significant differences, as long as the listeners have 

been trained prior to the test (Brand et al., 2004). 

The individual measurement conditions might be a factor responsible for the 

prediction of better speech recognition performance (i.e., lower SRTs) for some of the 

HI listeners than for NH listeners by the microscopic model (red crosses in the lower 

panel of Figure 5 with predicted SRTs between -4 and -3 dB SNR). These HI listeners 

show a flat hearing loss across all frequencies and were tested at very high background 

noise levels. Hence, in the model, the individual hearing threshold simulating noise 

vanishes in the background noise in all frequency channels and thus has only little 

effect. However, the also higher speech level compared to NH listeners might have 

resulted in the predicted SRT being slightly lower than the SRT observed in NH 

listeners. 

The present study is a first modeling approach that explicitly mimics the 

effective signal processing of the auditory system for the prediction of speech 

intelligibility of a sentence test. Concerning the particular model blocks, the 

microscopic model is much closer to mimicking human speech processing than the SII. 

Furthermore, one important difference between the two models is that in contrast to the 

SII, the microscopic model does not need speech and noise as separate signals. In the 

future, the predictions of this microscopic approach might be improved by a more 

realistic implementation of the individual hearing threshold and other aspects of hearing 

impairment like a reduced dynamic compression or temporal resolution. An advantage 

of this microscopic model compared to the SII is the possibility to investigate how these 

individual aspects of hearing impairment affect speech recognition performance by 

implementing them in the signal processing of the auditory model. Furthermore, this 

approach could be extended from acoustical to electrical hearing by modeling the 

individual signal processing of cochlear implant users. 

3.6 Conclusions 

The microscopic model of human sentence recognition applied to speech recognition 

data of normal-hearing and sensorineural hearing-impaired listeners shows similar 

performance as the standard SII. However, the different modeling blocks of the 

microscopic model aim at mimicking human speech processing much more closely than 
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the SII. Furthermore, the microscopic model has the potential to be extended to model 

the effects of context of the speech material on speech recognition and to investigate 

how different individual aspects of hearing impairment affect sentence recognition. 
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4 Assessment of auditory nonlinearity for listeners 

with different hearing losses using temporal 

masking and categorical loudness scaling
1
 

 

Abstract 
 

A dysfunction or loss of outer hair cells (OHC) and inner hair cells (IHC), assumed to 

be present in sensorineural hearing-impaired listeners, affects the processing of sound 

both at and above the listeners‘ hearing threshold. A loss of OHC may be responsible 

for a reduction of cochlear gain, apparent in the input/output function of the basilar 

membrane and steeper-than-normal growth of loudness with level (recruitment). IHC 

loss is typically assumed to cause a level-independent loss of sensitivity. In the current 

study, parameters reflecting individual auditory processing were estimated using two 

psychoacoustic measurement techniques. Hearing loss presumably attributable to IHC 

damage and low-level (cochlear) gain were estimated using temporal masking curves 

(TMC). Hearing loss attributable to OHC (HLOHC) was estimated using adaptive 

categorical loudness scaling (ACALOS) and by fitting a loudness model to measured 

loudness functions. In a group of listeners with thresholds ranging from normal to mild-

to-moderately impaired, the loss in low-level gain derived from TMC was found to be 

equivalent with HLOHC estimates inferred from ACALOS. Furthermore, HLOHC 

estimates obtained using both measurement techniques were highly consistent. Overall, 

the two methods provide consistent measures of auditory nonlinearity in individual 

listeners, with ACALOS offering better time efficiency. 

  

                                                 
1
 This chapter is submitted as a manuscript for publication in 'Hearing Research'. Reprint permitted by 

Elsevier. Please note that this chapter is not the peer-reviewed, final version of the article to be published 

in Hearing Research. 
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4.1 Introduction 

A large part of the hearing deficit that sensorineural hearing-impaired (HI) listeners 

suffer from can be attributed to audibility as defined by the pure-tone audiogram (for an 

overview see, e.g., Moore, 1998). However, additional factors exist in these HI 

listeners, which cannot be attributed to the individual audiometric thresholds and which 

affect their sound perception as well. These factors are referred to as supra-threshold 

factors in the following, and could reflect a different input/output (I/O) function of the 

nonlinear basilar membrane (BM) processing (Plack et al., 2004), a different temporal 

and spectral resolution of the auditory system (Moore, 1998; Derleth, 1999), or a 

different loudness perception (Launer, 1995; Appell, 2002). From a physiological point 

of view, one supra-threshold factor is the variation of the individual nonlinear I/O 

function of the BM as a consequence of sensorineural hearing impairment. 

Psychophysically estimated reduction of the cochlear gain at low levels, accompanied 

by a loss or reduction of the compressive region has been shown to account for 

broadening of tuning curves, and thus reduced frequency selectivity (cf. Moore, 1998) 

in listeners with sensorineural hearing loss. Evidence exists that less compression also 

may explain reduced temporal resolution in HI listeners (Glasberg and Moore, 1992; 

Derleth, 1999). From a phenomenological point of view, a steepening of loudness 

perception as a function of signal level is often observed in sensorineural HI listeners. 

The steepening of the loudness function compared to normal-hearing (NH) listeners‘ 

loudness function is clinically described as the ―recruitment phenomenon‖ (Fowler, 

1950) and results in a smaller level range acceptable to the listener from absolute 

hearing threshold to the uncomfortable level. In contrast to the modified I/O function, 

loudness perception can be directly assessed by ‗‗ratio scale‘‘ procedures (Steinberg and 

Gardner, 1937; Stevens, 1957) and categorical loudness scale procedures (Allen, 1990; 

Kiessling et al., 1993; Kollmeier, 1997; Brand and Hohmann, 2002). Although both I/O 

functions and loudness perception involve different stages of auditory processing, with 

the former describing the behavior of a single auditory filter and the latter integrating 

across auditory filters and involving (additional) more central structures, it may still be 

reasonable to expect a certain relation between them. On the one hand, some relation 

between both is expected based on the fact that all neural excitation entering the 

auditory pathway is driven by the response of the BM. On the other hand, successful 

loudness models for hearing impairment already include two components that can be 

associated with properties of BM processing: one component is attributed to a reduction 
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of cochlear gain caused by dysfunction of the outer hair cells (OHC), while the other 

component is attributed to a reduction of ―signal transmission‖ related to damaged inner 

hair cells (IHC) (Launer et al., 1997; Moore et al., 1999; Chalupper and Fastl, 2002). 

However, a clear connection between loudness perception and recruitment as well as 

estimates for cochlear gain, gain loss, overall hearing loss, and hearing loss attributed to 

inner hair cell damage is not yet established on an individual basis in NH and HI 

listeners. 

The aim of the current study is therefore to estimate and to compare parameters 

that characterize the nonlinear I/O function and parameters that characterize loudness 

perception in a mixed group of NH and HI listeners. This group covers a wide range of 

individual I/O functions and loudness perception curves, which is required for the 

establishment of a hypothetical relationship between both measures. To estimate the 

nonlinear BM I/O function, the time-consuming method of temporal masking curves 

(Nelson et al., 2001) was used; the method adaptive categorical loudness scaling 

(ACALOS; Brand and Hohmann, 2002) that was used to asses loudness perception can 

be executed within a time that would be acceptable in clinical practice. 

In order to measure the nonlinear I/O function, psychoacoustic methods like 

growth-of-masking (GOM, Oxenham and Plack, 1997) and temporal masking curves 

(TMCs, Nelson et al., 2001) have been developed, which use different variations of 

forward-masking experiments. These methods have also been used to investigate 

nonlinear I/O functions in HI listeners (Plack et al., 2004; Rosengard et al., 2005a; 

Lopez-Poveda et al., 2005). A direct comparison of these methods to physiological 

measures with invasive techniques is not possible in humans; however, a very plausible 

hypothesis is that the I/O function inferred using these methods is largely of cochlear 

origin. Arguments supporting this hypothesis are the consistency of the observed 

psychoacoustic data with physiological data of the BM I/O function in animals and the 

fact that masker and signal are transduced by the same population of inner hair cells at 

the best place along the BM so that all subsequent processing will affect them likewise. 

In the present study, the TMC method was employed and I/O functions were derived by 

comparing two forward masking conditions, one for a masker frequency well below the 

probe frequency (off-frequency condition) and one for a masker frequency equal to the 

probe frequency (on-frequency condition) preceding a probe tone. The main assumption 

of the method is that the off-frequency masker is linearly processed at the BM site 

where the probe has its best representation, while the on-frequency masker is subject to 

the nonlinear BM processing at that site. As the probe is held constant in level, it can be 
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used to evoke a defined excitation at this BM site. One further assumption is that the 

decay of forward masking with increasing gap between masker offset and signal onset is 

independent of level and masker frequency. Recently, both assumptions have been 

challenged, questioning the validity of compression ratios of those studies that use a 

too-close off-frequency masker as linear reference (Lopez-Poveda and Alves-Pinto, 

2008) or too high masker levels (Wojtczak and Oxenham, 2009). While it might be 

possible to compensate for these violations by model assumptions and corrections to the 

estimated compression ratios, the current study primarily focuses on the estimation of 

the low-level gain, which is not affected by violations to the above assumptions. 

In the present study, a method referred to as ACALOS (Brand and Hohmann, 

2002) was used in the same group of listeners. This method has been optimized with 

respect to the number of loudness categories, execution of the loudness scaling 

procedure, and reliability of the results. It has been standardized (ISO 16832, 2006) and 

is frequently used for the assessment of loudness recruitment in HI listeners. ACALOS 

provides judgments of loudness in categorical units (CU) as a function of the sound 

pressure level (SPL) of a stimulus. The aim of ACALOS is not to produce loudness 

functions that resemble or equal classical loudness functions (e.g., Hellman and 

Zwislocki, 1961), but to measure the listener‘s loudness perception in an efficient way 

within a reasonable amount of time. However, the same perceptual quantity is measured 

using both classical loudness methods and categorical loudness procedures (Allen et al., 

1990). One parameter that can be derived from categorical loudness curves resulting 

from ACALOS is the slope of the lower portion of the loudness function, which shows 

loudness recruitment as increased steepness (relative to the steepness observed in NH 

listeners), and which can be measured very reliably (Al-Salim et al., 2010). Another 

way to further assess the ACALOS data is to directly associate categorical loudness 

with the output activity of an auditory model (e.g., Derleth et al., 2001). Further links to 

underlying physiological mechanisms are also provided by loudness models, e.g., 

Zwicker (1977), Launer et al. (1997), Appell (2002), Chalupper and Fastl (2002), and 

Moore and Glasberg (2004). To model loudness perception in NH listeners, a 

compressive power function with an exponent less than 1 is used. Moore (1998) 

attributed the compressive part of the loudness model to the effects of the BM I/O 

function and to the nonlinear transformation of the BM response into neural activity. 

Sensorineural hearing impairment is then accounted for in loudness models typically by 

a two-component approach (Launer, 1995). One component effectively steepens the 

loudness function (related to a loss of OHC) and the other component accounts for a 
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level-independent reduction of loudness (related to a loss of IHC) (Moore et al., 1999). 

The current study uses the dynamic loudness model (DLM; Chalupper and Fastl, 2002) 

to estimate the proportion of hearing loss attributed to loss of OHC and IHC from the 

ACALOS data, and compares the results to the parameters estimated from the TMC 

data. 

The current study first assesses the absolute hearing threshold and observed 

TMCs; these data are presented in Section 4.3.1. Parameters such as cochlear gain, loss 

of gain, compression ratio, and IHC loss are inferred from the TMC data in Section 

4.4.1 and 4.4.2. Parameters such as OHC loss and slope of the loudness function are 

inferred from the ACALOS data in Section 4.4.3. The parameters of both methods, 

TMC and ACALOS are compared in a correlational analysis in Section 4.4.4, and 

statistical and potential sources of systematic errors are discussed in Section 4.5. 

4.2 Method 

4.2.1 Subjects 

Five NH listeners aged from 24 to 40 years (3 female and 2 male) and 12 HI listeners 

aged from 64 to 75 years (5 female and 7 male) participated in the study. Listeners were 

recruited using the database of the Hörzentrum Oldenburg GmbH, which contains 

volunteers with normal hearing and with various types of hearing losses. Pure-tone 

thresholds were measured using standard audiometry (IEC 60645-1, 2002) with 

continuously presented sinusoids using step sizes of 5 dB. These measurements were 

done at 11 audiometric frequencies between 125 Hz and 8 kHz (see Table 4.1). For each 

participant in the study, the ear with better average pure-tone thresholds was selected for 

testing with the TMC and ACALOS measurements. NH listeners had thresholds at or 

below 15 dB hearing level (HL) for all frequencies tested. The HI listeners showed 

mild-to-moderate symmetric hearing loss, i.e., threshold differences between the right 

and left ears did not exceed 20 dB for any tested frequency. Audiometric thresholds for 

the tested ears of HI listeners are given in Table 4.1. Examination using an otoscope 

revealed no abnormalities. The air-bone gap in the ears of the 11 HI listeners did not 

exceed 10 dB for all frequencies between 500 Hz and 4 kHz, indicating sensorineural 

origin of the hearing loss. One listener (GF, 74 years of age) showed an air-bone gap of 

15 dB at 4 kHz. GF participated in all measurements presented in the present study and 

the results are shown in the Appendix as an example of the effect of an additional 
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conductive hearing loss component on the results. All listeners received a compensation 

for their participation in the experiments on an hourly basis. 

 

Table 4.1: Absolute thresholds of hearing-impaired listeners measured using pure-tone audiometry (IEC 

60645-1, 2002) ordered alphabetically by listener label. 

 

 side 0.125 

kHz 

0.25 

kHz 

0.5 

kHz 

0.75 

kHz 

1 

kHz 

1.5 

kHz 

2 

kHz 

3 

kHz 

4 

kHz 

6 

kHz 

8 

kHz 

AM right 20 20 15 15 15 15 15 30 30 40 35 

BG right 5 15 20 30 30 45 40 45 60 70 70 

GF left 10 15 10 10 20 25 30 40 50 45 65 

MC right 20 20 20 20 20 25 30 30 30 55 45 

MH right 35 40 30 25 20 25 40 50 50 80 75 

NB right 35 40 55 55 55 55 55 50 50 70 65 

QH right 5 10 15 20 20 25 35 35 50 60 60 

RM right 20 10 5 5 10 10 20 40 40 55 60 

SB left 0 5 20 30 25 35 25 30 25 50 50 

SG left 10 5 10 10 5 10 10 30 45 60 65 

SS left 20 10 5 10 10 20 30 35 40 60 50 

WH left 5 5 5 5 5 5 25 30 35 30 55 

 

4.2.2 Apparatus and calibration 

All stimuli were presented via Sennheiser HDA 200 headphones to the listeners seated 

in a sound-insulated booth. The headphones were connected to a Tucker Davis HB7 

headphone amplifier linked to a digital-to-analog converter (RME TDIF 1) that received 

the digital stimuli generated by a standard PC. All electronic equipment was placed 

outside the sound-insulated booth. The calibration was performed using a Brüel&Kjaer 

(B&K) measuring amplifier (Type 2610), a B&K artificial ear (Type 4153), and a B&K 

microphone (Type 4192). In all measurements, the frequency-dependent attenuation of 

the specific headphones was equalized by a frequency-dependent amplification of the 

sinusoidal and narrow-band noise stimuli. 

4.2.3 Procedure and stimuli 

4.2.3.1 Absolute audiometric threshold 
 

In addition to standard audiometry (with level step sizes of 5 dB), the absolute threshold 

at 4 kHz was assessed more precisely using a three-interval, three-alternative forced-

choice (3I-3AFC) procedure with adaptive tracking. This precise absolute threshold was 

used for the analysis of the loudness curves in section 4.3. The AFC software package 
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for MATLAB (The MathWorks
TM

) developed at the Universität Oldenburg was used. 

The 4-kHz tone had a duration of 1000 ms including 50-ms raised-cosine ramps. The 

level of the sinusoid was decreased after two consecutive correct responses and 

increased after one incorrect response from the listener (1up-2down procedure), 

converging at a threshold value that corresponds to 70.7% correct on the psychometric 

function (Levitt, 1971). Feedback indicating the correct response was provided after 

each trial. The starting level was set to 20 dB above the individual audiometric 

threshold, thereby ensuring that the sinusoid was clearly audible in the first trial. A run 

consisted of trials with 6 dB level steps up to the second reversal, 3 dB up to the fourth 

and 1 dB up to the final tenth reversal. The threshold estimate of a run was defined as 

the average over the levels of the sinusoid at the last six reversals. Each listener finished 

five runs, including one training run. The absolute threshold was then defined as the 

average across the threshold estimates of the last four runs. The total testing time for 

this measurement was about 20 minutes. 

4.2.3.2 Temporal masking curves (TMCs) 
 

Prior to measuring the TMCs, the absolute threshold of the sinusoidal probe tone to be 

detected in the forward masking experiment was measured. The probe tone had a 

frequency fp = 4 kHz, a steady-state portion of 5 ms and was gated with 2.5-ms raised-

cosine ramps, resulting in a total duration of 10 ms. The procedure for measuring the 

absolute threshold of the probe tone was exactly the same as in Section 4.2.3.1, except 

that the starting level of the probe tone was set to 40 dB above the individual 

audiometric threshold (for long-duration tones). 

TMCs were measured using the same sinusoidal probe tone fixed at 10 dB 

sensation level (SL). The probe tone followed an on-frequency forward masker (fm = fp) 

or an off-frequency forward masker (fm = 0.55· fp), which was varied in level during the 

measurement procedure. The masker had a steady-state portion of 105 ms and was gated 

using 2.5-ms raised-cosine ramps, resulting in a total duration of 110 ms. The temporal 

gap between masker and probe was defined as the interval between the zero-points of 

the envelopes of masker and probe. No background noise was presented during the 

presentation of the probe tone; the level of the probe tone was always so close to the 

individual threshold that neither off-frequency listening (considering a flat hearing loss 

profile in the hearing-impaired subject, cf. Table 4.1) nor detection in the contralateral 

ear was deemed likely. The TMC measurement was performed in blocks consisting of 

one run with on-frequency maskers and one run with off-frequency maskers in 



Chapter 4: Assessment of auditory nonlinearity 72 

randomized order (with a fixed temporal gap per block). Temporal gaps ranged from 0 

ms to 75 ms. The masker level required to just mask the probe tone was measured using 

the same 3I-3AFC procedure with adaptive tracking as in Section 4.2.3.1, except for the 

following differences. A 2up-1down procedure was used to vary the level of the forward 

masker. The step sizes were 8, 4, and 2 dB for NH listeners. In pilot runs using these 

step sizes with HI listeners, the adaptive procedure showed much slower convergence 

than observed in NH listeners. Therefore, step sizes of 9, 6, and 3 dB were chosen for 

the HI listeners. If one listener chose the incorrect interval in the first trial of a run, two 

additional reversals with step sizes of 9 dB were inserted, resulting in a total of twelve 

reversals in that run. All listeners were explicitly advised to pay attention to the soft 

―click‖-like tone after the sinusoid and were asked to select the interval that contained 

the probe tone. The maximum level of the masker tone was set to 102 dB SPL. If this 

maximum level would have been exceeded, the masker level was set to this maximum 

level. A run was skipped if this maximum level would have been exceeded more than 

four times within one run and then no data was collected for that run. The starting level 

Lstart of the masker was chosen according to 

),max( targetL
ms

dB
tLstart                                   (4.1), 

where Δt is the temporal gap (in ms) and Lprobe is the level of the probe tone (in dB 

SPL). Eq. (4.1) was found by analyzing TMC data of Rosengard et al. (2005a); 

Although Rosengard et al. (2005a) used a probe tone of 5 ms duration in their study 

rather than a 10 ms probe tone as in the present study, a clearly audible masker and 

probe tone for each listener in the first trial were obtained using Eq. (4.1). Furthermore, 

in the current experiment, this choice of Lstart resulted in a reasonable amount of trials 

within one run for the listener to get used to the task before reaching the threshold 

region. At least five different temporal gaps were measured for each listener. The 

assortment of temporal gaps to be measured was selected on an individual basis in order 

to cover as wide of a range of masker levels as possible, while keeping the measurement 

time as short as possible. The minimal gap step was 5 ms. Each temporal gap was 

measured in five to seven blocks consisting of two runs each. Data collection did not 

begin until a listener had a minimum of half an hour practice (NH listeners) or an hour 

practice (HI listeners). At least four blocks of each temporal gap were obtained for the 

subsequent data analysis. The whole procedure lasted four to five hours that were 

distributed over five sessions and interleaved by the ACALOS measurements (see 

Section 4.2.3.3). One session lasted a maximum of two hours including an obligatory 
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pause of about 15 minutes. Listeners were asked to make an additional break whenever 

they felt tired or could not concentrate on the task any more. 

4.2.3.3 Adaptive categorical loudness scaling (ACALOS) 
 

ACALOS was measured using both one-third-octave band noises with center 

frequencies of 0.5, 1, 2, and 4 kHz, and sinusoids with frequencies of 0.5, 1, 2, and 4 

kHz. The reason for using both stimuli was that one-third-octave band noises are 

typically used in clinical examinations as a tool for hearing-aid adjustment, while 

sinusoids resemble more closely the sinusoidal probe tone used in the TMC experiment. 

All stimuli were 1000 ms in duration including 50-ms raised-cosine ramps. ACALOS 

was measured using an adaptive procedure according to ISO 16832 (2006) and using 

the software OMA (Oldenburg Measurement Applications) by HörTech gGmbH. 

Listeners were asked to rate the presented stimuli in loudness using eleven categories 

ranging from ‗inaudible‘ to ‗too loud‘ that were mapped to categorical units (CU) from 

0 to 50 in 5 CU-steps: for instance ‗soft‘ was mapped to 15 CU, ‗medium‘ to 25 CU, 

and ‗loud‘ to 35 CU. In the first measurement phase, the auditory dynamic range was 

roughly estimated starting with a stimulus at 80 dB HL and both increasing and 

decreasing the stimulus level in an interleaved way until the listener gave the responses 

‗inaudible‘ (at lower levels) and ‗too loud‘ (at higher levels). If the level evoking the 

‗too loud‘ rating was below 105 dB HL, it defined the individual maximum level to be 

used in the experiment. Otherwise, the maximum level was set to 105 dB HL. In the 

second measurement phase, the estimated dynamic range found in the first phase was 

re-estimated twice in more detail than in the first measurement phase. More details 

about the adaptive procedure that was found to be efficient and accurate in measuring 

individual categorical loudness scaling are given in Brand and Hohmann (2002). Within 

one run, the loudness functions of the stimuli with the four (center) frequencies were 

measured in an interleaved way, i.e., the presentation order of the four stimuli trial-by-

trial was completely random. The testing time for one run measuring ACALOS with 

one-third-octave band noises at four center frequencies was about 15 minutes. The same 

testing time was required for ACALOS using sinusoidal stimuli. Both ACALOS 

measurements were done three times on different days to average out day-to-day 

performance differences. 
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4.3 Experimental results 

4.3.1 Temporal masking curves 

 
Figure 4.1: Temporal Masking Curves for normal-hearing (gray backgrounds) and hearing-impaired 

listeners (white backgrounds), plotted as mean masker level at threshold as a function of temporal gap 

between masker and target for the on-frequency masker (4 kHz, triangles) and the off-frequency masker 

(2.2 kHz, circles). Error bars denote the standard error. A gray x indicates a temporal gap at which no 

threshold could be measured. 

