
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

An Environment for Compositional

Specification Verification of Complex
Embedded Systems

Dissertation zur Erlangung des Grades eines
Doktors der Naturwissenschaften

von

Dipl.-Inform. Hartmut Wittke

Gutachter:

Prof. Dr. Werner Damm

Prof. Dr. Martin Fränzle

Tag der Disputation: 18.11.2005

http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2006/witenv05/witenv05.html
http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2006/witenv05/witenv05.html

Zusammenfassung

Modellbasierte Entwurfsprozesse sind eine weitgehend akzeptierte Maßnahme zur Vermeidung fol-
genschwerer Fehler in der Entwicklung sicherheitskritischer eingebetteter Systeme. Modelle dienen
in frühen Phasen der Entwicklung als ausführbare Spezifikationen und als abstrakte Implementierun-
gen, anhand derer Anforderungen analysiert und Probleme identifiziert werden können. Durch den
Einsatz von Model Checking kann der formale Nachweis vollautomatisch erbracht werden, dass ein
Modell die geforderten Eigenschaften erfüllt.

Diese Arbeit stellt eine Verifikations-Umgebung für Modelle vor, die mit dem CASE-tool Statem-

ate erstellt werden. Statemate Modelle können in zwei unterschiedlichen Simulations-Semantiken
ausgeführt werden, einer Schritt- und einer sogenannten Super-Step-Semantik. In der gebräuch-
licheren Super-Step-Semantik reagiert ein Modell auf externe Stimuli mit Sequenzen von Einzelschrit-
ten bis die Reaktion auf ein externes Ereignis abgeschlossen ist, wobei Simulationzeit nur zwischen
stabilen Zuständen vergeht. Die Komponenten eines Super-Step-Modells reagieren dabei jedoch
sequentiell in jedem Schritt auf modellinterne Änderungen.

Die Verifikations-Umgebung erlaubt die Anwendung von Model Checking für eine Reihe von
Robustheits-Eigenschaften von Modellen als Push-Button-Technik, wie zum Beispiel der Erken-
nung konfliktierender Schreibzugriffe auf Variablen oder die Untersuchung von Nichtdeterminismus.
Darüberhinaus bietet die Verifikations-Umgebung den Einsatz von Model Checking als formale
Debugging-Technik an, um den Nachweis der (Nicht-)Erreichbarkeit von z.B. Zustandskombina-
tionen oder graphischen Transitionen des Modells zu erbringen. Integriert in der Verifikations-
Umgebung ist eine Bibliothek vordefinierter Spezifikations-Muster, die für den formalen Nachweis
einfacher, benutzerdefinierter Spezifikationen instanziert werden können.

Entscheidend für die Anwendbarkeit formaler Verifikation in der Praxis ist die Formalisierung
der Anforderungen. Den Mittelpunkt der Arbeit bildet daher eine Real-Zeit Erweiterung Symbol-
ischer Zeit-Diagramme als intuitiver graphischen Spezifikations-Formalismus für Real-Zeit Eigen-
schaften von Statemate Modellen. Eine formale Semantik für die vorgestellte Variante Symbol-
ischer Zeit-Diagramme durch Abwicklung zu Zeitbehafteten Symbolischen Automaten wird in der
Arbeit definiert. Aus diesen Automaten werden Observer Module generiert. Durch Einhaltung
einiger weniger Einschänkungen kann die Akzeptanz-Bedingung dieser Observer durch eine einfache
Invariante ausgedrückt werden. Dadurch kann formale Verifikation durch einfache und effiziente
Erreichbarkeits-Untersuchungen realisiert werden.