 

Figure 4.1 shows individual TMCs, i.e. the average masker level at threshold as a 

function of the temporal gap between masker and probe, for NH listeners (panels with 

gray backgrounds) and HI listeners (panels with white backgrounds). Error bars denote 

the standard error of at least four measurement runs. In some listeners it was not 

possible to reliably measure either the on-frequency or the off-frequency masker 

threshold at certain temporal gaps when the maximum allowed masker level was 

exceeded, resulting in a termination of the measurement run. Only valid thresholds of at 

least four measurement runs are included in the average data. The gray ‗x‘ at the 

abscissa denotes temporal gaps at which neither the on-frequency nor the off-frequency 

masker threshold could be reliably measured. In general, off-frequency TMCs show 

mostly higher masker levels at threshold than on-frequency TMCs. On-frequency TMCs 

tend to be steeper than the corresponding off-frequency TMCs. The latter effect is more 
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pronounced for the NH listeners than for the HI listeners and completely absent in some 

listeners (e.g., BG and NB). If the BM response to the off-frequency masker is assumed 

to be linear at the probe frequency place, a steeper on-frequency TMC indicates the 

response of the on-frequency masker to be compressive at the probe frequency place. 

Standard errors are in the region of 1 dB to 3 dB for the off-frequency TMCs, and are 

similar for the shallow portions of the on-frequency TMCs. Considerably larger (up to 

10 dB) standard errors are observed for the steep portions of the on-frequency TMCs. 

 

 

Figure 4.2: Estimated input/output functions for normal-hearing (gray backgrounds) and hearing-impaired 

(white backgrounds) listeners. The mean masker levels at threshold for the off-frequency masker (2.2 

kHz) are plotted versus the respective thresholds of the on-frequency masker (4 kHz) paired according to 

the temporal gap between masker and target and block number (dark gray crosses). The black dashed line 

shows the hypothetical response of a passive, linear system. Abscissa intercepts of the black downward 

arrows indicate the individual absolute threshold of the target. The black solid line shows a fit according 

to Eq. (4.2) and Eq. (4.3) for characterizing low-level gain and compression ratio.  

 

 

An input/output (I/O) function can be inferred from TMC data by plotting off-frequency 

masker threshold versus on-frequency masker threshold (Nelson et al., 2001), paired 

according to identical temporal gaps. Figure 4.2 presents the resulting individual I/O 

functions for 4 kHz, inferred from the non-averaged TMC data (see below) of Figure 

4.1 (dark gray cross symbols). Data were only included in Figure 4.2 if both on- and 

off-frequency masker threshold were measurable for a given temporal gap. Thus, Figure 
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4.2 shows the growth of masking for an off-frequency masker relative to the growth of 

masking for an on-frequency masker. Off-frequency masker levels are identified as 

output levels (ordinate) and on-frequency masker levels as input levels (abscissa) of the 

I/O function. The dashed black line shows the assumed response of a passive, linear 

system and the abscissa intercept of the black vertical arrow shows the absolute 

threshold of the probe. The gray cross symbols represent the masker thresholds for one 

temporal gap and one measurement run. This display of I/O functions differs from that 

of Nelson et al. (2001), who plotted averaged on- versus off-frequency masking 

thresholds rather than thresholds of single runs. As the measurements of the ‗single-run‘ 

off- and on-frequency masker thresholds were carried out in direct succession, single-

run thresholds used to infer gray cross symbols are highly comparable and similarly 

influenced by a possible day-to-day fluctuation of the listener‘s performance. Overall, in 

most of the HI listeners, data points at low levels show a slope of almost unity implying 

a linear I/O-response. At medium-to-high levels a shallower slope is observed implying 

a compressive I/O-response. In the NH listeners, the compressive portion starts at very 

low input levels combined with a very small region with slope of almost unity observed 

at the lowest levels. For listeners JT and KM, the I/O function appears compressive over 

the whole range (the linear regions at low levels may be located at input levels lower 

than measurable). The black solid line shows a model fit for characterizing low-level 

gain and compression ratio, and will be described in Section 4.4.1. 

4.3.2 Categorical loudness scaling data 

In the following, ACALOS data using one-third-octave band noises are shown (cf. ISO 

16832, 2006), although ACALOS was measured both with sinusoids and one-third-

octave band noises. Both signal configurations led to comparable results in the present 

study. The correlations of parameters estimated using ACALOS with sinusoids to 

parameters obtained using TMCs are also presented in Section 4.4 and discussed further 

in Section 4.5. 

Figure 4.3 presents individual ACALOS data (dark gray circles) of NH (gray 

backgrounds) and HI listeners (white backgrounds) using a one-third-octave band noise 

with 4 kHz center frequency (dashed line). In general, all NH listeners show a very 

similar growth of loudness with level, which consists of a portion with shallower slope 

at low levels and a portion with steeper slope at high levels, respectively. Also in most 

of the HI listeners a shallow and a steep portion can be observed. On average, HI 

listeners rated the category ―very soft‖, i.e. 5 CU, at higher levels than the NH listeners. 
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Different HI listeners show different slopes in the low-level portion of the loudness 

functions that tend to be steeper than the slopes observed in NH listeners, thereby 

indicating loudness recruitment (Kollmeier, 1997). There are some listeners who show 

low variation of stimulus levels within one loudness category (i.e. one value of 

categorical loudness), e.g. QH and JA, and some, who show very large variation, e.g. 

WH and SB. 

 

 
 
Figure 4.3: Adaptive categorical loudness scaling data of normal-hearing (gray backgrounds) and hearing-

impaired (white backgrounds) listeners using one-third octave band noises with a center frequency of 4 

kHz. Data (dark gray circles) are pooled across three measurements conducted on three different days. A 

two-section Bezier-fit was applied to the data (black dashed line). The black solid lines show modeled 

loudness scaling curves (see text for details) using the parameter kfit, given in Table 4.4. 

4.4 Data analysis and comparison 

4.4.1 Estimates of low-level gain, gain loss, and compression ratio from 

TMC 

A two-section fit was applied to the data points of Figure 4.2, assuming a linear relation 

of the output levels Lout to the low input levels Lin and a compressive relation to high Lin, 

which share a joint breakpoint BP. 
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offsetinout VBPCRLL  )1(
    

for BPLin                                        
(4.2) 

offsetinout VLCRL                      for BPLin                                   (4.3) 

The free parameters in this fit are the compression ratio CR that equals the slope of the 

fitted I/O function in the compressive region, the breakpoint BP between linear and 

compressive region, and a vertical offset Voffset. This fit is similar to the fits used by 

Yasin and Plack (2003) and Plack et al. (2004), except that the additional linear region 

at very high input levels is omitted, since such a linear region did not appear clearly in 

any of the listeners of the present study. The best fitting two-section lines are shown in 

Figure 4.2 as solid black lines. To quantitatively analyze the individual I/O function, a 

―low-level gain‖ G of the nonlinear system was extracted, which was defined as the 

vertical difference between the linear region of the I/O function (lower part of the solid 

black curve) and the unity I/O-function of the passive linear system given by Lin = Lout 

(dashed black line). Low-level gain was derived only for listeners who had at least five 

data points below the breakpoint of the fit, i.e. listener NB had to be excluded and in 

listeners JA, JT and KM only a lower limit for the low-level gain could be derived. The 

lower limit is based on the assumption that the low-level linear region is located below 

the left-most data point in the respective panel of Figure 4.2. This data point 

corresponded to a temporal gap of 0 ms between masker and target. Furthermore, as an 

additional parameter, the ―gain loss‖ GL was defined as the difference between the 

individual low-level gain G and the average low-level gain NHG in NH listeners: 

GGGL NH                                      (4.4). 

The gain loss was determined by assuming that the average low-level gain in NH 

listeners at 4 kHz is
 NHG = 43.5 dB. This value was found by analyzing the data of 

Plack et al. (2004). The variability of the low-level gain across NH listeners in the study 

of Plack et al. (2004) was 1.5 dB. Note that the gain loss can have negative values if, 

e.g., a NH listener shows more low-level gain than the average NH listeners. Table 4.2 

shows values of the individual low-level gain, the breakpoint between the linear und the 

compressive portion of the I/O function, the compression ratio, and the gain loss for NH 

(upper five) listeners and HI (lower twelve) listeners. Additionally, the individual 

absolute thresholds of the probe tone and an estimate of the standard error of the low-

level gain (see Section 4.4.5.1) are shown. The low-level gain is somewhat decreased in 
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HI listeners compared to NH listeners and the breakpoint between the linear and the 

compressive region is shifted to higher levels. No systematic differences in the 

compression ratios between NH and HI listeners and a high degree of variability in 

compression ratios across listeners can be observed, consistent with the findings of 

Plack et al. (2004). 

 

Table 4.2: Absolute threshold of the TMC-target and estimated I/O function parameters for normal-

hearing (upper five) and hearing-impaired (lower twelve) listeners, ordered alphabetically by listener 

label. Estimates of the low-level gain and the breakpoint of the I/O function are only included if at least 

five single data points of the I/O function were below the breakpoint. Low-level gain and compression 

ratio could not be reasonably estimated for listener NB due to the inconsistency of this listener‘s TMC-

data. 

 

Listener Absolute 

threshold of 

TMC-target 

(dB SPL) 

Low-level 

gain (dB) 

Break-

point 

(dB 

SPL) 

Compression 

ratio 

(dB/dB) 

Gain 

loss 

(dB) 

Standard 

error of 

gain loss 

(dB) 

GB 21.1 43.0 43 0.05 0.5 1.0 

JA 22.4 > 34.3 < 35 0.25 < 9.2 .. 

JT 18.3 > 46.2 < 24 0.26 < -2.7 .. 

KM 20.4 > 41.6 < 27 0.41 < 1.9 .. 

WG 12.5 49.5 21 0.30 -6.0 2.7 

       

AM 30.6 45.4 40 0.17 -1.9 1.4 

BG 67.6 1.5 86 0.54 42.0 0.5 

GF 58.0 8.8 71 0.47 34.7 0.4 

MC 42.9 18.7 55 0.31 24.8 1.1 

MH 60.6 11.4 78 0.20 32.1 0.7 

NB* 52.7 .. .. .. .. .. 

QH 65.7 13.5 68 0.38 30.0 1.0 

RM 47.4 23.2 61 0.23 20.3 1.2 

SB 38.0 30.1 59 0.18 13.4 0.7 

SG 52.0 18.1 65 0.32 25.4 0.4 

SS 58.0 19.5 70 0.33 24.0 1.2 

WH 47.1 26.1 61 0.10 16.6 0.6 
*excluded from further analysis of TMC data 

 

4.4.2 Estimates of inner and outer hair cell loss from off-frequency 

TMCs 

A further analysis of the forward masking data was performed to estimate the amount of 

hearing loss attributable to loss of IHCs and OHCs. The analysis assumes that in a 

listener with a hearing loss that is solely caused by loss of OHCs, the off-frequency 

masker has an identical masking effect on the probe tone as in a NH listener, and should 
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thus have the same threshold level. The basis for this assumption is that OHC loss is 

accompanied by a gain loss at the best frequency (cf. Plack et al., 2004), increasing the 

absolute threshold of the probe tone by the gain loss relative to the threshold of a NH 

listener. For the low sensation level used in the TMC measurements (10 dB SL),  it is 

then reasonable to expect linear processing of the probe tone in both NH and HI 

listeners (as the I/O function is linear at such low levels above absolute threshold, e.g., 

Plack et al., 2004). This means that the same response of the BM relative to absolute 

threshold (i.e. the same BM output level) would be present in both NH and pure OHC-

loss HI listeners. It can be further assumed that the off-frequency masker is processed 

linearly at the best frequency of the probe tone, regardless of its level and regardless of 

the presence of a hearing loss (Lopez-Poveda et al., 2005). If it is then assumed that the 

off-frequency masker has to evoke the same excursion of the basilar membrane to mask 

the probe at the probe tone‘s best place as the on-frequency masker (Nelson et al., 

2001), the identical level of the off-frequency masker is required to mask the probe in a 

NH listener and a HI listener with pure OHC-loss. In turn, any difference in off-

frequency masker level to the off-frequency masker levels of NH listeners can be 

attributed to loss or dysfunction of inner hair cells. To quantify this difference, an 

average off-frequency-TMC of the five NH listeners (circles in the gray panels of 

Figure 4.1) was first generated. Second, the average difference of the four lower-most 

data points of the individual off-frequency-TMCs to the corresponding data points of 

the average off-frequency TMC of NH listeners was calculated and taken as an estimate 

of the hearing loss attributable to inner hair cell loss HLIHC. The four lower-most data 

points were chosen in order to minimize the effect of a potential residual compression 

that might affect the off-frequency TMCs in some listeners. To determine whether or 

not the difference of the four lower-most data points of the individual off-frequency-

TMCs to the corresponding data points of the average off-frequency TMC of NH 

listeners is statistically significant in each single listener, Student‘s t-test was used. In 

all listeners but four NH listeners (GB, JA, JT, KM) and one HI listener (MC) such a 

significant difference was found. The use of off-frequency TMC data to estimate IHC 

loss was suggested by Plack (personal communication), and originally used to estimate 

IHC loss for listeners with temporary threshold shift (Plack and Howgate, 2010). The 

amount of outer hair cell loss HLOHC was then obtained by assuming that HLIHC + 

HLOHC = HLtot (Moore and Glasberg, 1997), with HLtot denoting the total amount of 

hearing loss. It should be noted that, although the naming of the parameters HLIHC and 

HLOHC suggests a direct relation to the underlying physiology, HLIHC and HLOHC do not 
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provide information about the number or proportion of damaged hair cells. They only 

estimate the amount of hearing loss (in dB) that is related to the dysfunction of the 

IHCs and OHCs, respectively. The estimated HLIHC and the resulting HLOHC values for 

each listener can be found in Table 4.3. 

 
Table 4.3: Inner hair cell loss and resulting outer hair cell loss estimated from the bias of off-frequency-

TMCs 

 

 HLIHC (dB) HLOHC (dB) 

GB 1.6 -2.9 

JA 0.4 -1.7 

JT 2.4 -7.4 

KM -1.5 3.0 

WG -4.9 -2.4 

   

AM 10.0 2.3 

BG 9.6 41.6 

GF 6.7 40.0 

MC -1.5 33.0 

MH 7.6 35.7 

NB .. .. 

QH 5.5 39.0 

RM 7.3 35.5 

SB 3.9 18.1 

SG 9.9 32.2 

SS 16.7 18.2 

WH 13.0 20.7 

 

4.4.3 Estimates of HLOHC  from ACALOS 

To estimate HLOHC from ACALOS data, first, a two-section Bezier-fit according to 

Brand and Hohmann (2002) was applied to the pooled categorical loudness data from 

measurements conducted on three different days and is referred to as ―loudness 

function‖ in the following. The fits are shown in Figure 4.3 by dashed lines. The 

loudness function consists of a straight portion at low levels and a straight portion at 

high levels. Both straight portions are connected using a Bezier curve. This two-section 

Bezier-fit can be characterized with three parameters: (1) the slope of the low-level 

portion mlow, (2) the slope of the high-level portion mhigh, and (3) the level that 

corresponds to medium loudness L25 (corresponding to 25 CU). For the current data set, 

the slope of the low-level portion was the most reliable parameter of the loudness 

function, because it shows the highest ratio of the inter-individual standard deviation 
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σinter to the intra-individual standard deviation σintra when examining the ACALOS data 

of different measurement sessions (ratio for mlow: 2.34; ratio for mhigh: 1.63; ratio for L25: 

2.12). A high ratio indicates high variability between subjects compared to a low test-

retest reliability. Thus, mlow was taken as the most reliable parameter for quantifying the 

amount of recruitment. 

Second, the Dynamic Loudness Model (DLM, Chalupper and Fastl, 2002) was 

used to estimate the amount of hearing loss due to OHCs, HLOHC, in individual listeners 

according to their individual loudness functions. The DLM combines properties of the 

loudness model by Zwicker (1977) for NH listeners and a two-component approach, 

originally proposed by Launer (1995) and adopted by Moore and Glasberg (1997), to 

model hearing impairment. It is assumed within the model that the total hearing loss 

HLtot can be split into two components, one accounting for the attenuation HLa and one 

accounting for the linearization of the HI system, often referred to as an expansion 

HLexp relative to the compressive NH system. 

expHLHLHL atot                                   (4.5) 

Following Moore and Glasberg (1997), these two components can directly be related to 

the amount of hearing loss attributed to inner hair cell dysfunction HLIHC = HLa and the 

amount of hearing loss caused by OHC dysfunction HLOHC = HLexp. Note that this two-

component approach yields only one degree of freedom as soon as HLtot is determined, 

since once one of either HLIHC or HLOHC is known the other one can be calculated using 

Eq. (4.5). In the model, this degree of freedom is implemented as a parameter k, which 

is the proportion of HLOHC from HLtot: 

totOHC HLkHL                                        (4.6). 

By definition, k can have values ranging from 0 to 1. Figure 4.4 shows schematic 

loudness functions for a NH listener (gray solid line) and for a HI listener (black lines) 

with a hearing loss of 40 dB HL and varying proportions k of OHC loss. The steepness 

of the loudness function for the HI listener increases with increasing parameter k. 

Details about the DLM can be found in Chalupper and Fastl (2002). Briefly, the DLM 

was used to compute the loudness N(t) in sone as a function of time t for the one-third 

octave band of noise signal (as also used in ACALOS). The absolute maximum of N(t) 

was used to specify the loudness N for the whole signal. The conversion of the loudness 

in sone N to loudness in categorical units NCU, as measured by ACALOS, was done 

using the following calculations that were proposed by Appell (2002): The logarithm of  
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Figure 4.4: Exemplary, schematic loudness functions, i.e. categorical loudness as a function of level of a 

one-third octave band noise, for a normal-hearing (NH) listener (gray solid line) and for a sensorineural 

hearing-impaired (HI) listener with 40 dB HL (black lines) and different proportions k of outer hair cell 

loss. 

 

 

the modeled loudness function in sone for a hypothetical NH listener with 0 dB HL and 

k = 0 was plotted versus the average categorical loudness function of NH listeners 

paired according to identical stimulus levels. A polynomial of 3
rd

 degree was fitted to 

the resulting curve, which yielded the following relationship between the loudness in 

sone N and the categorical loudness N’CU. 

1431.8)(log0289.8))((log1426.2))((log2793.2 10

2

10

3

10

'  NNNNCU     (4.7). 

This value was limited to strictly positive values of NCU with 

                 )0,max( '

CUCU NN                                                                          (4.8). 

Thus, the model was calibrated to match loudness functions of NH listeners. The 

coefficients of the polynomial in Eq. (4.7) differ slightly from the coefficients found by 

Appell (2002) that were also used by Anweiler and Verhey (2006). To find his 

coefficients, Appell (2002) used loudness functions averaged over both, different 

listeners and different center frequencies of the stimuli, whereas in the present study, 

loudness functions are averaged over listeners, but only for the narrow-band stimulus 

with 4 kHz center frequency. The fitting procedure for finding the best fitting k was 

applied similar to an approach of Chalupper and Fastl (2002). The two-section Bezier-

fit to the individual ACALOS data, i.e. the loudness function, was sampled in 5 dB 

steps and taken as representative of the data. For a starting value of k = 0.5 a modeled 

loudness function was calculated. Then k was iteratively changed using Levenberg-

Marquardt‘s algorithm (Marquardt, 1963; Press et al., 1992) until the k = kfit was found 
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that minimizes the least-squares distance between the representative and the modeled 

loudness function. The only free parameter in this fitting routine was k. The terminating 

condition to end the iterative loop was fulfilled when the difference between two 

subsequent k-values in the iteration was less than 0.01. In the fitting procedure, k was 

restricted to values ranging from 0 to 1, related to a proportion of OHC loss ranging 

from 0% to 100%. The resulting modeled loudness functions are shown in Figure 4.3 by 

solid lines. Due to the restriction to only one parameter (k), the modeled and measured 

loudness functions differ in some listeners, e.g. JA and NB, whereas in most of the 

listeners a very good agreement between modeled and measured loudness functions is 

observed.  

 

Table 4.4: Audiometric thresholds measured using a 3-AFC procedure and parameters characterizing 

individual ACALOS data for normal-hearing (upper five) and hearing-impaired (lower twelve) listeners, 

ordered alphabetically by listener label. 

 

Listener Pure-tone 

audiometric 

threshold at 

4 kHz (dB 

HL) 

Slope of the low-

level portion of 

the loudness 

function (CU/dB) 

kfit HLOHC (dB) Standard error 

of HLOHC (dB) 

GB -1.3 0.32 0.00 0.0 > 0.8 

JA -1.3 0.30 1.00 -1.3 > 0.7 

JT -5.0 0.29 0.86 -4.3 > 1.1 

KM 1.5 0.29 1.00 1.5 > 0.5 

WG -7.3 0.35 1.00 -7.3 1.5 

      

AM 12.3 0.30 0.00 0.00 > 1.0 

BG 51.2 0.63 0.67 34.3 2.9 

GF 46.7 0.43 0.41 19.1 1.9 

MC 31.5 0.45 1.00 31.5 > 0.4 

MH 43.3 0.51 0.76 32.9 2.9 

NB 56.5 0.58 0.98 55.4 0.6 

QH 44.5 0.61 0.77 34.3 1.0 

RM 42.8 0.37 0.51 21.8 9.6 

SB 22.0 0.39 0.64 14.1 3.4 

SG 42.1 0.47 0.72 30.3 2.2 

SS 34.9 0.35 0.37 12.9 4.2 

WH 33.7 0.33 0.58 19.5 2.3 

 

 

Table 4.4 presents the individual hearing loss at 4 kHz, the slope of the low-level 

portion of the loudness function, the calculated values kfit, the OHC loss HLOHC 

according to Eq. (4.6), and the standard error of HLOHC (see Section 4.4.5.1) for NH 



4.4   Data analysis and comparison 85 

(upper five) listeners and HI (lower twelve) listeners. NH listeners show quite similar 

slopes of the low-level portion of the loudness function of about 0.3 CU/dB. HI listeners 

show large inter-subject differences ranging from 0.3 CU/dB to about 0.6 CU/dB. 

Individual values of kfit differ highly between listeners in both the NH and the HI group. 

Averaged across HI listeners, a mean proportion of HLOHC to HLtot of 64% was found. 

For the NH listeners, small differences in their total hearing loss lead to small 

differences in HLOHC nearly independent of the specific kfit value. For the HI listeners 

large differences in kfit and also large differences in HLtot lead to large differences in 

HLOHC. 

4.4.4 Comparison of parameters derived from TMCs and ACALOS 

For the comparison of the parameters derived from TMCs and ACALOS, the data of the 

NH and HI listeners were treated as stemming from a common subject population with 

hearing loss ranging from absent to mild-to-moderate. Listener NB had to be excluded 

from the comparison, as no reliable I/O function could be estimated, resulting in a total 

of 15 listeners. A correlation analysis of the parameters from the two measurement 

methods was performed and the results are shown in Figure 4.5. Each panel of Figure 

4.5 displays a correlation plot of one parameter derived from TMC measurements 

(abscissa) and one from ACALOS or the 3-AFC-measurement of the absolute hearing 

loss (ordinate). Squares denote data of NH listeners and stars denote data of HI 

listeners. In three panels, the diagonal representing unity is shown as black dashed line. 

If only a lower limit of a value could be given (as for the parameters BP and GL in 

listeners JA, JT, and KM) that value was included in the correlations. The star in 

brackets denotes the additional listener GF, who was excluded from the Pearson‘s 

correlation coefficient r (see below), since this listener showed a combined conductive 

and sensorineural hearing loss.  

The upper left panel of Figure 4.5 shows that the gain loss, estimated using TMCs, is 

highly correlated to the OHC loss, estimated from ACALOS data (r
2 

= 0.88, p < 0.001) 

and that the data fall close to the unity line (dashed). This result is in line with the 

assumption that OHC loss causes a reduction of the active process resulting in a loss of 

the low-level gain. 

The lower left panel shows that HLOHC estimated using the off-frequency 

TMCs (by first estimating HLIHC and then subtracting HLIHC from HL) is very highly 

correlated to HLOHC estimated using ACALOS (r
2 

= 0.96, p < 0.001). Again, the data 

closely follow the unity line. It thus appears possible to estimate HLOHC consistently  
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Figure 4.5: Scatter plots of parameters inferred from TMCs (abscissa, data from Table 4.2 and Table 4.3) 

and ACALOS or the 3-AFC- measurement of the absolute hearing loss (ordinate, data from Table 4.4). 

Squares: normal-hearing listeners, black stars: hearing-impaired listeners. Upper left panel: gain loss 

versus HLOHC. Lower left panel: HLOHC estimated from the off-frequency TMCs versus HLOHC estimated 

from ACALOS data.  Upper middle: gain loss versus HLtot. Lower middle panel: input level at the lower 

breakpoint BP of the I/O function versus HLtot. Upper right panel: gain loss versus lower slope of the 

loudness function. Lower right panel: compression ratios versus lower slope of the loudness function. 

Squares: normal-hearing listeners, stars: hearing-impaired listeners. The star in brackets denotes listener 

GF. 

 

 

using both measurement techniques. Additionally, a high correlation was found between 

HLOHC estimated using the off-frequency TMCs and gain loss GL inferred from TMC 

(r
2 

= 0.87, p < 0.001, not shown). Also in this case the data closely follow the unity line. 

The upper middle panel shows that the total hearing loss is highly correlated to 

the gain loss, estimated from TMCs (r
2 

= 0.87, p < 0.001). The correlation coefficient is 

almost as high as in the upper left panel. In this panel it is also obvious that the gain loss 

in HI listeners is about 10 to 15 dB less than the total hearing loss while showing an 

otherwise linear relationship. This suggests that very mild sensorineural hearing losses 

involve a considerable amount of IHC loss, while OHC loss becomes increasingly 

important with increasing total hearing loss. 

The lower middle panel of Figure 4.5 shows that the total hearing loss is highly 

correlated to the breakpoint between the linear and compressive region of the I/O 

function, as estimated from TMCs (r
2 

= 0.89, p < 0.001). 
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The upper right panel shows that the slope of the ACALOS loudness function 

mlow (as a measure of recruitment) is correlated to the gain loss estimated from TMC (r
2 

= 0.73, p < 0.001). However, this correlation is not as high as, e.g., the correlation 

between HLOHC and gain loss (upper left panel). This suggests that it is disadvantageous 

to directly infer the gain loss from ACALOS measurements via the steepness of the 

loudness function, but that it is necessary to employ a loudness model that extracts a 

parameter such as HLOHC to characterize the gain loss. 

A common hypothesis is that the steepness of the loudness function, i.e. the 

amount of loudness recruitment, is in some way related to the amount of compression, 

quantified by the compression ratio (e.g., Launer, 1995; Moore, 1998; Derleth et al., 

2001). The lower right panel of Figure 4.5 shows, however, that there is only a poor 

correlation of these two values (r
2 

= 0.31, p = 0.038) using Pearson‘s correlation 

coefficient r. NH listeners show a wide range of compression ratios and a small range of 

slope values, whereas HI listeners show variations in both parameters. Additionally, 

there was no correlation found between compression ratios and absolute hearing loss (r
2 

= 0.10, p = 0.245, not shown). These results are in line with the assumption that hearing 

loss does not affect the amount of compression but rather reduces the level region where 

compression is observed in the impaired system as suggested in Plack et al. (2004). 

Furthermore, possible systematic errors in the analysis that could have additionally 

affected the correlation values are discussed in Section 4.5. 

In addition to the data used in the above analysis, ACALOS was also measured 

with sinusoidal stimuli, unusual for this type of measurement, but more comparable to 

the stimuli used in the TMC measurements. Qualitatively, the same results were 

obtained: The corresponding correlations were r
2 

= 0.88 (p < 0.001) for the upper left 

panel, and r
2 

= 0.94 (p < 0.001) for the lower left panel (with the data closely following 

the unity line), and r
2 

= 0.87 (p < 0.001) for the upper middle panel, r
2 

= 0.89 (p < 

0.001) for the lower middle panel, r
2 

= 0.73 (p < 0.001) for the upper right panel, and r
2 

= 0.32 (p < 0.05) for the lower right panel. 

4.4.5 Variability of parameters 

Since parameters derived from TMCs and ACALOS measurements were inferred using 

both nonlinear models like the DLM and assumptions about the auditory processing of 

signals (common in the literature), it is reasonable to investigate the accuracy of these 

parameters. Therefore, in this section the standard error, i.e. the statistical accuracy, of 

these parameters is quantitatively investigated. Statements about systematic deviations 
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that originate in the assumptions made in these analyses can be given only qualitatively 

based on the data that was collected in this study and can be found in the discussion 

section. 

4.4.5.1 Standard error of parameters from TMC measurements 
 

The standard error of the estimated gain loss was calculated as follows. Since the fitting 

of the linear portion of the I/O function at low levels is mainly based on single data 

points below the breakpoint BP, these data points were analyzed. The standard error of 

the vertical position of the fit‘s linear region σlin,fit is defined as the standard error of the 

(vertical) difference between the fit ylin,fit(i) and these data points y(i) 

             
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                                          (4.9),  

where n is the number of data points below the lower knee point and y(i) and ylin,fit(i) are 

the vertical coordinates of data point and fit with the same horizontal position i. The last 

column of Table 4.2 shows the individual standard error of the gain loss, which ranges 

from 0.4 to 2.7 dB with an average value of 1.0 dB. Note that these values match the 

values of the standard error of the gain (not shown) if the error in the average low-level 

gain of normal hearing listeners is assumed to be negligible. 

4.4.5.2 Standard error of parameters from ACALOS 
 

The standard error of HLOHC calculated in the analysis of the ACALOS data was 

estimated by considering the measurement results of the single ACALOS runs and the 

single runs of the 3-AFC-measurement of the absolute hearing threshold from Section 

4.2.3.1. Let ΔHLtot be the standard error of the measurement of the absolute hearing 

threshold HLtot and let Δkfit be the standard error of kfit if the model fitting was applied to 

the ACALOS data of each single run. Since HLOHC is the product of HL and kfit, error 

propagation yields ΔHLOHC, i.e. the standard error of the estimation of HLOHC. 

22

fittotfittotOHC kHLkHLHL 
                            

(4.10). 

The resulting values can be found in the last column of Table 4.4, which range from 0.4 

to 9.6 dB with an average value of 2.2 dB. Thus, the variability of HLOHC is about 1 dB 

higher than the standard error of the estimated gain loss. Note that if the value of kfit was 

found to be equal or very close to 1 or 0, very low values of Δkfit occur, leading to 

numerical values of ΔHLOHC = ΔHLtot for kfit = 1 or ΔHLOHC = 0 for kfit = 0. In these 

cases ΔHLtot was taken as a lower limit for ΔHLOHC. Furthermore, it should be noted that 
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listener RM showed high variations in the ACALOS data of each single run, which 

results in the high standard error ΔHLOHC for this person. 

4.5 Discussion 

The present study focused on estimating the amount of hearing loss that can be 

attributed to the two components inner and outer hair cell loss in a group of 16 listeners 

with hearing impairment ranging from absent to mild-to-moderate. In the following, the 

data and findings of the current study are discussed focusing on four specific aspects: 

(1) the possible systematic deviations of the estimation of parameters of TMC, (2) the 

possible systematic deviations of parameters from ACALOS, (3) the relation of 

ACALOS loudness functions to classical loudness curves, and (4) the correlation 

between ACALOS and TMC parameters. 

4.5.1 Possible systematic deviations of parameters derived from TMCs 

The standard error, i.e. the statistical accuracy, of the gain loss estimated from TMCs is 

in the range of 0.4 to 2.7 dB; however, systematic deviations may enlarge the total 

uncertainty of the gain loss or the compression ratio. These systematic deviations can 

have origin in the validity of some crucial assumptions used in this data analysis.  

The first crucial assumption is that the off-frequency masker with frequency 

0.55·fp used in this study is processed linearly at the place of the BM with a 

characteristic frequency of fp = 4 kHz. Lopez-Poveda and Alves-Pinto (2008) suggested 

that such an off-frequency masker might still show portions of compressive processing 

and that the amount of compression might be underestimated using such an off-

frequency masker as a linear reference. They recommended using a reference with 0.4·fp 

as a linear reference. However, using such a reference, the levels of the off-frequency 

masker required to mask the probe would be much higher than the levels used in the 

present study. This was avoided in the present study, since it would have reduced the 

possible range of off-frequency masker levels. Given that Lopez-Poveda and Alves-

Pinto (2008) found no evidence for inter-subject differences in the amount of the 

potential residual compression of the 0.55·ft masker, the accompanying systematic 

deviation might be reflected in a slight underestimation of compression ratios constant 

in all NH listeners. The measured I/O function of HI listeners would potentially be less 

affected, because BM compression at the probe frequency place is probably reduced in 
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these listeners. The position of the breakpoint and the low-level gain are deemed not to 

be influenced by potential residual compression of the 0.55·fp masker. 

The second assumption that may not hold is that the rates of recovery from 

forward masking are the same for different masker frequencies. Wojtczak and Oxenham 

(2009) found that this assumption does not hold for high-level on- and off-frequency 

masker levels. They concluded that compression ratios that are based on high-level data 

points might be overestimated by as much as a factor of 2. Since compression ratios in 

HI listeners are mostly based on high-level data points, whereas compression ratios in 

NH listeners mostly are not, the compression ratios of HI listeners might be estimated as 

being too compressive. However, a recent study of the same authors in four HI listeners 

(Wojtczak and Oxenham, 2010) suggests that this problem might not occur in HI 

listeners. Moreover, since low-level gain and gain loss were determined by data points 

at somewhat lower levels, these parameters are very likely not to be influenced strongly. 

The third assumption that may not hold is that the hypothetical passive, 

completely linear auditory system shows an I/O function as given by the dashed black 

line in Figure 4.2 in all listeners uniformly, where the output equals the input. In other 

words: it is not clear if a listener with no remaining low-level gain shows equal 

threshold levels for on-frequency and off-frequency maskers. This assumption and thus 

the current definition of estimating OHC loss as gain loss is equivalent with the 

definition given in Lopez-Poveda et al. (2009). Estimated low-level gain and gain loss 

would be influenced if this assumption does not hold. It appears reasonable that this 

assumption holds in listeners with either completely normal hearing or with a pure 

sensorineural hearing loss without any kind of conductive component. Differences in 

the air-bone gap between the frequencies chosen for the on- and off-frequency masker 

may lead to a shift of the location of the hypothesized passive, linear system relative to 

the data measured using TMCs.  

An assumption regarding the calculation of the gain loss is that the average 

low-level gain in NH listeners has an amount of 43.5 dB, as found in the data of Plack 

et al. (2004). The fact that no reliable value for the average low-level gain in NH 

listeners could be inferred from the data of the present study may be due to the use of 

slightly different stimuli, or that Plack et al. (2004) presented an additional notched-

noise with the masker as a cue helping to reduce possible confusion effects. 

Nevertheless, a different value of the low-level gain in NH listeners would shift all data 

points of the three upper panels of Figure 4.5 horizontally and would thus have no effect 

on the correlation values given in the data analysis section. 
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The estimation of HLIHC from the difference between one individual off-frequency 

TMC and the average off-frequency TMC of NH listeners is based on the assumption 

that all off-frequency TMCs carry the same amount of residual compression (at best: no 

residual compression). This means that all off-frequency TMCs (cf. Figure 4.1) should 

in theory have the same slope. As this slope varies considerably between both NH and 

HI listeners, there is no evidence that this assumption is not valid. However, if there 

would be residual compression in the NH listeners, but not in the HI listeners, HLIHC 

would have been slightly underestimated, because compression affects those data points 

with higher temporal gap more than the data points with smaller temporal gap. In turn 

HLOHC would have been slightly overestimated in HI listeners. This would lead to a 

slight shift of the black stars in the lower left panel of Figure 4.5 to the left. 

Other assumptions like, e.g., the absence of off-frequency listening or inability 

to detect the probe tone with the contralateral ear are very likely to hold in the present 

study, because the probe had a very low sensation level and was presented to the better 

ear. These assumptions are in accordance with many other TMC-studies, e.g., Plack et 

al. (2004), Rosengard et al. (2005a) and Wojtczak and Oxenham (2009). 

4.5.2 Relation of ACALOS loudness functions to classical loudness 

functions 

Classical loudness functions use a ratio scale rather than categories to assess loudness 

perception (Stevens, 1957; Hellman and Zwislocki, 1961). The ratio scale has a unit of 

sone, where 1 sone is defined as the loudness of a 1 kHz sinusoidal tone at 40 dB SPL 

for NH listeners. For NH listeners, a classical loudness function is a power function of 

the physical intensity of the signal with a compressive exponent of 0.3 for levels above 

about 40 dB SPL (Stevens, 1957) and is much steeper for lower levels (Hellman and 

Zwislocki, 1961; Moore, 1998). Thus, classical loudness functions are concave and 

resemble somewhat the I/O function of NH listeners (cf. Figure 4.2). The relation 

between this classical loudness function and a loudness function measured with 

categorical procedures, which usually are convex, was investigated by Allen et al. 

(1990) and Appell (2002). The analysis of Allen et al. (1990) supports the view that 

categorical loudness ratings and the sone scale are both measures of the same perceptual 

quantity, i.e. the scales can be connected via a monotonic transformation. The exact 

transformation depends on the number and width of the loudness categories (measured 

in sone) and should always be investigated in terms of the NH data of the specific 

stimulus and method, since different loudness scaling procedures relate the perceptual 
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categories differently to the physical domain (Elberling, 1999). This transformation in 

terms of the NH data was done, for instance, by Appell (2002) and also in the present 

study. Using such a transformation, the knee point of classical loudness functions 

(situated at about 40 dB SPL for NH listeners) is flattened out but the information about 

the knee point is preserved in the categorical loudness function, as the transformation is 

monotonic. For these reasons, categorical loudness scaling is as much a valuable tool 

for examining if an abnormal loudness-growth with level (i.e. recruitment) is present in 

individual HI listeners, as are classical loudness procedures.  

4.5.3 Possible systematic deviations of parameters from ACALOS 

Categorical loudness scaling is a relatively simple method and thus easy to understand 

for inexperienced listeners. It is applied in clinical examinations as a tool for hearing aid 

adjustment (Kiessling et al., 1993; Kollmeier, 1997). Its results are reliable across 

sessions both for individual loudness categories and for slopes of loudness functions 

(Al-Salim et al., 2010). Mostly one-third-octave band noises are used as stimuli, since 

they are assumed to rule out the influence of the fine-structure of absolute hearing 

threshold, which was found to affect loudness perception (Mauermann et al., 2004). In 

this study, one-third-octave band noises and sinusoids were used as stimuli. However, 

regarding the correlations of the outcomes of the two methods, no significant 

differences were found using one-third-octave band noises or sinusoids and thus both 

kinds of stimuli appear equally suited. A possible fine-structure of the hearing threshold 

does not appear to affect the correlations. This may partly be the case as fine-structure 

of the absolute hearing threshold would generally be assumed to be present in most of 

the NH listeners, but is expected to be decreased or absent in the HI listeners. 

In the analysis of the ACALOS data presented in the present study, systematic 

deviations may have the following origins. First, a possible small (< 10 dB) air-bone-

gap at 4 kHz attenuates the signal reaching the listener‘s inner ear and thus shifts the 

loudness function to higher levels. Fitting the modeled loudness function to the 

observed loudness function would then result in an overestimation of HLIHC because the 

loudness model used in this study does not separate between HLIHC and a conductive 

component of the hearing loss. Thus, HLOHC would be underestimated. Another source 

of systematic deviations in HLOHC might be the transformation from sone to CU as 

specified in Eqs. (4.7) and (4.8). Although the loudness model used here was calibrated 

to match the average NH listeners‘ data, in some cases modeled loudness functions for 

individual NH listeners differ from measured loudness functions (e.g. listener JA). 
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Large differences in NH listeners‘ loudness functions were also found by Brand and 

Hohmann (2002). How this finding may qualitatively affect the correlations found in 

this study is not quite clear. However, a more detailed loudness modeling than available 

in the loudness models up to now, e.g., by including suprathreshold data, such as 

individual low-level gain and compression ratios, may improve matching of modeled 

and measured loudness functions and may help to minimize this effect.   

4.5.4 Correlation of parameters derived from TMCs and ACALOS 

Although the TMC data can be thought to reflect the processing at a specific site of the 

BM, while the perception of loudness as used in ACALOS is thought to reflect a 

process that integrates across frequencies and thus involves different BM sites, the 

current study showed high correlation between parameters derived from both methods. 

In particular, the estimates of HLOHC from the off-frequency forward masker level and 

from ACALOS showed very high correlation (r
2
=0.96) and it was shown that GL and 

HLOHC were also highly correlated (r
2
=0.88).  Furthermore, the lower slope of the 

loudness function was significantly correlated to GL. 

The poor correlation between the lower slope of the observed loudness 

function and the compression ratio is in line with evidence from Plack et al. (2004), 

who found that sensorineural hearing loss reduces the level range where compression is 

observed rather than affecting the compression ratio. If one neglects the recent 

discussion on the validity of compression estimates by TMC (Lopez-Poveda and Alves-

Pinto, 2008) for the time being, the lack of correlation between compression ratio and 

the lower slope of the loudness function might have several reasons. First, it can be 

attributed to the fact that it is not the compression ratio that changes in HI listeners but 

rather the level range where compression occurs, a notion that is supported by the 

current data and Plack et al. (2004). Second, the lack of correlation could partly be 

attributed to the fact that different (input) level regions are covered by the two 

parameters. Especially in moderately HI listeners the compressive portion of the I/O 

function starts at 65 to 80 dB SPL, but the lower slope of the loudness function mostly 

covers data points up to not more than 75 to 80 dB. However, an additional analysis 

comparing the higher slope of the observed loudness function and the compression ratio 

showed no correlation (r
2 

= 0.03, p = 0.55) in addition to the lack of correlation between 

the compressive exponent of transformed classical loudness functions and the 

compression ratio. Another reason might be that the aforementioned assumptions for 

inferring parameters do not hold in all details. Moore et al. (1999) investigated the 
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relationship between loudness matching and a measure of the individual compression 

ratio, estimated using GOM, and found higher correlation coefficients between this 

measure of the compression ratio to HLOHC (r
2 

= 0.46) than to HLtot (r
2 

= 0.32). 

However, Moore et al. (1999) found that the difference between these correlation 

coefficients failed to reach statistical significance. In their study, individual differences 

in loudness perception, which might impair the estimation of HLOHC, were accounted 

for by employing unilaterally HI listeners and using a loudness matching experiment 

between impaired and normal ear. In the present study, no significant correlations were 

found between compression ratios and HLOHC (r
2 

= 0.35, p = 0.204) and between 

compression ratios and HLtot (r
2 

= 0.10, p = 0.245). The poorer correlation coefficients 

compared to Moore et al. (1999) may partly be due to different measurement methods 

or due to possible systematic deviations that might occur by inferring parameters from 

both ACALOS and TMCs. 

Regarding loudness, Elberling (1999) concluded that categorical loudness 

scaling cannot, in general, provide significant information for the fitting process of 

hearing aids and thus shows no further significant information about individual supra-

threshold processing, which cannot be predicted from pure-tone audiometry itself. 

However, the statement of Elberling (1999) was based on the somewhat unrealistic 

assumption that loudness functions are linear with the level of the stimulus. 

Furthermore, he did not take the variability of the estimates of the absolute hearing 

threshold into account. Concerning the question of further information of ACALOS 

beyond the pure-tone audiogram, the results of the present study may be interpreted in 

an ambiguous way: The upper left and upper middle panels of Figure 4.5 suggest that 

HLOHC estimated using ACALOS is as good a predictor for the gain loss as HLtot itself, 

i.e., it does not provide additional information. However, the close-to-perfect correlation 

shown in the lower left panel of Fig. 5 suggests that HLOHC estimated using ACALOS is 

a surprisingly good predictor for HLOHC estimated using TMCs. The correlation of HLtot 

to HLOHC estimated using TMCs (r
2 

= 0.92, p < 0.001) is reasonably lower. To estimate 

whether HLOHC assessed using ACALOS provides additional information beyond HLtot 

for estimating the gain loss from TMCs, the partial correlation coefficient (Sachs, 1999) 

between HLOHC and gain loss with HLtot partialled out was calculated. The squared 

partial correlation coefficient amounts to r² = 0.27, which is just significant on the 5%-

level. Although this correlation is not strong, it can be interpreted as indicating that 

ACALOS provides further significant information. 