Die Anwendbarkeit von Model Checking auf System-Modelle ist in der Praxis durch die Kom-
plexität der Modelle limitiert. Zur Reduktion der Verifikations-Komplexität können komposi-
tionale Techniken verwandt werden, die es ermöglichen System-Anforderungen durch eine Menge
von Teilbeweisen zu verifizieren. Basierend auf Symbolischen Zeit-Diagrammen wird ein komposi-
tionaler Verifikationsansatz für Statemate Super-Step-Modelle vorgestellt, in dem die Gültigkeit
einer System-Anforderung durch den Nachweis bewiesen werden kann, dass sie aus einer Menge
von gültigen Komponenten-Anforderungen folgt. Die Gültigkeit der betrachteten Komponenten-
Anforderungen kann dann auf der weniger komplexen Ebene der jeweiligen Komponenten verifiziert
werden. Da bezüglich der Komposition von Komponenten eines Super-Step Modells sowohl Aus-
sagen über Einzelschritte als auch über Zeit spezifizierbar sein müssen, unterstützt der vorgestellte
Spezifikations-Formalismus sowohl die quantitative Erfassung von Einzelschritten als auch von
Super-Steps.

Die Beweisführung und die Anwendung der Schlussregeln sind in dem vorgestellten Ansatz au-

i

tomatisiert. Durch ein Gültigkeits-Management werden die Auswirkungen von Änderungen an
Modell und Spezifikationen auf Verifikationsergebnisse, unter Berücksichtigung hierarchischer Ab-
hängigkeiten, automatisch verwaltet.

ii

Abstract

Model-based development processes are a widely accepted measure to avoid errors in the devel-
opment of safety-critical embedded systems. Models serve as executable specifications and abstract
implementations in early phases of the development. Using Modeling, requirements can be analyzed
and problems can be identified in these early phases. Application of model checking can yield the
formal proof that a model fulfills the requirements.

This work presents a verification environment for models which are developed using the CASE-tool
Statemate. Statemate models are executable w.r.t. two different time models, a step semantics
and a so-called super-step semantics. According to the more usual super-step semantics, a model
reacts on external stimuli with series of steps, unless the reaction is completed. Time is assumed to
advance only between consecutive stable states. The series of steps, of which a super-step consists
is assumed to take no time, even though the steps of the series are sequentially ordered.

The Statemate Verification Environment (STVE) offers application of model checking to estab-
lish a collection of robustness properties by push-button-techniques, such as detection of conflicting
write accesses to variables or examination of non-determinism. Furthermore, the STVE supports
the application of model checking as a formal debugging aid, e.g. for reachability checking of certain
state configurations or particular graphical transitions. Integrated with the STVE is also a library
of pre-defined specification patterns, which can be instantiated in order to formally proof simple
user-defined requirement specifications.

In practice, the formalization of requirement specifications is a crucial point for the applicability
of formal verification. Hence, a major concern of this work is a real-time extension of Symbolic
Timing Diagrams as intuitive graphical specification formalism for real-time requirements regarding
Statemate models. A formal semantics of this variant of Symbolic Timing Diagrams is defined
by unwinding the diagrams into Timed Symbolic Automata. From these, observer modules for
the application in formal verification can be generated. We show in this work that using only
a few restrictions, the acceptance criteria of the observers can be reduced to simple invariants.
Hence, formal verification can be applied by simple and efficient reachability-based model checking
techniques.

Applicability of model checking is limited by the model complexity in practice. Compositional
techniques can be applied in order to cope with the complexity. This way, system requirements
can be established by a set of less complex proof-tasks for the components of a system. A com-
positional proof rule on the basis of Symbolic Timing Diagrams is presented in this work, allowing
the verification of system requirements by conclusion from fulfilled sub-component requirements.
Composition of sub-components of a super-step model requires the specification formalism to be
capable of expressing both constraints w.r.t. steps as well as constraints w.r.t. time. Hence, the
presented extension of Symbolic Timing Diagrams supports quantitative treatment of steps as well
as quantitative treatment of super-steps.

Proof-task execution as well as management of proof-results are automated in the presented
verification environment. Book-keeping of results and validity management take the effects of
modifications of model and formal specifications into account, such that results are maintained
w.r.t. hierarchical dependences.

iii

Acknowledgements

I would like to thank the following persons who supported me throughout the preparation of this
thesis. First of all, many thanks to Werner Damm for his supervision and for the very pleasant
working environment throughout the years I had the pleasure to stay within his department. I have
greatly benefitted from his encouragement and the creative working environment in the department.
Many fruitful discussions about formal specification and verification technologies enabled me to
finally write this thesis.