4.6   Conclusions 95 

Further studies should investigate the function or dysfunction of multiple 

nonlinear components within auditory processing of NH and HI listeners (factors, as 

proposed by Kollmeier, 1999) rather than assuming the variation of one nonlinear 

component within the loudness model used in the present study. Adapted to modeling 

loudness, such models would most likely be better suited to establish the direct 

connection between psychophysical measures of the nonlinear compression and 

loudness perception, and may help to better estimate the compressive nonlinearity by 

fitting modeled loudness functions to observed loudness functions. Adapted to changes 

in auditory processing due to hearing impairment, such models might serve as tools to 

investigate and differentiate between peripheral, central, and cognitive components of 

hearing impairment. The long-term aim of such an approach is an individual tuning of 

these models using small sets of data or very few individual parameters from HI 

listeners, in order to make valid predictions of speech intelligibility (Jürgens and Brand, 

2009), speech quality, and the benefit of hearing aid algorithms (cf. Rohdenburg et al., 

2008; Meddis et al., 2010). 

4.6 Conclusions 

The amount of hearing loss attributed to IHC and OHC loss or dysfunction was 

investigated by comparing parameters related to basilar membrane processing that were 

estimated using temporal masking curves (TMC) and adaptive categorical loudness 

scaling (ACALOS). The assessment was done by fitting the following parameters to the 

data: Gain provided by the active mechanism in the auditory system, gain loss relative 

to normal-hearing listeners, the breakpoint from linear to nonlinear processing, the 

compression ratio, and inner hair cell loss (HLIHC) were estimated from the TMC data. 

The slope of the low-level portion of the loudness function and the individual OHC loss 

(HLOHC) were estimated using ACALOS and fitting modeled loudness functions to 

measured loudness functions using a loudness model. The following conclusions can be 

drawn: 

(1) HLOHC (estimated using ACALOS and pure-tone audiometric threshold) was 

highly correlated with the gain loss (estimated using TMCs) and the data fell 

close to the unity line when plotted against each other, indicating that these two 

parameters estimate the same property of the (impaired) auditory system. A 

very high correlation was observed between total hearing loss (HLtot) and gain 

loss, and between HLtot and the breakpoint from linear to nonlinear processing. 
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Hence, these parameters presumably carry very limited information in addition 

to HLtot. 

(2) HLOHC estimated using ACALOS showed a very high correlation and a close-

to–unity-mapping with HLOHC (derived from the off-frequency masker 

conditions of the TMC data), which indicates that both methods estimate this 

supra-threshold parameter consistently. 

(3) Gain loss was found to be proportional to HLtot but about 10 to 15 dB lower. 

This suggests that in the listeners of the present study, very mild sensorineural 

hearing losses involve a considerable amount of IHC loss with regard to HLtot, 

while OHC loss or dysfunction becomes increasingly important with increasing 

total hearing loss. 

(4) The gain loss can be estimated using TMCs with slightly higher statistical 

accuracy than that for the estimation of HLOHC using ACALOS. However, 

some assumptions in estimating parameters from TMCs and ACALOS may not 

fully be valid and might result in a systematic bias of parameters inferred from 

these methods. This bias can only be estimated qualitatively on the basis of the 

data used in this study. 

(5) To estimate the gain loss, the TMC technique requires about ten times more 

measurement time than estimating HLOHC using ACALOS combined with the 

pure-tone audiometric threshold. Given the standard errors of the parameters 

estimated in this study, the combination of ACALOS and precise measurement 

of HLtot provides all parameters also found with the TMC technique, except for 

the compression ratio. 
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4.8 Appendix: Data of a listener with combined conductive 

and sensorineural hearing loss 

  
Figure 4.6: TMC-data (upper left panel), inferred I/O function at a best frequency of 4 kHz (upper right 

panel), and ACALOS data (lower panel) of listener GF, who shows an air-bone-gap of 15 dB at 4 kHz. 

For details about the display style of the panels see captions of Figure 4.1, Figure 4.2, and Figure 4.3, 

respectively. 

 

 

 

Listener GF shows an air-bone gap of 15 dB at a frequency of 4 kHz and 0 to 5 dB at 

frequencies 2 and 3 kHz. The effects on the I/O function estimated using TMCs can be 

qualitatively described as follows. The on-frequency masker and the probe tone 

experience about 10 to 15 dB more attenuation within the outer- and middle ear than the 

off-frequency masker. The absolute threshold of the probe tone, as well as the on-

frequency masker threshold, was therefore affected in level. For the on-frequency 

masker, an approximately 10 to 15 dB higher level was required to mask the probe tone. 

However, the difference between on-frequency masker level and absolute probe level is 

not affected since both masker and probe experience the same attenuation. The off-

frequency masker threshold was also not affected; the off-frequency masker reaches the 

listener‘s inner ear without substantial attenuation. This frequency-dependent 

attenuation of the two maskers leads to a horizontal shift of the I/O function to the right 
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compared to the case where no conductive loss is present at 4 kHz. This can 

qualitatively be seen in the upper right panel of Figure 4.6, where two data points at 

high levels are on the right-hand side of the black dashed line (Lin = Lout). Therefore, if 

the gain loss, as specified by Eq. (4.4), was assumed to be relative to the black dashed 

line, it would be overestimated. The effect of a pure conductive loss on categorical 

loudness scaling is assumed in the loudness model used in the present study to be the 

same as the effect of a pure IHC loss, as pointed out above. Therefore, HLOHC would be 

underestimated in listener GF. The overestimation of the gain loss and the 

underestimation of HLOHC lead to the bracketed data point in the upper left panel of 

Figure 4.5. 
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5 Prediction of consonant recognition in quiet for 

listener with normal and impaired hearing using 

an auditory model
1
 

 

 

Abstract 
 

Consonant recognition is assessed in normal-hearing (NH) and hearing-impaired (HI) 

listeners in quiet condition as a function of speech level using a nonsense logatome test. 

Average recognition rates, recognition rates of single consonants, and confusions are 

analyzed. A ‗microscopic‘ model of speech recognition, which includes an auditory 

model and a speech recognizer, is used to model the results using different auditory 

models, different model configurations accounting for hearing impairment, and different 

model parameters reflecting the supra-threshold processing of the speech signals. Based 

on these model variations, the hypothesis is tested that the speech recognition 

performance predicted by the model is affected by changes of the compressive supra-

threshold processing, which is often observed in HI listeners. The measurement results 

show poorer consonant recognition rates of HI listeners than found in NH listeners with 

only a few common consonant confusions among the two groups. The model accurately 

predicts the speech reception thresholds of the NH and two out of four HI listeners, but 

shows too steep psychometric functions of average consonant recognition. A 

modification of the supra-threshold processing in the auditory model, while keeping 

audibility constant, shows only little impact on predicted consonant recognition, 

whereas a more linear auditory processing produces slightly higher recognition rates. 
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the 157
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5.1 Introduction 

The Speech Intelligibility Index (SII) (ANSI, 1997) is designed to predict the speech 

recognition performance in the presence of a background noise by calculating a 

weighted sum over the signal-to-noise-ratios (SNRs) of speech and noise in different 

frequency bands. As a ‗macroscopic‘ approach to predict individual speech 

intelligibility, the SII is based on the audibility (expressed by the individual pure-tone 

thresholds) of the long-term spectrum of speech. In the absence of noise, fairly good 

correlations between predicted and observed speech recognition performance can be 

achieved using the SII or related models of human speech recognition for listeners with 

normal hearing and very different kinds of hearing losses (e.g., Dubno et al., 1984; 

Pittman and Stelmachowicz, 2000; Stelmachowicz et al., 2000; Sukowski et al., 2010). 

Nevertheless, in all of these studies some individual listeners show also large 

discrepancies between predicted and observed speech recognition in quiet condition. 

Since the SII and related macroscopic models solely rely on the individual audibility, 

these discrepancies cannot be explained by the factor audibility. An altered supra-

threshold processing of the speech signals, which is not assessed by pure-tone 

audiometry, is one of the factors that might contribute to these discrepancies. Among 

different supra-threshold factors that may influence the processing of speech (such as 

the ability to benefit from the temporal fine structure of the speech signal (Lorenzi et 

al., 2006) or top-down interactive mechanisms in the auditory processing (Davis and 

Johnsrude, 2007), the individual amount of compression is one candidate to play a 

crucial role for speech perception of hearing-impaired (HI) listeners. It is very likely (1) 

that the compressive nonlinearity is affected if cochlear damage is present, as 

physiological evidence in animal studies suggests (Patuzzi et al., 1989; Yates et al., 

1990; Ruggero and Rich, 1991) and (2) that this affects the processing of sound well 

above the audiometric threshold such as speech. Moreover, the individual amount of 

compression being one candidate to play a crucial role for speech perception is 

supported by a recent study of Rhebergen et al. (2010), who extended the SII using a 

compressive input/output (I/O)-function and who found an increase of the predictive 

power of this extended model compared to the standard SII. 

The SII as a very simple model of human speech recognition focuses on the spectral 

parts of speech that listeners have access to if taking their respective absolute hearing 

threshold into account. However, this might not be sufficient for modeling the function 

and dysfunction of human speech recognition. One important advantage of a 
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‗microscopic‘ model of speech recognition (Jürgens and Brand, 2009) compared to the 

‗macroscopic‘ SII is that the individual auditory spectro-temporal processing of speech 

is mimicked in more detail. This approach might be a more realistic model of human 

speech recognition, since it allows for implementing both audibility and supra-threshold 

factors such as different compressive properties directly using an auditory model that 

processes each single speech waveform separately. Hence, the influence of altered 

compressive properties on modeled speech recognition performance and especially on 

modeled phoneme recognition can be studied.  

The way how to implement sensorineural hearing impairment and particularly 

supra-threshold factors into a model of speech recognition - more specifically into an 

auditory model - is still a matter of debate. For instance, in the SII, hearing impairment 

is implemented by assessing whether or not the speech signal in a frequency band with a 

positive SNR is above the audiometric threshold (ANSI, 1997). Similarly, many 

approaches to model the speech perception of hearing-impaired listeners consider the 

effect of the individual audibility only: Holube and Kollmeier (1996) and Jürgens and 

Brand (2009), for instance, used an external masking noise, spectrally shaped to the 

absolute hearing threshold, to limit the audibility of the speech signals in their 

microscopic models. Contrary to models that consider the audibility only, Plomp (1978) 

proposed to interpret any hearing loss as a combination of two parts, one that attenuates 

sounds (related to the audiometric thresholds) and one that distorts sounds. His model 

could appropriately describe major aspects of the effect of hearing impairment on 

speech intelligibility in noise. Kollmeier (1999) proposed four factors involved in 

sensorineural hearing loss, which could be adjusted separately in an auditory model: 

loss in audibility, loss of dynamic range, increase of an ‗internal noise‘, and a factor that 

affects several binaural functions. Derleth et al. (2001) split the absolute hearing 

threshold into an attenuating and an expansive component that could be adjusted 

separately in their model. The model of Derleth et al. (2001) is capable of modeling 

modulation detection, modulation matching and forward masking of hearing-impaired 

listeners. Stadler (2009) used an adaptation-and-prediction procedure to individually 

adjust parameters of his auditory model to account best for speech recognition results of 

cochlear implant users. Jepsen (2010) used data from psychoacoustic masking 

experiments to adjust the compressive (I/O)-characteristic of the nonlinear filterbank in 

his auditory model and could show that his model can reproduce data from other 

psychoacoustic masking experiments quite well. 
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Moreover, macroscopic models such as the SII predict average speech intelligibility 

(usually expressed in terms of the speech reception threshold, SRT) only for an entire 

speech test and are not suitable for predicting single speech items, i.e., words, syllables, 

or phonemes (Kollmeier, 1990). In contrast, the microscopic model of Jürgens and 

Brand (2009) allows for the prediction of recognition rates of single phonemes and 

shows a good prediction of SRT and phoneme recognition for normal-hearing (NH) 

listeners in speech-shaped background noise. The analysis of recognition scores of 

single phonemes may contribute to illuminate the nature of the speech-recognition-

problem that hearing-impaired listeners suffer from in an analytic way. This is 

supported by Phatak et al. (2009), for instance, who found that recognition scores of 

single speech items vary considerably between different HI listeners, who show similar 

SRTs. It is therefore more reasonable to assess additional speech recognition 

information such as phoneme recognition scores, than solely assessing the SRTs of a 

pool of words or sentences (as usually done in the clinical assessment of speech 

intelligibility). By using a nonsense syllable test, Bilger and Wang (1976) found that 

consonant recognition scores in quiet are highly reproducible over time and are 

significantly decreased in HI listeners. Patterns of consonant confusions were found to 

be weakly related to the audiogram. There is a tendency that people with similar 

audiometric thresholds group consonants using common patterns that could be assessed 

using similarity ratings (Walden and Montgomery, 1975) or phonetic features (Bilger 

and Wang, 1976). These patterns are characteristic for one out of three subject groups: 

mild-to-moderate hearing-impaired listeners, listeners with high-frequency loss, and 

severe hearing-impaired listeners. However, these two studies offer a far-away-from-

perfect prediction of confusion patterns and other studies, for instance Lawrence and 

Byers (1969), find very subject-specific (idiosyncratic) phoneme confusions of HI 

listeners. The reason for finding such subject-specific phoneme confusion patterns can 

be that phoneme confusions might be strongly influenced by non-acoustical effects of 

the respective test design (i.e. better familiarity of listeners with one phoneme than with 

another one, similarity of the nonsense syllable with the next meaningful word). Even 

though these non-acoustical effects limit the usage of such test results to evaluate 

auditory models that rely primarily on acoustic features, it still appears worthwhile to 

test auditory models on this kind of data to separate the acoustic effects from the 

presumably non-acoustic effects. 
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The main goals of the present study can be summarized as follows. First, consonant 

recognition in quiet is assessed in NH listeners (Experiment I) and in individual HI 

listeners (Experiment II) as a function of speech level. Second, the measurement results 

are predicted using different versions of the microscopic model of speech recognition 

(Jürgens and Brand, 2009). Third, the possible range of predicted speech recognition 

scores of consonants is explored by changing the compressive properties of the 

microscopic model predicting average consonant recognition scores in individual HI 

listeners. Furthermore, the hypothesis is tested that using an individual compressive I/O-

characteristic might improve the prediction of consonant recognition in quiet. This I/O-

characteristic is adjusted using parameters derived from a supra-threshold measurement 

method, namely categorical loudness scaling (cf. Chapter 4). 

The development of a model predicting consonant recognition rates and 

consonant confusions of an individual HI listener, which incorporates results from easy 

and fast audiological measurements such as categorical loudness scaling, is of high 

interest for rehabilitative purposes. Different signal processing strategies in hearing aids 

could be tested using such a model and an individually optimized hearing aid could be 

presented to the HI listener, which enhances particularly his or her poorly recognized 

consonants. Furthermore, such a prediction might be of importance to prescribe 

individualized auditory rehabilitation training on these poorly recognized consonants 

without very time-consuming measurements that assess the individual consonant 

recognition performance. 

5.2 Experiment I: phoneme recognition in normal-hearing 

listeners 

5.2.1 Method 

5.2.1.1 Participants and apparatus 
 

Ten listeners (eight male, two female) aged from 20 to 38 years participated in this 

experiment. Each listener‘s investigated ear showed pure-tone thresholds of not more 

than 15 dB HL at frequencies between 125 Hz and 8000 Hz using standard audiometry 

(IEC60645-1, 2002). Figure 5.1 shows the range of pure-tone thresholds as gray area. 

All listeners received a compensation for their participation in the experiments on an 

hourly basis. The apparatus for the assessment of the consonant recognition scores was 

the same as in Section 2.2.6. 
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Figure 5.1: Range of pure-tone audiometric thresholds of ten normal-hearing listeners participating in 

Experiment I (gray area) and pure-tone audiometric thresholds of four hearing-impaired listeners 

participating in Experiment II (black solid lines). 

 

 

5.2.1.2 Calibration 
 

The calibration was performed using a Brüel&Kjaer (B&K) measuring amplifier (Type 

2610), a B&K artificial ear (Type 4153), and a B&K microphone (Type 4192). All 

stimuli were free-field-equalized using an FIR-filter with 801 coefficients. The absolute 

speech level was defined as the root-mean-square level of the speech waveform without 

regarding optionally preceding or subsequent silence. The levels of different speech 

waveforms were adjusted in the digital domain after the free-field-equalization and not 

in the acoustic domain in the headphones. This means that different logatomes were 

presented to the listener at slightly different acoustical presentation levels (differences 

from -7 dB to +3 dB), whereas identical acoustic presentation levels might have been 

advantageous. However, the exact acoustic presentation level of each logatome used 

during the measurements was calculated and was also given to the model afterwards. 

Hence, highest comparability between measurement and modeling is ensured. 
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5.2.1.3 Speech tests 
 

The recognition rates of 150 different logatomes (70 VCVs and 80 CVCs) from the 

Oldenburg Logatome (OLLO)
1
 speech corpus (Wesker et al., 2005), spoken by a male 

German speaker with ‗normal‘ speech articulation (same waveforms as used in Chapter 

2), were assessed monaurally via headphones at five different presentation levels (5, 10, 

15, 20, 25 dB SPL). For each presentation level, the sequence of the 150 logatomes was 

randomly chosen. In order not to present all 150 logatomes subsequently within one list, 

the 150 recordings were split into two lists with 75 recordings and the order of 

presentation of the recordings within the two lists was shuffled. Then all ten resulting 

lists of all presentation levels were randomly interleaved for presentation. The response 

alternatives were displayed on a touch screen during and after the acoustical 

presentation of the test item; hence, the listener had to choose either from 10 CVC 

(vowel identification) or 14 VCV (consonant identification) response alternatives. The 

response alternatives for the presentation of a single logatome had the same preceding 

and subsequent phoneme (closed test). The middle phonemes of the logatomes were 

either vowels or consonants, which are listed below (represented with the International 

Phonetic Alphabet, IPA, 1999). 

 

• Consonants: 

,,,,,,,,,, ,,,



• Vowels: 

,,, ,,,,,,



Consonants are embedded in the vowels , ,,, and , respectively, 

and vowel phonemes are embedded in the consonants 

,,,,,,,and , respectively. The listeners were asked 

to choose the recognized logatome from the list of alternatives and were asked to guess 

if nothing was understood. The order of response alternatives shown to the subject was 

shuffled as well. To make the listener familiar with the measurement task, he or she 

finished two lists of 30 randomly chosen logatomes that were presented at 40 dB SPL 

(first training list) and 20 dB SPL (second training list) before the main measurement. 

Both vowel and consonant identification was measured in NH listeners. Since the topic 

                                                 
1 The OLLO corpus is freely available at http://sirius.physik.uni-oldenburg.de. 
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of the present study is consonant identification, the vowel identification data is only 

presented briefly in Section 0.  In a follow-up measurement session, the recognition 

rates of the 70 different VCVs were assessed at presentation levels of 35, 50, and 60 dB 

SPL using subjects with the same specifications as described in Section 5.2.1.1. The 

results of Experiment I are presented in combination with the model results in Section 

5.6.1. 

5.3 Experiment II: consonant recognition in hearing-

impaired listeners 

5.3.1 Method 

5.3.1.1 Participants, apparatus, and calibration 
 

Four hearing-impaired listeners (three female aged 52, 63, and 67 years, and one male 

aged 65 years) participated in this experiment. They showed mild-to-moderate 

symmetric hearing loss, i.e., threshold differences between the right and left ears did not 

exceed 20 dB for any tested frequency. Listener‘s audiometric thresholds, measured 

using standard audiometry (IEC60645-1, 2002), are shown in Figure 5.1 (black solid 

lines). The air-bone gap in all listener ears tested did not exceed 10 dB for all 

frequencies between 500 Hz and 4 kHz, thus indicating sensorineural hearing loss. 

Subjects GU and MH were hearing-aid users, whereas QH and MC were not. All 

listeners received a compensation for their participation in the experiments on an hourly 

basis. The apparatus used for the measurements was the same as in Section 2.2.6. The 

calibration of the speech signals was the same as in Section 5.2.1.2. 

5.3.1.2 Speech tests 
 

In a first measurement session, the recognition rates of 70 different VCVs spoken by a 

male German speaker with ‗normal‘ speech articulation were assessed monaurally via 

headphones. The VCV recordings were the same as used in Experiment I for the 

assessment of consonant recognition of NH listeners. Presentation levels were chosen 

individually in a range between 25 to 65 dB SPL in 5 dB steps to optimally cover of the 

individual psychometric function of average consonant identification. Two test lists 

with 30 VCVs were measured in advance to familiarize the listeners with the 

measurement task. After finishing the first measurement session, an individual speech 
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level was chosen from one of the speech levels measured in the first session, which 

resulted in a recognition rate of about 54%, i.e. very close to the individual SRT of that 

HI listener. At this speech level, the recognition rates of all 70 different VCVs were 

measured for this HI listener nine times in a second measurement session to obtain a 

large amount of speech recognition data close to the individual SRT of average 

consonant recognition. This data serves in the following to infer a confusion matrix for 

each listener. The results of Experiment II are presented in combination with modeling 

results in Section 5.6.2. 

5.4 Estimation of individual supra-threshold processing 

In Chapter 4 a procedure is proposed to estimate the amount of outer hair cell loss 

(HLOHC) from adaptive categorical loudness scaling data (ACALOS) (Brand and 

Hohmann, 2002) and pure-tone audiogram data using a loudness model. The method‘s 

output is a parameter kfit, which is the proportion of HLOHC from HL. Thus, HLOHC can 

be obtained using  

HLOHC  = HL· kfit.                                     (5.1) 

Since all listeners, who participated in the speech recognition experiments, also 

participated in the ACALOS measurements (the description of the measurement 

procedure can be found in Section 4.2.3.3), this procedure is used in the following to 

infer HLOHC as a function of frequency. All listeners performed the ACALOS procedure 

three times as described in Section 4.2.3.3 with exception of listener GU, who 

performed ACALOS two times. Note that it is necessary to compute a transformation 

from sone (output of the loudness model) to categorical units (ACALOS output) for 

each frequency separately (Eq. (4.7)), because loudness curves slightly differ as a 

function of center frequency of the one-third octave band noises used in ACALOS (cf. 

Appell, 2002). The resulting values of kfit and HLOHC can be found in Table 5.1.  

 

Table 5.1: Estimates of kfit and outer hair cell loss HLOHC from ACALOS data. The calculation was 

performed as described in Chapter 4. 

 

Frequency 500 Hz 1000 Hz 2000 Hz 4000 Hz 

Listener kfit HLOHC 

(dB) 

kfit HLOHC 

(dB) 

kfit HLOHC 

(dB) 

kfit HLOHC 

(dB) 

GU 0.50 0.0 1.00 10.0 1.00 40.0 0.78 54.4 

MC 1.00 20.0 1.00 20.0 1.00 20.0 1.00 31.5 

MH 0.56 16.7 0.42 8.4 1.00 30.0 0.76 32.9 

QH 0.82 12.3 1.00 20.0 1.00 35.0 0.77 34.3 
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To obtain separate kfit values as a function of frequency, a linear interpolation at the center 

frequencies of the filters was carried out for center frequencies ranging from 500 Hz to 4 

kHz. If the center frequency was below 500 Hz kfit was set to that value corresponding to 

500 Hz and if it was above 4 kHz kfit was set to that value corresponding to 4 kHz.  

For a better overview regarding the absolute thresholds and the frequency-

dependent amount of outer hair cell loss (HLOHC) and inner hair cell loss (HLIHC) in each 

individual listener, a graphical display is introduced, which is shown in Figure 5.2 as an 

example for a single HI listener. The lower black line shows the absolute audiometric 

threshold measured using standard audiometry (HL). The range between 0 dB HL and 

the absolute audiometric threshold is split in two parts, one corresponding to HLOHC 

(dark gray) and one corresponding to HLIHC (light gray), both estimated from ACALOS 

measurement. Note that HLIHC + HLOHC = HL holds for each frequency. HLIHC and 

HLOHC were used to optimally estimate the supra-threshold processing of sound in the 

model versions for the HI listeners (see Section 5.5.2). 

 

Figure 5.2: Overview on audiometric hearing loss and estimates of supra-threshold processing for the 

hearing-impaired listener MH. The lower black line shows the absolute audiometric threshold. The dark 

gray area denotes the amount of outer hair cell loss and the light gray area denotes the amount of inner 

hair cell loss as a function of frequency. 
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5.5 Modeling human speech recognition 

5.5.1 Microscopic speech recognition model 

The microscopic model (Jürgens and Brand, 2009) is used for the prediction of 

consonant recognition, i.e., the results of Experiments I and II. It is briefly described in 

this section, more details about the microscopic speech recognition model are presented 

in Chapter 2. Different auditory models are realized (specified in Section 5.5.2). Since 

the present study focuses on variations of the peripheral processing (i.e. the extraction 

of the internal representations from the speech signals), the recognizing stage was left 

unchanged in all model versions. This recognizing stage consists of a Dynamic-Time-

Warp (DTW) speech recognizer that computes the Lorentzian distance measure (cf. 

Jürgens and Brand, 2009) of the internal representation to be recognized (test item) and 

the internal representations corresponding to the response alternatives (templates). The 

same speech waveforms, response alternatives, and speech levels as used in the 

measurements were also chosen for the model. Furthermore, a ‗frozen-speech approach‘ 

was used for the recognition, i.e. the identical speech waveform used as test item is also 

contained within the templates (configuration B of the model of Jürgens and Brand, 

2009). The same processing of the speech waveform to be recognized is also applied to 

the speech waveforms contained in the response alternatives. The recognition of each 

waveform was repeated nine times resulting in a total of ten recognition tasks per 

waveform, each time using a different temporal passage of the (external or internal) 

noise that was placed at different locations within the auditory model (see below). This 

kind of repetition of the recognition of each waveform was necessary to obtain enough 

speech recognition data for inferring confusion matrices and statistical tests. 

5.5.2 Model versions to implement hearing impairment 

The auditory model used in the present study is either the Perception Model (PeMo) for 

HI listeners (Derleth et al., 2001) or the Computational Auditory Signal processing and 

Perception model (CASP, Jepsen et al., 2008). Both, PeMo for HI listeners and CASP 

are extensions and improvements of the ‗original‘ PeMo (Dau et al., 1997). A model 

sketch of PeMo can be found in Chaper 2.2.1.1 and a direct comparison of the two 

models of the present study can be found in Figure 5.3. Gray blocks in Figure 5.3 

denote blocks with free parameters that are adjusted in order to account for 

sensorineural hearing impairment. In comparison to PeMo for NH listeners, PeMo for 
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HI listeners consists of the same blocks, except for an attenuating block after the hair 

cell model, which accounts for hearing loss due to dysfunction of inner hair cells 

(IHCs), and an expansion block after this attenuation block, which accounts for hearing 

loss due to dysfunction of outer hair cells (OHCs). By adjusting the parameters in these 

two blocks the supra-threshold processing of the audio signal in HI listeners can be 

manipulated. For a listener with 0 dB HL at all audiometric frequencies, PeMo for HI 

listeners shows exactly the same processing as the original PeMo (Dau et al., 1997). 

 

Figure 5.3: Comparison of the two extensions of the auditory model PeMo. Left: PeMo version for 

hearing-impaired (HI) listeners. Right: Computational Auditory Signal processing and Perception model 

(CASP). Gray highlighted blocks are changed in order to account for sensorineural hearing impairment 

(see text for details). 

 

CASP differs more from the original PeMo. An outer- and middle ear FIR-filter 

attenuates the incoming audio signal in the same way as observed in the human outer 

and middle ear. A Dual-Resonance-NonLinear (DRNL) filterbank (Meddis et al., 2001) 

models the complex I/O-characteristic of the basilar membrane (BM) with the motion of 

the stapes as input and the velocity of the BM as output. This DRNL filterbank consists 



5.5  Modeling human speech recognition 

 
111 

of two processing paths, one linear path with a broad frequency characteristic and one 

nonlinear path with a frequency characteristic tuned very sharply to the respective 

center frequency. For a pure-tone signal with a frequency equal or close to the 

respective center frequency, the linear path dominates the output at high input levels and 

the nonlinear path dominates the output at low input levels. Afterwards, the outputs of 

both paths are summed up. The gain that is given by the nonlinear processing path 

depends on the amplitude of the current sample, i.e. the DRNL filterbank works 

instantaneously. This gain is highest for low-amplitude samples, decreases as the 

amplitude rises, and is zero for high-amplitude samples. Hence, the DRNL filterbank 

reproduces the ‗broken-stick‘ compressive nonlinearity of the BM‘s I/O function found 

in many physiological and behavioral (psychoacoustic) studies. Schematical I/O 

functions of a NH and a HI listener are shown in Figure 5.4.  

 

 

Figure 5.4: Schematic input/output function of a normal-hearing (gray) and a sensorineural hearing-

impaired (black) listener. The gray and black arrows indicate the low-level gain, respectively. The black 

dashed black line shows a linear I/O function (input = output). The dashed grey line denotes the minimal 

BM-velocity necessary for the sensation of a sound. 

 

 

The maximal gain at low input levels (referred to in the following as ‗low-level gain‘) is 

denoted by the gray (NH) and black (HI) arrows and is defined as the difference 

between the low-level portion of the I/O function and the linear I/O function (input = 

output, black dashed line). This low-level gain, which is reduced if an outer hair cell 
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dysfunction is present (black arrow and cf. Chapter 4), can be easily adjusted using one 

parameter in the DRNL filterbank. The assumption that HLOHC equals individual gain 

loss relatively to normal-hearing listeners is strongly supported by the results of Chapter 

4. Using the same center frequencies and number of channels as in PeMo and PeMo for 

HI listeners, the audio signal gets split up in 27 frequency channels using this DRNL 

filterbank. A hair cell model extracts the temporal envelope in the frequency channels 

and an attenuation block accounts for the IHC part of the hearing loss. A subsequent 

expansion stage models the rate-intensity functions found in the auditory nerve fibers of 

animals for low-level stimulation and is realized by squaring the amplitude. In contrast 

to the approach used in PeMo for HI listeners, in CASP the expansion stage is left 

unchanged for NH and HI listeners. Adaptation loops and the modulation filterbank are 

the same as used in PeMo and PeMo for HI listeners.  

Since it is not quite clear what is the best model version to account for the 

supra-threshold processing of normal-hearing and hearing-impaired listeners, five 

different model versions were realized. All model versions differ only in the 

‗peripheral‘ stage, i.e. the auditory model that computes the internal representation from 

the acoustic waveform, whereas the ‗recognizing‘ stage remains unchanged. An 

overview about the model versions is given in Table 5.2. Furthermore, the model 

versions are explained in more detail below.  

 

 
Table 5.2: Different model versions at a glance 

 

 auditory 

model 

implementation of hearing 

threshold 

difference in supra-

threshold 

processing from 

normal hearing 

mC1 CASP external hearing threshold 

simulating noise 

none 

mC2 CASP external hearing threshold 

simulating noise 

HLOHC = 0.8·HL 

mC3 CASP internal hearing threshold 

simulating noise after 

DRNL filterbank 

HLOHC = 0.8·HL 

mP1 PeMo for HI 

listeners 

internal Gaussian noise 

after modulation filterbank 

four different 

settings of HLOHC 

mC4 CASP internal Gaussian noise 

after modulation filterbank 

four different 

settings of HLOHC 
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1. CASP version mC1 (Hearing-threshold simulating noise and NH processing) 

Model version mC1 uses a hearing-threshold simulating noise spectrally 

shaped to the individual audiogram (cf. Chapter 2 and Chapter 3) added to the 

acoustic waveform prior to entering CASP. This model version is closest to the 

model described in Jürgens and Brand (2009) and uses a supra-threshold 

processing as also used in the model for NH listeners. As no further 

information on supra-threshold processing is included in this model version, it 

only uses audibility specified by the pure-tone audiogram as a subject-specific 

parameter. 

 

2. CASP version mC2 (Hearing-threshold simulating noise and HI processing, HLOHC = 

0.8·HL) 

Model version mC2 uses the same hearing-threshold simulating noise as mC1. 

In addition, the supra-threshold processing of the stimuli is adjusted to account 

for the processing observed in HI listeners. According to Moore and Glasberg 

(1997) it was assumed that 80% of the hearing loss, specified in dB by the 

pure-tone audiogram, accounts for outer hair cell loss and thus for a reduction 

of the gain in the low-level portion of the I/O-characteristic. Hence, the low-

level portion of the I/O function of the DRNL filterbank is attenuated by 

HLOHC = 0.8·HL. Since the output of the DRNL filterbank is the sum of the 

amplitudes of the linear and nonlinear processing path, an attenuation that is 

larger than the gain of the nonlinear part relative to the linear path at low levels 

results in an I/O function that is completely linear. If the attenuation was going 

to exceed the maximal possible attenuation it was limited to the maximum 

possible attenuation that was inferred from I/O functions of the CASP auditory 

model at different frequencies. The resulting values of the maximum possible 

attenuation are shown in Table 5.3. 

 

Table 5.3: Maximum possible attenuation of the low-level portion of the I/O-characteristic in the CASP 

model 

 

center frequency of 

DRNL filter (Hz) 

236 488 761 1000 1470 2119 3799 7469 

maximal 

attenuation (dB) 

18.75 24.75 32.5 39 40 40 40 40 
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3. CASP version mC3 (internal noise added after DRNL and HI processing, HLOHC = 

0.8·HL) 

Model version mC3 uses additive internal noise after the DRNL filterbank to 

simulate the absolute hearing threshold. This noise was generated by first, 

feeding external hearing-threshold simulating noise for the simulation of 

normal hearing (0 dB HL at audiometric frequencies between 125 Hz and 8 

kHz) into the model and second, recording the noise in the frequency channels 

after the processing of the DRNL filterbank. In this model version, the 

recorded noise is added to the signal after the DRNL processing. For HI 

listeners with a pure OHC loss, the recorded noise is kept the same as for NH 

listeners. If IHC loss is present, the recorded noise is amplified by HLIHC. The 

amount of HLOHC and HLIHC is calculated in the same way as in model version 

mC2. 

 

4. PeMo version mP1 (Additive internal noise on the internal representation and 

different versions of supra-threshold processing)  

Model version mP1 uses the PeMo model for HI listeners (Derleth et al., 2001) 

as auditory model. For NH listeners, the suprathreshold processing in this 

model is the same as in PeMo (Dau et al., 1997). The absolute hearing 

threshold is accounted for in this model as a minimum amplitude value of 10
-5

, 

prior to the adaptation loops. If the amplitude of the processed signal is below 

this value it is set to this minimum value. Since this value corresponds to a 

threshold of 0 dB SPL, an additional stage was introduced directly after the 

gammatone filterbank, which attenuates the amplitude signal in such a way that 

the minimum amplitude value now corresponds to 0 dB HL. In this model 

version, hearing impairment is accounted for as follows. An OHC loss is 

implemented in the instantaneous expansion stage as proposed by Derleth et al. 

(2001). It expands the dynamics of the signal relatively to the dynamics in the 

supra-threshold processing of NH listeners. An IHC loss is implemented as an 

attenuation of the processed signal prior to the instantaneous expansion by 

HLIHC in the same way as modeled in model version mC4. 

For this model version it was necessary to limit the recognition 

performance by adding internal noise at the end of the auditory processing. The 

amount of this Gaussian noise at this position was adjusted in order to 
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reproduce the normal-hearing listeners‘ psychometric function of average 

consonant recognition as good as possible. The amount of Gaussian noise was 

kept constant for all HI listeners. Different combinations of HLIHC and HLOHC 

were realized in order to estimate the possible influence of such a supra-

threshold parameter. Furthermore, the amount of OHC loss was estimated 

using ACALOS (cf. Chaper 4 and Table 5.1) and implemented as an additional 

model realization. 

 

5. CASP version mC4 (Additive internal noise on the internal representation and 

different versions of supra-threshold processing) 

Model version mC4 uses the CASP model and shows many similarities to 

version mP1. No external hearing-threshold simulating noise was used. A 

minimum value prior to the adaptation stage corresponds to 0 dB HL as a lower 

limit for the amplitude at this processing stage. An IHC loss is implemented in 

this model version by an attenuation and an OHC loss is implemented similar 

to version mC2 as an attenuation of the low-level portion of the I/O-

characteristic of the DRNL filterbank, as proposed by Jepsen (2010). Similar to 

model version mP1, a Gaussian internal noise was necessary to limit the 

performance. The procedure for setting the amount of Gaussian noise at this 

stage was exactly the same as for model version mP1. Also in this model 

version, different combinations of HLIHC and HLOHC were realized. 

 

5.6 Comparison of observed and predicted results 

The most important data (obtained using different model versions and the variation of 

different model parameters) is graphically shown below in the following figures and 

described in some detail in the text. However, since the graphically presented data is 

only a small part of the completely gained model data, estimates are given for all model 

variations tested how the results of these models differ from the modeling results 

presented in the figures. 

 



Chapter 5: Prediction of consonant recognition in quiet 116 

5.6.1 Modeling data of Experiment I 

5.6.1.1 Average consonant recognition rates 
 

Figure 5.5 shows average consonant recognition rates for ten normal-hearing listeners 

(gray error bars) and model mC1 (black symbols) as a function of speech level. The 

error bars denote the inter-individual standard deviation of the observed consonant 

recognition rates. The dashed gray line shows the random hitrate of 7.1%. A 

psychometric function according to Eq. (2.8) was fitted to the average data and plotted 

as a solid line by assuming chance at very low speech levels and perfect recognition at 

very high speech levels. This fit resulted in an SRT of 17.9 and 15.8 dB SPL and a slope 

of 4.2 %/dB and 8.4 %/dB respectively, the former for observed and the latter for 

predicted data, respectively. When observed and predicted data is compared, it can be 

stated that the model fits the average observed data of 5, 10, and 15 dB SPL quite well, 

whereas it slightly overestimates human performance at speech levels of 20 and 25 dB 

SPL. The SRT is predicted by the model within about 2 dB accuracy and the slope of 

the predicted psychometric function is slightly steeper than the slope of the observed 

psychometric function.  

 

 

Figure 5.5: Psychometric functions of normal-hearing listeners (gray error bars and gray solid line) and 

model mC1 (black symbols and black solid line) for average consonant recognition in quiet. Error bars 

denote the inter-individual standard deviation of the observed consonant recognition rates. Additionally, 

the recognition rates of one (randomly chosen) normal-hearing listener are plotted for comparison (gray 

circles). 
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Additionally, the recognition rates of one (randomly chosen) normal-hearing listener are 

plotted in Figure 5.5 (gray circles) for comparison with the average data. The single-

listener data shows an increase in recognition rate that is about as shallow as the 

consonant recognition data averaged over all listeners. 

5.6.1.2 Confusion matrices 
 

Figure 5.6 shows confusion matrices of consonant recognition at 15 dB SPL speech 

level of normal-hearing listeners (panel 1) and model mC1 (panel 2). The display is the 

same as in Figure 2.6. Comparing the same diagonal confusion matrix elements in panel 

1 and 2, for some consonants like ,,,,,, no significant 

differences between observed and predicted consonant recognition rates can be found 

by choosing the significance criterion described in Section 2.7. For most of the other 

consonants, the recognition rates predicted by the model are too high compared to the 

observed recognition rates, except for . 

 

   

Figure 5.6: Consonant confusion matrices at 15 dB SPL, averaged over ten normal-hearing listeners 

(panel 1) and for model mC1 (panel 2). The display is the same as in Figure 2.6. 

 

 

For these consonants, namely ,,,,, and , at least one 

confusion exists in the same row of the observed data, whose recognition rate is 

significantly above chance level, i.e. higher than 17%. The most prominent confusions 

out of these are → (44%) and → (38%). These confusions cannot be 

observed in the confusion matrix produced by the model. Only the confusion 
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→ in panel 2 is significantly above chance level. A correlation of the two 

diagonals of panel 1 and 2 results in r
2
 = 0.08, p = 0.34 using Pearson‘s correlation 

coefficient r. When comparing different diagonal elements within the same matrix it can 

be stated that there are many combinations of phonemes, whose recognition rates differ 

significantly within the confusion matrix of panel 1, but only very few combinations of 

phonemes, whose recognition rates differ significantly within the confusion matrix of 

panel 2. This means that panel 2 shows more or less the same recognition rates around 

45% for all consonants. Moreover, if Figure 5.6 panel 2 is compared to a random 

confusion matrix that consists of the same average recognition rate of 45% (mean of the 

diagonal elements) no significant differences (concerning the significance criterion 

described in Section 2.7) can be observed. However, if Figure 5.6 panel 1 is compared 

to a random confusion matrix that consists of the same average recognition rate of 37%, 

significant differences can be observed both on the diagonal and in some non-diagonal 

elements (namely →, →, →, →, →, and 

→). 

5.6.1.3 Special confusion patterns 

 

Figure 5.7: Recognition rates of consonants (black circles)and (gray circles) and of confusions 

→ (black crosses) and →(gray crosses) averaged for ten normal-hearing listeners (panel 

1) and for model mC1 (panel 2). 

 

 

To illuminate more closely the most prominent confusions → and → 

that were found in Figure 5.6 panel 1, Figure 5.7 shows the percentages of these two 

matrix elements (gray and black crosses). Furthermore, the percentages of the correct 

recognized phoneme in this row of the confusion matrix, i.e. the diagonal element (gray 

and black circles)→ and →, as a function of speech level are 
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displayed. Panel 1 presents the recognition rates of the ten normal-hearing listeners and 

panel 2 the recognition rates of the model mC1. Starting in the upper right corner of 

panel 1 and decreasing the speech level, the recognition rates of and decrease 

and reach chance level at about 10 dB SPL. The recognition rates of the confusions 

→ and → are close to 0% at 50 and 60 dB SPL. They increase and 

cross the curves of the recognition rates of and as the speech level is 

decreased. A maximum can be observed for 20 to 25 dB SPL and the recognition rates 

drop to chance level again at 10 dB SPL. Unfortunately, two gray curves are not 

statistically independent of each other, because the data points are part of the same row 

of the confusion matrix, i.e. if the recognition rate of the confusion is increased the 

recognition rate of the correct response is automatically decreased (cf. Chapter 2.7). 

Therefore, no statements can be given if the recognition rate of the respective confusion 

is significantly different from that of the correct response. In general, it can be stated 

that average NH listeners show a sensory ‗morphing‘ of the consonant to and 

a morphing of to at speech levels close to and closely above the SRT as the 

speech level is decreased. Sensory ‗morphing‘ was defined by Phatak et al. (2008) as a 

confusion significantly exceeding the recognition of the presented sound. Note that this 

morphing is performed only by attenuating the speech level without any distortion of 

the speech waveform. Model mC1 (Figure 5.7, panel 2) shows higher recognition rates 

than observed for the correct response at all speech levels. The recognition rates of the 

confusions → and →never cross the corresponding curves of the 

correct responses. This means that the model is not capable of modeling these very 

prominent confusions, especially not capable of modeling the sensory morphing, and 

hence the recognition rate of the correct response of these phonemes is also predicted 

inappropriately. 

5.6.2 Modeling data of Experiment II 

5.6.2.1 Average consonant recognition rates 
 

Each of the four panels of Figure 5.8 shows average consonant recognition rates of one 

HI listener (gray crosses) as a function of speech level. A psychometric function 

according to Eq. (2.8) is fitted to the data, respectively, in the same way as in Figure 5.5 

with the following exception. The maximal achievable average recognition score of the 

fitting function employed here is implemented as a third free parameter in the fitting 
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routine, rather than assuming perfect recognition at high speech levels. The reason for 

this is that some HI listeners do not show near-to-perfect recognition rates at speech 

levels as high as 60 or 65 dB SPL, in contrast to NH listeners (cf. Figure 5.5). SRTs of 

HI listeners are in the range from 35.5 to 44.8 dB SPL and slopes are in the range from 

2.6 to 4.6 %/dB. Thus, much higher SRTs and much shallower slopes are observed 

when comparing these values to those of NH listeners. Four predicted psychometric 

functions using model mP1 are plotted in each panel. Black dashed lines show fitted 

psychometric functions that denote the range of possible average recognition rates, 

which can be achieved when HLOHC is varied and HL is kept constant. This range 

extends from assuming HLOHC = HL, i.e. 100% outer hair cell loss (upward triangles) 

which means an as-linear-as-possible processing, via 80% outer hair cell loss 

(downward triangles) to 0% outer hair cell loss, i.e. HLIHC = HL (squares) which means 

the compressive properties are preserved as in normal hearing.  

 

 

Figure 5.8: Each panel displays average consonant recognition rates of one hearing-impaired listener 

(gray symbols and lines), whose audiometric data and estimation of outer hair cell loss is shown in the 

inlet of the panels. Black dashed lines depict the range of possible average recognition rates that can be 

obtained by varying the parameter HLOHC within model mP1. Downward triangles: HLOHC = HL, upward 

triangles: HLOHC = 0.8·HL, squares: HLOHC = 0. Black circles and black solid lines show model 

predictions using model mP1 with HLOHC estimated from the ACALOS (i.e. using the inlet of the panels). 
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Furthermore, the black circles and black solid lines represent the predicted psychometric 

function that was obtained by individually and frequency-specifically adjusting the 

compressive properties of the model as described in Section 5.4 by using the data from 

ACALOS. For subjects MC and MH a good agreement between the observed and 

predicted SRTs is obtained. For subject GU and QH the predicted average consonant 

recognition rates are much higher than observed. This results in a difference between 

observed and predicted SRT of 16 dB for GU and 8 dB for QH. Values of SRT and 

slope for different subjects and model variations can be found in Table 5.4. 

Additionally, squared correlation coefficients r
2
 are given to estimate the goodness of 

the prediction of each model variation using Pearson‘s correlation coefficient r. These r
2 

values were calculated by first, pooling the recognition rates of the four listeners and 

then, correlating the observed average recognition rates to the corresponding predicted 

average recognition rates paired according to speech level and listener. 

 

 
Table 5.4: SRTs and slopes of the psychometric functions of average consonant recognition predicted 

using different model variations (rows of the table, see text for details) and for different subjects (columns 

of the table). The model version is denoted in the first column. Additionally, the results observed in the 

measurements (first row) and the squared correlation coefficients r
2
 between predicted and observed 

average consonant recognition rates (last column) are shown. 

 

Model version GU MC MH QH  

 
r

2 

SRT 

(dB 

SPL) 

slope 

(%/dB) 
SRT 

(dB 

SPL) 

Slope 

(%/dB) 
SRT 

(dB 

SPL) 

slope 

(%/dB) 
SRT 

(dB 

SPL) 

slope 

(%/dB) 

observed 35.5 2.6 36.4 4.6 44.8 3.9 39.7 3.2 1
† 

mC1 23.0 7.8 41.3 10.6 51.9 6.5 36.6 8.2 0.62 
mC2 23.5 7.7 40.3 11.4 44.2 9.2 35.5 9.2 0.67 
mC3 23.4 7.7 37.3 12.3 49.2 7.2 36.6 9.1 0.73 

 

 
mP1 

0% 19.4 7.7 37.9 9.7 47.1 6.5 33.0 8.7 0.63 
80% 19.3 8.2 36.1 10.8 44.9 6.7 30.5 8.6 0.62 
100% 19.3 8.3 36.0 11.3 44.5 6.9 30.6 9.2 0.62 
ACALOS 18.7 8.6 36.0 11.3 45.0 6.6 30.6 9.2 0.61 

 

 
mC4 

0% 21.9 6.4 40.7 6.7 52.7 4.6 36.1 6.1 0.60 
80% 21.5 6.4 36.3 9.0 42.3 7.0 34.1 7.9 0.73 
100% 21.7 6.4 34.4 9.3 40.7 7.0 33.0 8.2 0.75 
ACALOS 21.7 6.0 34.4 9.3 43.6 7.4 33.3 7.5 0.75 

†
: by

 
definition 

 

 

Thus, 31 data points are used for the calculation of the correlation coefficients. Note that 

the precondition for a correlational analysis, the statistical independence of the single 

data points is not valid in this case, since recognition rates were pooled over listeners. 

Therefore, no statements can be given regarding the statistical significance of these r
2 
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values. Instead, the correlation coefficient serves in the following as a tool to evaluate 

which model version qualitatively shows the best predictive power. r
2 

values are in the 

range of 0.61 to 0.75. The highest r
2 

values are obtained using model mC4 and HI 

listener‘s supra-threshold processing with HLOHC = HL or HLOHC estimated from 

ACALOS measurements. However, even with no change in the supra-threshold 

processing compared to normal hearing (model mC1) an r
2 

value of 0.62 is obtained. 

When comparing the model versions incorporating HLOHC estimated by the audiogram 

and model versions incorporating HLOHC estimated from ACALOS (e.g. mC4 with 

HLOHC = HL compared to mC4 with HLOHC estimated from ACALOS measurements) 

no improvement of the match between observed and predicted SRTs is obtained. The 

slopes of the predicted psychometric functions are steeper than observed, whereas they 

tend to get shallower for a greater amount of hearing loss, which is indicated by the 

prediction of average recognition rates for subject MH, who shows the shallowest 

psychometric function.  

 

 

Figure 5.9: Same as Figure 5.8 but for model mC4.  

 



5.6  Comparison of observed and predicted results 

 
123 

The range of possible average recognition rates when adjusting the parameter HLOHC in 

the model is quite small, below 1 dB for GU and 2 to 3 dB for MC, MH and QH. The 

slope of the psychometric function is not affected by the variation of HLOHC. A more 

linear processing in the model, i.e. 100% OHC loss, results in higher recognition rates 

and a lower SRT for each one of the listeners. 

Figure 5.9 shows predicted average consonant recognition rates using model 

mC4 (black symbols and black lines) in comparison to observed consonant recognition 

rates (gray crosses and gray solid lines). In general, the same results are obtained 

compared to model mP1 with the following exception. The range of possible SRTs of 

average consonant recognition, which can be obtained by varying the parameter HLOHC 

within the model mC4, varies considerably between the subjects (indicated by the black 

dashed lines). Whereas for GU the range is below 1 dB, it amounts to 3 dB for QH, 6 

dB for MC and 9 dB for MH. Furthermore, also in this model a more linear processing 

in the model (i.e. 100% OHC loss in model versions mP1 and mC4) results in higher 

recognition rates and a lower SRT for each listener. 

 

5.6.2.2 Confusion matrices 
 

 
 

Figure 5.10: Observed confusion matrices of four HI listeners at the individual SRT of average consonant 

recognition in quiet. Highlighted elements are mentioned in the text. The display is the same as in Figure 

5.6. Close to the confusion matrices are plots of the audiometric thresholds of the HI listeners. 
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Each panel of Figure 5.10 presents a confusion matrix for one out of the four HI 

listeners, which was assessed at a constant speech level. This speech level was chosen 

individually to be that level closest to the individual SRT of the average consonant 

recognition rates (stated next to each confusion matrix in Figure 5.10). Furthermore, the 

audiometric thresholds and supra-threshold processing information is given using the 

display introduced in Section 5.4. Some elements that will be discussed in the following 

are highlighted for a better overview. A glance at the diagonals reveals that there are 

some similarities between HI listeners, as well as between HI and NH listeners 

(compare to Figure 5.6 panel 1). High recognition rates are observed for  in all 

listeners and for  in all listeners except for GU. Low recognition rates are observed 

for  in all listeners and for  in all listeners except for MC.  is fairly well 

recognized, whereas  and  show medium recognition rates in all HI listeners. 

The other consonants do not show common patterns concerning their recognition rates. 

In general, consonants are recognized across a very large range of possible recognition 

rates in each one of the listeners, ranging from nearly 0% to close-to-perfect 

recognition. Common confusions that are significantly above chance level are 

→ and →, indicated by gray circles and also observed in NH listeners 

(cf. Figure 5.6 panel 1). Additionally, there are individual confusions that are prominent 

in one listener and less prominent or absent in other listeners (black circles). For 

instance→ and →are confusions observed in GU, but not in MH, 

whereas → is a confusion observed in MC and → is a confusion 

observed in MH. Furthermore, an individual bias can be observed in MC and QH (black 

dashed rectangle); no matter what high-frequency consonant (like , , , , 

or ) is presented, these listeners show a tendency to recognize , revealed by high 

recognition rates in this column of their confusion matrix. If these observed consonant 

confusion matrices are compared to random confusion matrices that consist of the same 

average recognition rate (mean of the diagonal elements) respectively, significant 

differences can be found both for the diagonal and the non-diagonal elements: The 

diagonal elements shows a much bigger range of recognition rates than would be 

expected in a random confusion matrix. Non-diagonal elements that are significantly 

(>17%) above chance level are more frequent than expected in a random confusion 

matrix. 

Figure 5.11 displays predicted confusion matrices for the four HI listeners 

using model mC4, whereas the supra-threshold processing was estimated using 



5.6  Comparison of observed and predicted results 

 
125 

ACALOS. Note that, due to the deviance of observed and predicted SRTs for subjects 

GU and QH, for these subjects predicted confusion matrices are shown at speech levels 

that best match the SRT of the predicted rather than the observed psychometric 

function, i.e. 20 dB SPL for GU and 35 dB SPL for QH, rather than 35 dB SPL and 40 

dB SPL as in Figure 5.10. This was done because confusion matrices at the same speech 

levels as chosen for the observed data revealed close-to-perfect recognition of the 

model, i.e. only the diagonal is present with recognition rates between 90% and 100%. 

A glance at the diagonal of each panel of Figure 5.11 reveals that consonants are 

predicted to be recognized across only a quite small range of possible recognition rates, 

much smaller than the range of the observed recognition rates. Exactly the same 

elements that are highlighted in Figure 5.10 are also highlighted in Figure 5.11 for a 

direct comparison of single elements between observed and predicted confusion 

matrices. 

 

 

Figure 5.11: Predicted confusion matrices of the four hearing-impaired listeners using model version mC4 

(supra-threshold processing was estimated using ACALOS measurements). The display is the same as in 

Figure 5.10. The highlighted elements are at the same positions as in Figure 5.10 for comparison. 
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Almost no common confusions → and → can be observed (gray 

circles) except for subject MH. In the predicted confusion matrix of MH, the 

recognition rate of → is just above chance level. The individual confusions 

(black circles) that were observed in the measurements are completely absent and no 

significant bias towards  is present in the predicted confusion matrices (black 

dashed rectangle). However, there is a bias towards in the predicted confusion 

matrices of subjects GU and MC.  

The other model variations specified in Table 5.4 qualitatively show the same 

results. If these predicted consonant confusion matrices are compared to random 

confusion matrices that consist of the same average recognition rate (mean of the 

diagonal elements) respectively, no significant differences can be found both for the 

diagonal and the non-diagonal elements: The range of recognition rates on the diagonal 

matches the range expected in a random confusion matrix and the occurrence of non-

diagonal elements with recognition rates significantly (> 17%) above chance is as 

frequent as expected in a random confusion matrix. 

5.7 General discussion 

The main findings of the two experiments can be summarized as follows. First, as 

expected from the difference in absolute threshold, NH listeners show lower SRTs of 

average consonant recognition in quiet than HI listeners. Second, close to the individual 

SRTs of average consonant recognition, the confusion matrices of NH and HI listeners 

exhibit only a few common characteristics, mainly in the form of the common 

confusions → and →. In addition to these few common characteristics, 

HI listeners show subject-specific (in the literature termed ‗idiosyncratic‘, cf. Lawrence 

and Byers, 1969) patterns of recognition and confusions. Third, a microscopic model of 

speech recognition appropriately predicts the SRT of average consonant recognition of 

NH listeners in quiet and the SRT of two out of four HI listeners, but the predicted 

psychometric functions are steeper than the observed psychometric functions. Fourth, a 

variation of the I/O function of the model within physiologically reasonable ranges 

shows only little impact on the predictions, whereas a mostly linear processing results in 

slightly higher recognition rates than a compressive processing. Implementing the I/O 

function that was estimated using categorical loudness scaling does not show an 
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improvement of the predictions compared to estimating the I/O function using the pure-

tone audiogram. In general, different model versions show only little differences in the 

speech recognition predictions. In the following, these findings and their implications 

will be discussed in more detail. 

5.7.1 Audibility 

Based on the results of the present study, higher SRTs of average consonant recognition 

in quiet for HI listeners compared to NH listeners are expected to result mainly from the 

individual frequency-dependent audibility of the speech. This is supported by the fairly 

good prediction of the SRTs of model versions mC1 and mC2, because the only subject-

specific parameter in these models is audibility. These two model versions use an 

external noise, spectrally shaped to the individual audiogram, and they show good 

predictions of the SRT for NH listeners and two out of four HI listeners. For the other 

two HI listeners, the predicted SRTs are higher than those of NH listeners, but still 

lower than the SRTs that were actually observed. The identification of audibility as the 

main reason for higher SRTs is in line with a couple of other studies. For instance 

Dubno and Schaefer (1992) found no consistent differences in average consonant 

recognition of HI listeners and noise-masked normal-hearing (NMNH) listeners in 

quiet, who listened to a noise spectrally shaped to the individual hearing threshold 

during speech presentation. Zurek and Delhorne (1987) found an identical trend in the 

results for consonant recognition in noise and concluded that the primary source of 

difficulty in listening in noise for HI listeners, aside from the noise itself, is audibility. 

These studies suggest that masking consonants using an audibility-limiting noise in 

combination with normal hearing might be a good model for consonant recognition of 

hearing-impaired listeners (referred to in the following as the NMNH model). The 

NMNH model is very close to the implementation of hearing impairment used within 

the SII (ANSI, 1997). The SII sums up the frequency spectra of the speech that are both, 

above absolute auditory threshold and above the level of an optional background noise 

using a weighted sum to determine a measure of speech intelligibility. In the literature 

the NMNH model is often used to predict the performance of HI listeners in various 

psychoacoustic tasks, which results in a good reproduction of HI listener‘s performance 

for gap-detection within tonal signals, gap-duration discrimination, and detection of 

brief tones in modulated noise, but not for temporal integration (for an overview see 

Reed et al. (2009)). However, some drawbacks can be identified with the NMNH 

model: First, it does not seem to be very realistic to assume an external noise for the 
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limitation of audibility, because HI listeners do not report hearing a noise in quiet 

condition. Second, several studies presented data that cannot be explained purely in 

terms of audibility. For instance, Plomp (1986) highlighted the importance of supra-

threshold processing deficits for the modeling of SRTs of HI listeners. Similarly, the 

microscopic model of the present study cannot reproduce the SRTs of the HI listeners 

GU and QH using model versions mC1 and mC2. Using the same argument, Humes et 

al. (1987) found differences between HI listeners and their NMNH pendants in two out 

of four cases when comparing their ability to recognize nonsense syllables in quiet. 

Particularly, the types of errors made by HI and NMNH listeners differed. Fabry and 

Van Tasell (1986) found both, noise-masking as well as attenuation, respectively, to be 

a good model for consonant recognition of the HI ear of only three out of six 

unilaterally HI listeners. Ching et al. (1998) predicted speech intelligibility for HI 

listeners with very different audiometric thresholds and NH subjects listening to low-

pass filtered speech from a nonsense syllable test and found that audibility cannot 

explain the speech recognition performance of most the HI listeners. A recent study of 

Li (2009) predicted the impact of audibility on consonant perception of five HI listeners 

using an ‗extended speech banana model‘, which means that the temporal and spectral 

audibility of certain consonants was investigated in terms of the pure-tone audiogram. 

This study found equivocal results. In two out of the five HI listeners a good match 

between predicted and observed consonant recognition rates was found, in two HI 

listeners the matching was found to be very poor. Li (2009) hypothesized that in HI 

listeners with poor model predictions high amounts of distortions in the processing of 

speech might be present due to dead regions along the BM, i.e. a region on the BM with 

no remaining outer and inner hair cells. This hypothesis might also hold for subject GU 

in the present study, because a very steep slope in the audiogram at high frequencies 

might be an indication for a high-frequency dead region. However, at least as a first 

approximation, the NMNH model seems to be an adequate model to predict important 

aspects of the consonant recognition of HI listeners. 

5.7.2 Compression 

5.7.2.1 Comparison of model versions 
 

The model version mC1 does not discriminate between a NMNH listener and an HI 

listener, since external noise is used to individually limit the audibility of the model 

followed by a NH supra-threshold processing. The other model versions (mP1, mC2, 
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mC3, and mC4) do discriminate between NMNH and HI listeners in terms of a different 

supra-threshold processing of the signals. It might be assumed that model version mC2 

is a double-implementation of hearing-impairment since two factors are included, (1) 

audibility using an external hearing threshold simulating noise, and (2) an increase of 

the absolute threshold caused by a reduction of the low-level gain of the I/O function. A 

closer look reveals that this is not the case, since the second factor does only affect the 

hearing threshold if a constant minimal amplitude is assumed in the model, i.e. a 

threshold value, which limits the dynamic range. This constant minimal amplitude is 

used, e.g., in model version mC4 to adjust the dynamic range according to the 

individual audibility assessed by the pure-tone audiogram. The model version mC2 does 

not use such an absolute threshold value; thus, audibility is only determined by the 

hearing threshold simulating noise. In the same way as the waveform to be processed, 

the hearing threshold simulating noise is less amplified in the auditory model if the low-

level gain is reduced. Model version mC3 seems to be more realistic than mC1 and 

mC2 because no external noise is needed to limit audibility. The additive internal noise 

after the DRNL filterbank limits audibility and can be interpreted as a physiological 

noise, e.g. spontaneous firing rates of neurons or the low-level noise produced by 

biological processes or the thermal motion of the basilar membrane. Also, mC4 and 

mP1 seem to be more realistic than mC1 and mC2, since they use an internal noise that 

was also proposed by Kollmeier (1999). A possible interpretation of such an internal 

noise at the end of the peripheral processing is that processing errors (represented by the 

internal noise) limit the performance in the auditory system. 

In all model versions of the present study, the assumption is made that it is 

valid to vary both, audibility in terms of an external noise and compressive properties 

using the I/O function independently of each other. This assumption is supported by a 

study of Gregan et al. (2010), who showed that external noise does not affect the 

compressive properties of NH listeners when estimating the I/O function using 

psychoacoustics. 

5.7.2.2 Direct relations between speech recognition and compression 
 

Indirect relations between speech recognition and compression can be found in studies 

incorporating hearing-aids. However, due to the non-conformity of compressive 

algorithms to the compressive nonlinearity in the auditory system, relations found in 

these studies must be interpreted carefully if a comparison to the results of the present 

study is done. Therefore, only a qualitative discussion between the relations of results of 
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the present study and results of studies incorporating hearing-aids is undertaken in the 

appendix of this chapter (Section 5.10.2). 

However, also a couple of recent studies investigate a direct relation between 

BM compression and speech recognition. For example Horwitz et al. (2007) measured 

growth-of-masking for nonsense speech and found their results consistent with 

individual tonal growth-of-masking functions. Their interpretation was that 

nonlinearities such as variations of compression play a role in the understanding of 

speech in noise for NH listeners. Rhebergen et al. (2010) showed that a compressive I/O 

function can be implemented within the SII and that the predictive power of this 

‗extended‘ speech intelligibility model for HI listeners in quiet is improved. Since 

Rhebergen et al. (2010) adjusted the compressive I/O function individually using 

audiometric data only and not by incorporating results from other supra-threshold 

measurements, the amount of the impact on the prediction of using additional supra-

threshold information was not investigated. Brown et al. (2010) implemented ‗efferent‘ 

processing in their speech recognition model that consists of an auditory model (that 

uses the same DRNL filterbank as used in the model versions mC1, mC2, mC3, and 

mC4 of the present study) and an automatic speech recognition system. Efferent 

processing was implemented by attenuating the signal in the nonlinear processing path 

of the DRNL filterbank, which resulted in a more linear I/O function of the entire 

DRNL filter. Contrary to the manipulation of the DRNL filterbank in the model 

versions of the present study, their manipulation also affected samples within the 

compressive high-level portion of the I/O function, because the attenuation was kept 

constant regardless of the sample amplitude. Using an automatic speech recognition 

(ASR) system, Brown et al. (2010) found that efferent attenuation (i.e. a more linear 

processing) improves the speech recognition of this ASR system in pink noise. They 

interpreted the results as a beneficial effect of the efferent system for the recognition of 

speech in noise. The goal of the study of Brown et al. (2010) was not a comparison 

between the model performance and the performance of human listeners as in the 

present study. However, their results are in agreement with the results obtained with 

model versions mC1 and mC2 of the present study, which use an external noise, since 

slightly higher recognition rates (i.e. lower SRTs) are found for a more linear processing 

in all HI listeners. A beneficial effect of a more linear supra-threshold processing is also 

found in model versions mP1 and mC4 when the parameter HLOHC is adjusted. 

Furthermore, Jepsen (2010) implemented a compressive I/O function into his auditory 

model and adjusted the I/O function by using parameters extracted from psychoacoustic 
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masking experiments. He predicted phonetic features of consonant recognition of HI 

listeners using a rhyme test. Although the predicted results match fairly well the 

observed data, unfortunately, it is not quite clear how much of the effect can be 

attributed to audibility only and how much can be attributed to individual supra-

threshold processing, since HI listeners showed different audiometric thresholds and the 

impact of parameters on the predictions was not analyzed systematically.  

The beneficial effect of a more linear processing on predicted speech 

recognition found in the present study might be explained in terms of the SNR in 

different frequency bands that is accessible to the DTW speech recognizer. At least for 

the model versions using external noise (mC1 and mC2) it is very likely that the 

compression in the auditory model changes the SNR in single frequency bands (cf. 

Hagerman and Olofsson, 2004) in a way that the nonlinearity (1) provides less gain to 

high speech amplitudes emerging from the noise and (2) provides more gain to the 

lower amplitudes of the noise. This means that a compression effectively decreases the 

SNR in the frequency bands and thus decreases the possibility for the speech recognizer 

to match speech patterns. A more linear processing (as in mC2) does not change the 

SNR and therefore the possibility for the speech recognizer to match speech patterns is 

also left unchanged. 

5.7.3 Phoneme recognition rates and confusions 

5.7.3.1 Results in the framework of the literature 
 

When comparing NH and HI listeners‘ confusion matrices, some common 

characteristics and some differences can be found. Common characteristics could be 

attributed to the same amount of audibility of the cues important for specific consonants 

at the individual SRT. This hypothesis is supported for instance by a study of Sher and 

Owens (1974), who showed that subjects with a high-frequency hearing loss listening to 

normal speech and NH subjects listening to high-frequency-attenuated speech exhibit 

comparable recognition and confusions of specific consonants. Since it was not the goal 

of the present study to ensure equal audibility of HI and NH listeners at the SRT, but to 

investigate undistorted consonant recognition as a function of speech level, it is 

reasonable to also expect differences between the resulting confusion matrices, because 

the audibility of the speech cues available to HI and NH listeners at the individual SRT 

in quiet surely differs. The identification and isolation of cues important for specific 

consonants is not easy and shows some progress over the last about 30 years for NH 
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listeners (Dubno and Levitt, 1981; Li et al., 2010) but much less progress for HI 

listeners (Dubno et al., 1982; Li, 2009). The here-found subject-specificity 

(idiosyncrasy) of confusion patterns of HI listeners is in line with several studies in 

quiet (e.g., Lawrence and Byers, 1969) and in noise (Phatak et al., 2009). Furthermore, 

some parallels can be drawn concerning common patterns of consonant recognition and 

consonant confusions in the literature. These parallels will be discussed in the 

following. 

A morphing of the reception of one consonant to another consonant was also 

found by Phatak et al. (2008) when assessing consonant recognition of NH listeners in 

white noise as a function of SNR. For instance, Phatak et al. (2008) found a morphing 

from → and from →. The type of confusion also depended on the 

individual utterance used for the assessment of the recognition rates in their study. 

Unfortunately, no plausible explanation for their finding was given. Since the results 

presented in the present study were assessed in quiet, the morphing → in NH 

and HI listeners appears plausible when the absolute hearing threshold is taken into 

account: As the speech level is decreased, more speech energy of the voiced consonant 

 slides below the absolute hearing threshold. As the plosive is mainly 

characterized by a stop in the waveform of the VCV, i.e. a short period of silence 

between the preceding and subsequent vowel, it is very likely that an attenuated  is 

perceived as  parts of the consonant speech energy fall below threshold. The 

confusion → is also found to be very prominent for NH listeners in quiet by 

Gelfand et al. (1992). In general, confusions between and  are reported in 

some studies on consonant recognition both in noise for NH listeners (Woods et al., 

2010) and in quiet for HI listeners (Phillips et al., 2009). The confusion →is 

very rarely reported in the literature, since as a lateral approximant consonant is 

often omitted in nonsense syllable tests as a response alternative. Thus, the question 

arises whether or not this confusion is only characteristic for the specific speech 

utterances used (e.g. if this confusion depends on the speaker etc.). Comparable 

measurements with NH listeners performed with a larger data set were presented in 

Meyer (2009). The speech data included utterances from four different speakers (two 

male and two female) without dialect and six different speech articulation styles 

(labeled ‗normal‘, ‗fast‘, ‗slow‘, ‗soft‘, ‗loud‘, and ‗question‘). This data set was 

compiled based on the OLLO speech corpus, and also included the speech material used 

in the present study. As in the present study, Meyer (2009) found the confusion 
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→ to be the most prominent confusion in his analysis. The confusion 

→was also found, but not as prominent as observed in the present study. This 

might be explained by the fact that the assessment in Meyer (2009) was carried out in 

noisy conditions with speech levels substantially above absolute hearing threshold. The 

fact that Meyer (2009) identified the same confusions with a larger amount of utterances 

indicates that the confusion → is presumably a typical confusion for German 

consonants, and not specific to the data set with a single talker employed in this study. 

Furthermore, the confusion →was also found for NH listeners in noise by 

Woods et al. (2010). The relatively low recognition rate for the confusion →in 

the assessment of Meyer (2009) compared to the recognition rates of →in the 

present study might be due to the background noise that affects the low-level phoneme 

already at low SNRs. This background noise causes to be perceived as either 

or  without a bias towards , as for NH and HI listeners in silence in the 

present study. 

5.7.3.2 Possible explanations for mismatches between observation and 
prediction 

 

The microscopic model of phoneme recognition is found to be insufficient for 

predicting consonant confusions for NH listeners in quiet. Confusions could also not be 

predicted appropriately using the same model for NH listeners in noise (Jürgens and 

Brand, 2009) and therefore it is plausible that the model moreover is not sufficient for 

predicting the recognition rates of consonants that show a strong ‗competing consonant‘ 

or even a morphing to another consonant (as e.g. for ,,,,, and 

) in general. One may hypothesize that the frequency of occurrence of consonants 

in German language might play a role for this bias towards these phonemes, since the 

German listeners employed in the present study might be slightly more familiar with 

consonants they hear more frequently. However, the distribution of phonemes in spoken 

German language shown in Meier (1967) shows that  is more frequent than , 

and  is more frequent than . This order is completely reversed to what would be 

expected in support of this hypothesis. Thus, there is no evidence found for a benefit in 

recognition abilities in quiet condition if more frequent consonants are presented. 

However, it may be that some phoneme combinations of the present study are more 

familiar to the participants than other phoneme combinations, which might result in a 
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certain bias towards the more familiar phoneme combinations. To the author‘s 

knowledge, no systematic reference exists to support or reject such a hypothesis.  

One may furthermore hypothesize that the sequence of learning consonants in 

early childhood might result in more familiarity of early-learned consonants than of 

later-learned consonants. An indicator for a characteristic sequence of learning 

phonemes can be the sequence of consonants produced by small children, since no 

study of consonant reception tests with German children exists, to the author‘s 

knowledge. Hacker (2002) stated that nasals and plosives are earlier produced by 

children than fricatives, and labial consonants; alveolar consonants are earlier produced 

than velar and palatal consonants. Since all consonants that are matter of interest here 

(, , , and ) belong to the group of earlier-learned consonants, no 

evidence is found in support of the hypothesis of a benefit in recognition of early-

learned consonants. 

However, one reason for the inability of the model to predict confusions might 

be the implementation of modulation frequency channels. In the present model version, 

the modulation channels have the same weighting as the frequency channels and are 

thus warped in time by the Dynamic-Time-Warp speech recognizer as if they were 

independent of the temporal development of speech. However, it might be that this 

assumption does not hold for the speech recognition process in human listeners, because 

modulations might be affected by the effort of the brain to match the incoming internal 

representations of speech to previously stored speech representation. As the modulation 

spectrum was found to be a strong predictor for phoneme confusions of NH listeners 

(Gallun and Souza, 2008), this might be an important approach to improve the model. 

Another reason for the inability of the model to predict confusions is the deterministic 

design of the recognizing stage of the model. A frozen-speech approach was used in the 

present study and in the study of Jürgens and Brand (2009) with the aim of finding the 

best match of the high performance of phoneme recognition of NH listeners in noise 

that is by far not reached by common automatic speech recognition systems. However, 

Ewert and Dau (2004) showed that the auditory model PeMo (the predecessor to the 

models used in the present study) cannot predict amplitude modulation detection of 

deterministic signals when using an internal Gaussian noise. This presumably also holds 

for both, PeMo for HI listeners and CASP. Another approach to model the detector 

stage of the model more realistically is needed to account for this problem. Aspects that 

should be incorporated in such a model are speech production, speech articulation and a 
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verbal working memory, since each one of these factors plays an important role in 

human speech recognition (Hickok and Poeppel, 2007).  

Nevertheless, the auditory models used in the present study are developed to 

predict psychoacoustic experimental results of NH listeners when a noise is present (or 

preceding or succeeding), so it is straightforward to expect best predictions also for 

phoneme recognition of NH listeners in noise. The absence of a range of speech levels 

in the predicted results, in which some of the consonants are morphed to other 

consonants, gives rise to the hypothesis that if the model ‗hears‘ something, i.e. gets 

acoustic cues above the absolute hearing threshold, it instantly recognizes it correctly, 

probably due to the frozen speech approach. On the other hand, if human listeners 

perceive the same cues they may attribute the cue to an incorrect response alternative. 

To support this hypothesis the following additional analysis is done. In the observed 

data of NH listeners in quiet, consonant confusions that show recognition rates 

significantly above chance level (>17%) are regarded as ‗correctly recognized‘ 

additionally to the recognition rate of the diagonal element of the confusion matrix. This 

leads to new ‗diagonal‘ elements of the confusion matrices (i.e. to the percentages 

counted as ‗correctly recognized‘) shown by the light gray bars in Figure 5.12. 

 

Figure 5.12: Recognition rates of single consonants of normal-hearing listeners at 15 dB SPL speech 

level, dark gray: observed, i.e. diagonal elements of Figure 5.6 panel 1, light gray: observed if each 

significant confusion is counted as ‗correctly recognized, black: predicted, i.e. diagonal elements of 

Figure 5.6 panel 2. 
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For a comparison, also the diagonals of the two panels of Figure 5.6 are plotted as dark 

gray (observed) and black (predicted) bar plots. Using this ‗heard = recognized‘ 

assumption, only the ‗observed‘ recognition rates of , , anddiffer 

significantly from their predicted pendants, rather than the recognition rates of seven out 

of the 14 consonants when comparing the original observed recognition rates to their 

predicted pendants. Thus, a much better match is obtained. However, the correlation 

coefficient between observed (‗heard = recognized‘) and predicted recognition rates (r
2
 

= 0.06, p = 0.42) is not substantially increased over the correlation coefficient between 

observed (original) and predicted recognition rates. This may be simply due to the very 

small range of predicted recognition rates (it ranges only from 40% to 60%) of the 

consonants at the SRT. Computing a new psychometric function using this hypothesis, 

an SRT of 16.9 dB SPL and a slope of 3.3 %/dB is obtained. Even if the correlation 

between model and observation is not substantially improved and also the psychometric 

function is not perfectly predicted, the prediction is qualitatively better concerning the 

SRT and the recognition rates of single phonemes than quantified in Section 5.6.1.2. 

This indicates that parts of the non-perfect-matching of the model might be explained 

using the assumption that the model equals ‗hearing‘ with ‗recognizing‘, whereas NH 

listeners do not.  

5.7.4 Sensorineural hearing impairment 

Some important characteristics of sensorineural hearing impairment such as elevated 

absolute hearing thresholds and a changed compressive supra-threshold processing are 

included in the versions of the microscopic model used in the present study. Especially 

model versions using CASP might account for some important characteristics in 

consonant recognition of HI listeners, since a realistic I/O function of the BM is 

included. This is one aspect of phoneme perception deemed to be important by some 

authors, e.g., Allen et al. (2009), who hypothesized that the onsets of, e.g., stop 

consonants are enhanced by normal OHC function and are degraded in HI listeners, who 

show an impaired OHC function. However, there are a bundle of factors that are not 

regarded in the microscopic model, but which may play a role in consonant recognition 

of NH and especially of HI listeners. Noise and even a different (compressive) 

suprathreshold processing of the stimuli might only be rough approximations to what is 

supposed to play a role in the multitude of forms of (sensorineural) hearing impairment. 

Factors of these diverse forms will be listed in the following.  
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First, presbyacusis (that is very likely to be present in most of the HI listeners 

of the present study) is assumed to be attributed to the degeneration of cells in the stria 

vascularis, which affects the voltage important for the triggering of action potentials in 

the inner hair cells (Gates and Mills, 2005). Unfortunately, it is not clear if the impacts 

of this physiological finding on the effective signal processing in the auditory models 

used in the present study are regarded appropriately. Second, neither the NH nor the HI 

auditory model used in the present study regards phase-locking and temporal fine-

structure (TFS) of the speech signals. However, Lorenzi et al. (2006) and Hopkins and 

Moore (2010) showed that NH listeners can use TFS, whereas HI listeners often cannot 

benefit from TFS in speech recognition tasks. Furthermore, TFS was particularly found 

useful for consonant identification (Sheft et al., 2008). Third, it is not clear how the 

degeneration of nervous connections in the auditory pathway, which are no longer used 

(e.g., non-fed spiral ganglion cells due to destroyed inner hair cells), accounts for a 

change in the processing of speech. The knowledge about the impact of this factor 

might be of importance to correctly predict speech recognition performance after 

rehabilitation using hearing-aids or a cochlear implant, because it was shown that the 

time of deafness preceding the usage of a cochlear implant is inversely related to the 

performance of the listener to understand speech in quiet after implantation (Gomaa et 

al., 2003). Fourth, the auditory models used in the present study are bottom-up models, 

i.e., the processing of the signal of succeeding blocks does not influence the processing 

of the preceding blocks. However, Davis and Johnsrude (2007) showed that top-down 

interactive mechanisms within auditory networks play an important role in explaining 

the perception of spoken language. Sixth, there are other cognitive and auditory factors 

that contribute for the recognition of speech, like attention, cognitive skills, and factors 

related to age (for a review cf. Houtgast and Festen, 2008). Further research is needed to 

investigate the role of each one of these factors to obtain knowledge about how to 

incorporate them in computational models with the aim to get a better understanding of 

human speech recognition, especially speech recognition of hearing-impaired listeners. 

A comparison of the representation of phonemes in the cortex of animals is 

presented by Mesgarani et al. (2008), who show that invasive techniques in animals 

might be useful to better understand human speech recognition. However, this approach 

may suffer from many shortcomings, because simply animals do not understand speech, 

i.e. they have not learned speech their whole life. Hence, it is very likely that their 

neuronal connections are not formed to extract speech cues optimally, like humans 

presumably can. Furthermore, the dysfunction of parts of the animal auditory system 
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might show different impacts on their ‗internal representations‘, which do not 

correspond to the impacts present in human listeners. Therefore, it may be more 

appropriate to further improve existing models of the human auditory periphery and of 

human speech recognition and to include recent findings about the functioning and the 

dysfunction of physiological parts of the auditory pathway. The present study is one 

step towards the long-term aim of a more sophisticated model of the speech processing 

of NH and HI listeners. 

5.8 Conclusions 

Consonant recognition in quiet was assessed in ten normal-hearing (NH) and four 

hearing-impaired (HI) listeners as a function of speech level. A microscopic model of 

speech recognition was used to predict the consonant recognition results using different 

model versions for auditory processing and different versions of supra-threshold 

processing of the speech signals. The results of this study can be summarized as 

follows. 

 

(1) Poorer consonant recognition than in NH listeners is observed in HI listeners, 

quantified by a higher speech reception threshold (SRT). Close to the individual 

SRT in quiet, a simple attenuation of speech level does in some cases not only 

reduce the recognition of a consonant, but it can also perceptually morph this 

consonant into another consonant. This morphing might be a problem for HI 

listeners at levels close to conversational speech levels.  

(2) Consonant confusion matrices, inferred close to the individual SRT, reveal some 

common characteristics between NH and HI listeners in the form of common 

confusions. HI listener‘s confusion matrices show a large amount of subject-

specificity. 

(3) The microscopic model of speech recognition can appropriately predict the SRT 

of the NH and of two out of the four HI listeners. For the other two HI listeners 

lower SRTs (i.e. better speech recognition performance) are predicted than are 

observed. Predicted psychometric functions are always steeper than observed. 

This effect is more pronounced in the HI listeners. The model can account for 

the recognition rates of those consonants of NH listeners in quiet, which do not 

show a strong ‗concurring‘ consonant in the observations, i.e. which are not 

confused by a specific other consonant close to the SRT. 
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(4) The model cannot account for confusions or the morphing of consonants to other 

consonants. Parts of this non-matching are plausible if it is assumed that the 

model equals ‗detecting a speech cue‘ with ‗recognizing the correct speech 

item‘. This assumption is not valid for the recognition of some consonants by 

human listeners. 

(5) An altered supra-threshold processing in the models considered here shows only 

little impact on predicted consonant recognition if the same audibility of the 

signal is assumed. A more linear supra-threshold processing shows higher 

recognition rates than a more compressive supra-threshold processing. 

Implementing the I/O function estimated by the supra-threshold measurement 

technique adaptive categorical loudness scaling, does not result in a significant 

improvement of the prediction of individual consonant recognition. 

Furthermore, only small differences are observed when comparing the 

performance of the different model versions. 

 

At large, the model (besides matching general SRTs for NH and two out of four HI 

listeners) fails to predict the specificities of confusions observed in the empirical data. 

This may partially be due to non-acoustic factors not yet included in the model. Such 

factors might be a familiarity with certain response alternatives (combinations of vowels 

and consonants) and the proximity of the presented speech item to meaningful speech 

fragments as well as attention or cognitive skills. It will be a challenge to incorporate 

such factors in new numerical models of human speech recognition. 
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5.10     Appendix 

5.10.1   Vowel recognition of normal-hearing listeners 

In Experiment I, vowel recognition was assessed in NH listeners at speech levels of 5, 

10, 15, 20, and 25 dB SPL, additionally to consonant recognition. Since the present 

study focuses on consonant recognition, the vowel recognition results are presented 

only briefly in this section for the sake of completeness. 

5.10.1.1   Average vowel recognition rates 
 

Figure 5.13 displays observed vowel recognition rates averaged over ten NH listeners 

(gray crosses) and predicted average vowel recognition rates using model mC1 (cf. 

Section 5.5.2). Fitting a psychometric function according to Eq. (2.8) to observed vowel 

recognition rates results in an SRT of 8.9 dB SPL and a slope of 6.5 %/dB. Fitting a 

psychometric function to predicted vowel recognition rates results in an SRT of 14.8 dB 

SPL and 9.1 %/dB. Comparing observed and predicted vowel recognition rates, the 

model mC1 underestimates the average SRT by about 6 dB and shows a slightly steeper 

psychometric function.  

 

Figure 5.13: Psychometric functions of normal-hearing listeners (gray symbols) and model mC1 (black 

symbols) for average vowel recognition in quiet. Error bars denote the inter-individual standard deviation 

of the observed consonant recognition rates. 
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Compared to average consonant recognition (cf. Figure 5.5), vowels show higher 

recognition rates at the same speech level in both, NH listeners and model mC1. This 

effect is much more pronounced for the observed data (difference in SRT between 

average consonant and vowel recognition is 9 dB) than for the predicted data (difference 

is 1 dB). 

5.10.1.2   Confusion matrices 
 

Figure 5.14 shows confusion matrices of vowel recognition close to the SRT of NH 

listeners (10 dB SPL, panel 1) and model mC1 (15 dB SPL, panel 2). The display is the 

same as in Figure 5.6. Confusion matrices at different speech levels for both, 

observation and prediction are displayed, because predicted and observed SRTs differ 

by 6 dB. These confusion matrices show some common characteristics. For example, an 

element-wise comparison of the same confusion matrix elements between the predicted 

and observed vowels ,,,, andshows that the recognition rates of 

these vowels (i.e. the diagonal elements) do not differ significantly from each other. A 

few common confusions can be observed, e.g.,  and . 

 

Figure 5.14: Vowel confusion matrices averaged for ten normal-hearing listeners at 10 dB SPL, (panel 1) 

and at 15 dB SPL for model mC1 (panel 2). The display is the same as in Figure 5.6. 

 

However, there are also differences. For instance, the ‗competitor‘  is clearly 

prominent in panel 1 if is presented, but this competitor is completely absent in 
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panel 2. Of course, this also affects the recognition rate of the correct response , 

which is also not correctly predicted. To shortly summarize the results presented in this 

section, the statements made here fit to the statements made when investigating 

consonant recognition. The model is able to appropriately predict recognition rates of 

some consonants. If a competitor phoneme is present in the observed data the model 

fails to appropriately predict the recognition rate of the correct response. The only 

exceptions are the vowels and ; for these vowels both, the confusion and the 

correct response could be modeled appropriately if confusion matrices close to the SRT 

are compared.  

5.10.2   Relations between speech recognition and compression in 

hearing-aid studies 

To the author‘s knowledge, the present study is the first study that systematically 

investigates the impact of adjusting the I/O function in a microscopic model on the 

prediction of speech recognition in quiet. Therefore, it is hard to discuss the present 

results concerning the impact of this adjustment on the prediction of consonant 

recognition in the context of the literature. However, many studies have investigated the 

influence of compressive, linear, or expansive algorithms in hearing-aid processing on 

speech intelligibility of HI listeners. Because of multiple parameters such as attack and 

release time constants of the compressor and technical restrictions such as a frequency-

dependent maximal possible gain in hearing-aids, it is hard to make detailed 

comparisons between the following studies and the present study. However, some 

general tendencies can be observed that will be listed below. 

The result that a linear processing results in higher recognition rates than a 

compressive processing is, e.g., in line with recent results that mutual information (a 

measure for speech intelligibility) is smaller when using a fast compression than when 

using a linear algorithm in a hearing aid (Leijon and Stadler, 2008). Furthermore, Meyer 

et al. (2009) found that HI listeners benefit in their speech recognition performance in 

noise more by a linear than by a compressive algorithm in a hearing aid.  

The hypothesis of a decrease of SNR and thus decreased speech intelligibility 

as a consequence of compression (stated in Section 5.7.2.2) is also in line with a couple 

of other hearing-aid studies. For instance, Walker et al. (1984) and van Buuren et al. 

(1999) showed that both compression and expansion of a noisy speech signal fail to 

show better speech intelligibility than linear amplification. Rosengard et al. (2005b) 

found that mild-to-moderate simulated HI listeners do not benefit in speech 
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intelligibility from slow-acting compression neither in noise nor in quiet. It is important 

to also regard the influence of compressive time constants on the speech intelligibility 

results. In a fast compressive algorithm (i.e. using small attack and release time 

constants), speech intelligibility is more detrimentally affected, especially at low signal-

to-noise ratios (Hohmann and Kollmeier, 1995; Hansen, 2002).  The results of 

Goedegebure (2005) somehow contradict the results of the present study, because he 

found improvements for speech intelligibility in quiet using a relatively fast-acting 

compressive algorithm compared to a linear algorithm. However, also this study showed 

a detrimental effect of the compressive algorithm on speech intelligibility in noisy 

conditions. Even if in all of these hearing-aid studies different results were obtained 

concerning the role of compression for speech intelligibility in quiet, they all show 

either detrimental or at best no effects for speech intelligibility in noise. Since in all 

model versions of the present study, noise was used to limit either audibility (mC1, 

mC2, mC3) or the speech recognition performance of the model (mP1 and mC4), which 

was necessary because a frozen-speech approach was chosen for the model, the result of 

a detrimental effect of compression on the speech recognition rates is in line with these 

studies. 
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6 Summary and concluding remarks 

 

In this dissertation, a microscopic model has been proposed to predict phoneme and 

sentence recognition of normal-hearing and hearing-impaired listeners in both noisy and 

in quiet conditions. Contrary to standard models of human speech recognition that use 

the long-term spectrum of speech and noise, as for instance the Speech Intelligibility 

Index (SII), this approach mimics the temporal processing of speech waveforms in 

auditory filter bands by using an auditory model. The most important results of the 

research presented in this dissertation are: 

 The microscopic model accurately predicts average and single phoneme 

recognition of normal-hearing listeners in noise, using a ‗frozen-speech‘ 

approach, i.e. identical speech waveforms both for the token to be recognized and 

the token included within the speech memory as a reference pattern (Chapter 2). 

Furthermore, the microscopic model accurately predicts average consonant 

recognition of normal-hearing listeners, and of two out of four hearing-impaired 

listeners in quiet conditions (Chapter 5). 

 The performance gap between human and automatic speech recognition was 

quantified to amount to 12-13 dB using different model configurations of the 

microscopic speech recognition model. Different perceptual distance measures 

affect the predicted speech recognition rates using the frozen-speech approach 

(Chapter 2 and 7). 

 The model is not capable of correctly predicting consonant confusions both in 

noise and in quiet conditions (Chapter 2 and 5). This mismatch between human 

and modeled speech recognition might partly be explained by the observation that 

the model predictions of confusions depend less on the speech level or SNR than 

the recognition scores of human listeners: If the model detects a cue characteristic 

for one specific phoneme, it performs an ―optimum pattern match‖ to recognize 

the correct consonant.  For human listeners, however, a cue that is characteristic 

for one phoneme at low speech levels or SNRs might be interpreted as belonging 

to a different consonant, which leads to a confusion of one consonant with another 

one. Therefore, the model is also not capable of modeling the observed 
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‗morphing‘ of consonants: In the speech recognition experiments with human 

listeners some consonants are found to be ‗morphed‘ to other consonants as a 

function of the absolute speech level (Chapter 5). 

 The microscopic model predicts speech reception thresholds (SRTs) in noisy 

condition with about the same accuracy as the SII, concerning the variability 

introduced by different audiometric thresholds using external, hearing threshold 

simulating noise, (Chapter 3). 

 Parameters characterizing supra-threshold processing could be consistently 

inferred from psychoacoustic measurements in a mixed group of normal-hearing 

and hearing-impaired listeners. Two measurement methods were used: temporal 

masking curves (TMCs) and adaptive categorical loudness scaling (ACALOS). 

ACALOS was found to be much faster than TMC and almost as reliable. It should 

further be used as a standard tool in clinical applications to assess the individual 

auditory processing beyond the audiogram (Chapter 4). 

 Audibility appears to be the dominant factor in consonant recognition of hearing-

impaired listeners for modeling speech recognition in quiet. Improvements of the 

predictions by implementing supra-threshold processing deficits to model hearing 

impairment are limited. No improvement of the predictions was found by 

implementing supra-threshold parameters estimated individually using ACALOS 

(Chapter 5). 

The microscopic model has been shown to account for some important details observed 

in human speech recognition. In noisy conditions, normal-hearing listeners show only 

very few confusions in the form of ―competing phonemes‖, i.e. phonemes that are very 

often confused with the presented phoneme in a systematic, not simple random way. 

Since the model is not capable of modeling the effect of such competing phonemes, the 

best match between model and measurements is found in conditions with very few 

confusions, i.e. for normal-hearing listeners in noise, where very few competing 

phonemes are empirically found. If competing phonemes occur in the measurements, as 

shown for instance in normal-hearing listeners or hearing-impaired listeners in quiet 

conditions, some mismatches between model and measurement can be observed. It will 

be a challenge to accurately model the recognition of competing phonemes using more 

sophisticated models of human speech recognition. A very recent step towards the long-

term aim of developing such a sophisticated model of human speech recognition was 
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done by Meyer and Kollmeier (2010) by training an automatic speech recognition 

(ASR) system using human confusion data. Meyer and Kollmeier (2010) could show 

that the match between ASR data and human data is improved if the ASR training is 

based on the confusions made by human listeners. The corresponding stage to be 

manipulated in the microscopic model used here, in order to perform a similar match to 

human performance, would be the speech memory, i.e. the recognizing stage of the 

model. 

Such a revised microscopic model of speech recognition should also account 

for the observed ‗morphing‘ of one consonant to another, i.e. the dependence of the 

phoneme perception on the absolute speech level. This morphing might be one key 

problem in understanding the mechanisms of the speech recognition problem that 

hearing-impaired listeners suffer from. In normal-hearing or mild hearing-impaired 

listeners this morphing may be restricted to low speech levels, but in moderate to severe 

hearing-impaired listeners this morphing might occur even at conversational speech 

levels and might not vanish if speech is amplified in level (by, e.g., using hearing aids). 

In turn, such a morphing presumably results in confusions of words with other words, 

which rely on morphed key phonemes. The confusions → and 

→(which were found to be very prominent in Chapter 5) might induce the 

confusions such as ‗mind‘→‗mild‘, ‗not‘→‘lot‘, ‗when‘→‘well‘, and ‗Kevin‘→‗cabin‘ 

or the German ‗Wald‘→‘bald‘. If these confusions are adequately modeled by a more 

sophisticated model extended to the model described here, a very useful application will 

become feasible: A hearing aid processing strategy could be incorporated prior to the 

processing of the model, and hearing aid parameters could be adjusted in such a way 

that the recognition rates of poorly recognized phonemes are particularly increased. 

Such a procedure would offer the possibility of testing and optimizing various hearing-

aid strategies and parameters in order to get the best speech recognition performance, 

without expensive and time-consuming hearing tests with human listeners. 

Therefore, the microscopic model presented in this dissertation should be seen 

as one first step towards more comprehensive speech recognition models and their 

applications in the future. Refined models of the auditory periphery or a more 

sophisticated speech recognition stage might reveal a better match with measurement 

results. The frozen-speech approach used for the current model version might also be 

revised for each new model version to be considered. An advantage of this frozen-

speech approach is that only a little amount of speech material is required for the 
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training of the speech recognition stage. Hence, this modeling concept can easily be 

used for speech tests with only a small amount of recorded training materials.  

Some interesting questions remain that could not be answered in the present 

dissertation, such as: How large are the respective contributions of the peripheral 

preprocessing stages to the modeled speech recognition results? How large is the 

contribution of the recognizer back-end stage? Which one of these two is the key stage 

for a more appropriate modeling of HSR? To date, some comments can be given in the 

following regarding these questions and what would be a way to answer them. 

Auditory models that are closer to the physiology, e.g., Heinz et al. (2001) or 

Meddis and O'Mard (2006), might reveal more direct connections between the 

dysfunction assumed at a specific stage of the model and speech intelligibility. 

However, it is unclear if such models that aim at describing the observed physiological 

findings are equally well suited to describe the functional deficits in sensory processing 

as the functional models used here. Moreover, since speech recognition is a very 

complex process in humans that is influenced by a large number of parameters, it seems 

advisable to limit the modeling to a small number of successive functional units of 

―effective‖ signal processing and a few number of altered processing parameters. This 

view would argue for a model of human speech recognition on the peripheral side that 

consists of a cascade of (more or less dysfunctional) processing stages with a limited 

number of processing parameters with only a limited explanatory value for 

physiological observations. With respect to the subsequent recognition back-end stage, 

one could argue that a more realistic modeling of the recognition stage should 

incorporate some of the strategies also used in automatic speech recognition, for 

example Hidden Markov Models (HMMs). Such an argument might be correct in the 

sense that these strategies form more generalized models of the human speech memory. 

However, such models are the result of an optimizing process that aims at producing 

best automatic speech recognition performance without necessarily reflecting the details 

of human speech recognition (Meyer, 2009). Also, the training and data representation 

of modern ASR techniques deviate substantially from the assumed functioning of the 

human auditory processing indicating that the potential of modeling HSR with ASR 

techniques is limited.                                                                                                        

Another interesting (but to date rather notional) approach for a more realistic 

modeling of the recognition stage can be found in very recent results from olfactory 

sensory research: Wiechert et al. (2010) used recurrent neural networks to account for 
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pattern recognition of different odors. They hypothesize that the mechanisms inherent in 

these recurrent neural networks are probably relevant for pattern processing in various 

brain areas and thus presumably also for the pattern recognition of speech. Recurrent 

neural networks are deemed to be physiologically plausible, are very likely to be present 

in many vertebrates and the study of Wiechert et al. (2010) showed that an efficient 

decorrelation of sensory input using sparse recurrent neural networks is possible. 

Interestingly, similar recurrent neural network architectures have been used in (robust) 

automatic speech recognition systems in the past (Tchorz et al., 1997) – but with only a 

limited success.  

At the very end of this dissertation, some possible applications and links to perform 

further research on the microscopic model presented in this thesis are listed in the 

following. 

The microscopic model of sentence recognition presented in Chapter 3 might 

be used to model the Speech Reception Thresholds (SRTs) of sentence tests in different 

languages. Thus, differences in the observed SRTs from one language to another 

language (using native or non-native listeners) might be explained by the model using 

the same auditory front-end but different back-ends that are trained in a different way 

for describing native or non-native listeners, respectively. The same model could be 

extended using models for context effects in speech recognition (cf. Bronkhorst et al., 

2002), and it may be possible to model the benefit from the context of speech material 

in speech intelligibility. 

It is reasonable to reduce the computational load of the microscopic model, at 

least for modeling sentence recognition. In the present version of the model presented in 

Chapter 3, a psychometric function of speech recognition is computed by using the 

complete speech material (all sentences presented to the listener during the 

measurement session) at each SNR used in the measurements. This was done in order to 

calculate the SRT and the slope of the psychometric function as precisely as possible. 

However, it is more reasonable to let the model act like a human listener during the 

measurements, i.e. to use the same adaptive testing algorithm (as in the measurements) 

for the assessment of the SRT. This would also lead to a drastic reduction in 

computational load. 

To date, the microscopic model has inspired a study of modeling speech 

recognition of cochlear implant users (Fredelake et al., 2010). In the study of Fredelake 
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et al. (2010) explicit advantage is taken of the fact that the model uses the temporal 

processing of the speech waveforms, because approaches using the spectra of speech 

and noise such as the SII cannot be applied if a cochlear implant is incorporated. 

Furthermore, this model might be used to model human speech recognition in 

fluctuating background noises, since it is very likely that the ‗resolution‘ of single 

spectro-temporal speech patterns (that are not masked energetically by the fluctuating 

background noise) plays a major role in such an acoustic environment. A recent study 

using the SII (Meyer et al., 2009) has shown that a consideration of the temporal 

fluctuations in both speech and noise results in an improvement of the prediction of 

individual speech intelligibility. 

By and large, this dissertation has presented a microscopic model of human 

speech recognition, (1) whose particular stages resemble the stages assumed to be 

relevant in human speech recognition, and (2) which is capable of modeling some 

important aspects of phoneme and sentence recognition in normal-hearing and hearing-

impaired listeners. Moreover, the assessment of supra-threshold processing deficits and 

the investigation of how these deficits affect speech recognition using this microscopic 

model have shown new insights into the auditory processing performed by normal-

hearing and hearing-impaired listeners and can be taken as starting point for further 

research. 
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7 Appendix: Modeling the human-machine gap in 

speech reception: microscopic speech 

intelligibility prediction for normal-hearing 

subjects with an auditory model
1
 

 

 

Abstract 
 

In this study speech intelligibility in noise for normal-hearing subjects is predicted by a 

model that consists of an auditory preprocessing and a speech recognizer. Using a 

highly systematic speech corpus of phoneme combinations (logatomes) allows for the 

analysis of response rates and confusions of single phonemes. The predicted data is 

validated by listening tests using the same nonsense speech material. If testing 

utterances that are not identical to those in training material are used, the psychometric 

function in noise is predicted with an offset of 13 dB to higher signal-to-noise ratios 

(SNR). This is consistent with the man-machine performance gap between human 

speech recognition (HSR) and automatic speech recognition (ASR) (Meyer et al., 

2007a). However, this offset reduces to 4 dB in a second model design with identical 

recordings for training and testing. Furthermore, predicted confusion matrices are 

compared to those of normal-hearing subjects with the second model design. 

  

                                                 
1
 This paper was published as Jürgens et al. (2007) and was presented at the 8

th
 annual conferences of the 

International Speech Communication Association (Interspeech, Antwerp, Belgium). This paper is a 

predecessor to Chapter 2 of this dissertation. 
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7.1 Introduction 

Typical models that predict speech intelligibility in noise for normal-hearing subjects, 

as, e.g., the Speech Intelligibility Index (SII) (ANSI, 1997), analyze the long-term 

spectra of speech and noise separately in different frequency channels. The outcome of 

these models can be transformed to the speech reception threshold (SRT), which gives 

the SNR of 50% speech intelligibility and the slope of the psychometric function. 

Recognition rates and confusions of phonemes cannot be studied using these models. 

 The model proposed here is based on an idea of Holube and Kollmeier (1996) 

and consists of a psychoacoustically motivated preprocessing of the time-signal and a 

standard dynamic-time-warp (DTW) speech recognizer (Sakoe and Chiba, 1978). By 

determining the distances between a test utterance and training utterances ―on a 

perceptual scale‖ the utterance with the least distance is taken as the recognized one.  

For prediction and validation we used the context-free speech database 

Oldenburg Logatome Corpus (OLLO) (Wesker et al., 2005). It contains 70 different 

vowel-consonant-vowel (VCV) and 80 CVC logatomes composed of German 

phonemes. Each logatome was recorded 18 times by each speaker. 6 different speech 

articulation styles are included: ―slow‖, ―normal‖, ―fast‖, ―loud‖, ―quiet‖ and 

―questioning‖. The use of this corpus allows systematical investigations of phoneme 

recognition rates and confusions. At the same time it avoids that human listeners can 

use any semantic knowledge for intelligibility. 

7.2 Measurements 

7.2.1 Method 

10 clinically normal-hearing subjects (7 male, 3 female) aged between 19 and 37 years 

were employed. The intelligibility of 150 logatomes was measured in a sound isolated 

booth at different signal-to-noise-ratios. All recordings were taken from the OLLO 

database and were spoken by a single German speaker with speech variability ―normal‖. 

The 150 recordings were randomly split into two lists of the same length for each of the 

5 SNRs and the resulting 10 lists were randomly interleaved for presentation. The 

speech was presented at a level of 60 dB SPL via Sennheiser HDA 200 headphones that 

were free-field equalized using a FIR-filter with 801 coefficients. A non-modulated 

running noise with speech-like frequency spectrum was used (ICRA-1 noise, Dreschler 

et al., 2001). All audio signals were presented diotically. Response alternatives for a 
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single logatome had the same preceding and subsequent phoneme (closed test); hence, 

the subject had to choose from 10 or 14 alternatives when a CVC or a VCV was 

presented, which one was recognized. 

7.2.2 Results 

 
Figure 7.1: Psychometric function for normal-hearing subjects measured with logatomes in ICRA-1 noise 

at 5 fixed SNR respectively. Error bars show the interindividual standard deviation for 10 subjects. The 

fitted function is shown for comparison. 

 

 

Figure 7.1 shows the results of the speech intelligibility test plotted versus the SNR. 

Every symbol represents the mean intelligibility of CVCs, VCVs or all logatomes for 10 

subjects. The error bars show the inter-individual standard deviations. The model 

function given in Eq. (7.1) was fitted to the data by varying the free parameters SRT 

(SNR at 55% intelligibility) and s (slope of the psychometric function at the SRT). 
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Here: x: SNR, g: guessing probability (g = 8.9 %) and Ψ: intelligibility.  The fit was 

performed by maximizing the likelihood under the assumption that the recognition of 

each logatome is a Bernoulli trial (cf. Brand and Kollmeier, 2002). This yielded a slope 

of (5.4 ± 0.6) %/dB and a SRT of (-12.2 ± 1.1) dB. Note that CVCs have always a 

higher intelligibility than VCVs except for -20 dB SNR. 
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Figure 7.2: Confusion matrix (response rates in %) for normal-hearing subjects at -15 dB SNR, measured 

with consonants embedded in logatomes. Row: presented phoneme, column: recognized phoneme. Gray 

scales denote different grades of response rates. Response rates below 8%  are not shown. 

 

 

 

Figure 7.3: Confusion Matrix for normal-hearing subjects at -15 dB SNR, measured with vowels 

embedded in logatomes. The display is the same as in Figure 7.2. 

 

Figure 7.2 and Figure 7.3 show the confusion matrices of consonants and vowels for all 

10 subjects. Due to the design of OLLO each middle consonant was presented 5 times 

and every vowel 8 times at a given SNR to each subject. Hence, the overall number of 

presentations of each phoneme for these matrices are 50 and 80 respectively. The SNR 

was chosen to -15 dB, which corresponds to an intelligibility of 33% (VCV) and 52% 

(CVC). Each row symbolizes the presented phoneme and each 
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column the recognized one. Correct recognized phonemes are shown as diagonal 

elements of the matrices. Due to clarity all entries below 8% were left blank. 

Corresponding to Figure 7.2, fricative consonants like , , and  are 

recognized best, whereas voiced consonants like , , and  are recognized 

worst or not at all. Note the big variance between the diagonal elements of  and 

. Unvoiced plosive consonants like , , and  are recognized at  

significantly higher recognition rates than voiced ones (,,). There are 

almost no confusions between consonants with very high frequency content as 

 and those with low one. However, there does not seem to be a systematic 

pattern of confusions.  

There is some kind of clustering in the vowel confusion matrix (Figure 7.3): 

,, and are recognized worst and there are many confusions between 

them. The next cluster is , with no significant confusions with other vowels. 

The vowels best recognized are ,,and. 

7.3 The perception model 

7.3.1 Specification 

The perception model applied in this study was initially developed by Dau et al. (1996a) 

and it was further on used to model many different psychoacoustical experiments with 

different masking conditions as well as modulation detection tasks in an extended 

version (Dau et al., 1997). In this study this extended version is combined with a 

standard DTW speech recognizer to mimic the decision process in a closed speech 

intelligibility test.  

Figure 7.4 shows the model structure. The level of the template speech 

waveform is set to 60 dB SPL and both the background ICRA-noise and a hearing 

threshold simulating noise for normal-hearing listeners is added. The resulting 

waveform is filtered using a gammatone filterbank (Hohmann, 2002) with 27 frequency 

channels between 236 Hz and 8 kHz equally spaced on an ERB-scale. The filter-outputs 

are half-wave rectified and low pass filtered at 1 kHz in a hair cell model. After 

processing with five consecutive adaptation loops with time constants chosen as in 

Holube and Kollmeier (1996) the signal is again filtered by a modulation filterbank that 
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consists of 4 modulation filters: one low pass at 2.5 Hz and three band passes with 

center frequencies of 5, 7.5 and 10 Hz and bandwidths of 5 Hz, respectively. 

 

 

 
Figure 7.4: Scheme of the speech intelligibility model. The model calculates the distance between both, 

the template waveform and the testsignal waveform after preprocessing in the same way. GFB: 

gammatone filterbank, HC: hair cell modell, AL: adaptation loops, MFB: modulation-filterbank, DTW: 

Dynamic-Time-Warp speech recognizer. 

 

 

The outcome is an ―internal representation― (IR) of the time signal. The testsignal + 

noise waveform is preprocessed in the same way by the perception model. Note that 

―noise‖ in this scheme means running ICRA background noise added to a running 

hearing threshold simulating noise for normal-hearing subjects. All samples of the 

training vocabulary were equalized to the same length before processing by attaching 

silence. This was done to rule out a possible discrimination cue due to the individual 

length of the speech recordings. 

The IR of the template and the IR of the testsignal are the inputs of the speech 

recognizer that calculates the Euclidian distance between the two versions. To allow for 

a mismatch in the temporal structure between sample and template a DTW algorithm 

(Sakoe and Chiba, 1978) performs local stretching and compression of the time axes of 

both IRs in order to achieve a minimal distance. The logatome with the least distance is 

chosen as the recognized one. The response alternatives given to the model were the 

same as for HSR. 
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Two model configurations were realized in this study: 

 In configuration A there were 5 IRs per logatome as templates. None of the 5 

original recordings was identical to the tested time signal. The logatome that 

yielded the minimum mean distance of all 5 IRs was chosen as the recognized one. 

This mimics a realistic task for common speech recognizers because the exact 

acoustic utterance is unknown. 

 Model configuration B contained a single IR per logatome as a template, whereas 

the original speech material was identical to that of the test signal. Thus the 

resulting IRs differ only in the initially added background noises. In contrast to 

configuration A, this configuration disregards the natural variability of speech, thus 

it assumes perfect knowledge of the ―template‖ to be matched with the DTW 

algorithm. 

There are many combinations possible to select speech material from OLLO for 

performing these model calculations. For these two model configurations the speech 

recognizing task was calculated 10 times using each time a new combination of speech 

recordings spoken by the same speaker. 

7.3.2 Model predictions and comparison with listening tests 

 

 
 

Figure 7.5: Predicted psychometric functions for model configurations A and B derived with utterances of 

logatomes in ICRA-noise at fixed SNR respectively. For comparision inserted: fit to measured normal-

hearing psychometric function (HSR) from Figure 7.1. 
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The resulting psychometric functions of the ASR experiments are shown in Figure 7.5. 

Additionally, the fitted psychometric function for normal-hearing subjects from Figure 

7.1 is plotted as a reference. Configuration A shows the same recognition rates for 

CVCs and for VCVs. The resulting SRT calculated by a fitted psychometric function is 

1.3 dB and thus is more than 13 dB higher than that in HSR. It was assumed that in this 

model configuration, which closely resembles ASR tasks, 100% model recognition rate 

can never be achieved even without background noise. This is due to the inherent 

speech variability that is still a problem in ASR tasks (Lippmann, 1997). To include this 

fact a third parameter (the difference between 100% and the saturation recognition rate 

of the model) was introduced into the fitting routine. With a slope of 5.8 %/dB the 

reference slope is reproduced quite well. 

A much better prediction of the normal-hearing psychometric function is 

achieved with model configuration B. The order of CVC and VCV as well as the upper 

part of the reference curve is modelled correctly. 100 % recognition rate is reached at 10 

dB SNR. The slope (8.9 %/dB) deviates slightly from the reference, the SRT (-7.6 dB) 

is much closer to human listeners SRT, but still there is a gap of 4.6 dB between them. 

 

 

Figure 7.6: Consonant confusion matrix for model configuration B at -10 dB SNR, The display is 

the same as in Figure 7.2. 

 

In the following only confusion matrices for model configuration B are evaluated and 

compared to HSR confusion matrices. The SNR was chosen to -10 dB to 
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ensure about the same intelligibility as for human listeners. Figure 7.6 and Figure 7.7 

show these confusion matrices. Comparing Figure 7.2 to Figure 7.6 the same 

consonants , , and  are recognized best by the model, but that high human 

recognition rates like 92% for  are not reached. However, some consonants like 

, , and  are recognized even better by the model than by human listeners. 

There is no significant difference between the model recognition rates for unvoiced and 

voiced plosives. Overall the ―contrast‖ of the model matrix between the diagonal 

elements is worse than in HSR. This is also the case for the model confusion matrix for 

vowels: The clustering found in Figure 7.3 could not be reproduced. At -10 dB SNR the 

overall recognition rate of CVC utterances is significantly worse than for normal-

hearing subjects at -15 dB SNR (38% compared to 52%).  However, the phonemes  

and  are recognized slightly better by the model than in HSR. The characteristic 

nearly uniform columns at  and  provide an indication that these phonemes are 

the most probable vowels to recognize by presenting any vowel at such low SNRs.  

 

 

 

Figure 7.7: Vowel confusion matrix for model configuration B at -10 dB SNR. The display is the 

same as in Figure 7.2. 

7.4 Discussion 

Two model configurations were employed, one taking the natural variability of speech 

into account, the other one disregarding it. Our results show that there is only a chance 

of predicting the psychometric function for normal-hearing listeners by ignoring the 

variability of speech itself, i.e. taking identical speech test and training utterances as 
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inputs for the model. Conversely this gives an indication that speech variability is not 

crucial to speech intelligibility of normal-hearing subjects at high SNRs. Human speech 

recognition is as perfect and in some phonemes better than the prediction as if the 

listener knew the audio signal before the recognition process. However, speech 

variability is crucial to a model that does not hold the exact speech recording in its 

training vocabulary. 

Although confusion matrices of HSR and ASR are quite similar (especially the 

consonant phoneme ones), those of the model show a smaller contrast between highly 

and poorly recognized phonemes. This can be an indication that human listeners use 

more information from high frequencies to discriminate nonsense speech material than 

it is done by this model. In each ASR confusion matrix there is a bias favouring some 

phonemes, like  and  in Figure 7.7, independent of the type of the presented 

phoneme. This bias could be corrected by changing the selection criteria, which would 

probably also be done by human listeners during the measurement procedure. 

7.5 Conclusions 

This speech intelligibility model is based on the time signal of speech and consists of a 

psychoacoustically motivated preprocessing and a simple speech recognizer. It is 

capable of predicting essential aspects of speech intelligibility of normal-hearing 

subjects. By considering the intrinsic variability of speech the modeled SRT is 13 dB 

higher than human listeners show. This is consistent with findings of other studies 

exploring the human-machine gap (e.g., Meyer et al., 2007a). Introducing a perfect 

knowledge about the speech signal to recognize allows for predicting the psychometric 

function with a much smaller offset. This refers to the ―optimal detector‖ concept 

required to model human perception assuming that the ―world knowledge‖ yields an 

optimal template in each HSR experiment. In addition, it was possible to detect 

characteristic differences between phoneme confusion matrices of HSR and ASR.  

Future studies should investigate speech intelligibility of hearing-impaired 

subjects and also should analyse the influence of the loss of dynamic range at the 

hearing-impaired on speech intelligibility in a microscopic way. 
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