I furthermore thank Martin Fränzle for being so kind to act as second reviewer for my thesis.
An entire verification environment as presented in this thesis is not created by one person in

isloation. A key ingredient for the realization of this thesis is the team of which I have been part
during the last years. Many fruitful discussions and valuable ideas have contributed to the work
presented in this thesis - and of course many powerful tools and libraries which have been developed
by members of the team and which have been assembled in the verification environment.

I would like to thank the following colleagues (in no special order): Bernhard Josko for shar-
ing his huge amount of knowledge about specification and verification techniques with me, Tom
Bienmüller for the intensive and fruitful co-operation in the realization of the verification environ-
ment throughout the years. I thank Rainer Schlör for long years of instructive collaboration in
the area of Symbolic Timing Diagrams, Ingo Schinz for his contribution to the realization of the
proof-manager and Bertrand Gregoire for his initial implementation of observer generation for ver-
ification. Special thanks to Jochen Klose and to Boris Wirtz for proof reading parts of this thesis
and for the instructive comments regarding my work. Thanks also to Udo Brockmeyer and Hans
Jürgen Holberg for their deep insights into Statemate and development process related topics.

In a special way I would like to thank my parents Erika and Dieter Wittke for enabling my studies
and always supporting me.

Finally, I like to thank my girlfriend Trude Lüppen; without her sympathy and support I would
probably not have finished this thesis.

iv

Contents

1 Introduction 1
1.1 Reactive Safety Critical Embedded Systems . 1
1.2 Model Based Development . 2
1.3 Formal Verification . 3
1.4 Organization of this Thesis . 5

2 Development Process 7
2.1 Model Based Development Process . 9
2.2 The V-Model . 11
2.3 Placement of STVE-Techniques in the Model Based Development Process 15

3 Using Statemate 19
3.1 Statemate . 19
3.2 Execution of Statemate Models . 25
3.3 Case Study: Radio-based Signaling System . 29

4 Model Checking 43
4.1 Synchronous Transition Systems . 44
4.2 Kripke-Structures . 46
4.3 CTL Model Checking . 47
4.4 Fairness . 49
4.5 Symbolic Model Checking . 50
4.6 LTL Model Checking . 52
4.7 Invariance Checking . 54
4.8 Verification using Synchronous Observers . 54
4.9 Bounded Model Checking using Satisfiability Checking (BMC) 55
4.10 Abstraction . 57
4.11 Verification Tools integrated with STVE . 58

5 System Representation for Formal Verification 59
5.1 A Compositional Semantics for Statemate Models 59
5.2 Compositional Synchronous Transition Systems . 66
5.3 Real-Time Aspects for the Verification of Statemate Models 69
5.4 System Representation for Formal Verification . 72

6 Requirement Capturing for Open Embedded System 87
6.1 Robustness Analysis and Formal Debugging . 89
6.2 Certification Techniques . 96

v

Contents

6.3 Timed Symbolic Automata (TSA) . 98
6.3.1 Timed Symbolic Automata . 104
6.3.2 Verification using Fair Synchronous TSA-Observers 111
6.3.3 Partially Ordered TSA . 120
6.3.4 Global Constrainedness . 121
6.3.5 Non-Failure Acceptance . 132
6.3.6 POTSA with Activation Control (POTSAAC) 133
6.3.7 Observer Generation for POTSAAC . 137
6.3.8 Related Work . 143

6.4 Observer Pattern . 144
6.4.1 Related Work . 149

6.5 Symbolic Timing Diagrams (STDx) . 150
6.5.1 Diagrams . 152
6.5.2 Building STDx-specifications from Diagrams and Declarations 158
6.5.3 Preparation of STDx-Specifications for Application of Unwinding 164
6.5.4 Unwinding of Symbolic Timing Diagrams . 169
6.5.5 Related Work . 187

7 Verification Techniques for Complex Embedded Systems 191
7.1 Structure of the Statemate Verification Environment 191
7.2 Optimizations and Abstractions in the Verification of Statemate Models 195
7.3 Compositional Verification . 201
7.4 Extending Verification to Complete Systems . 209
7.5 Compositional Techniques - Related Work . 218

8 Application of Verification Techniques - Experiences and Results 227
8.1 Application of Robustness Analyses and Formal Debugging 227

8.1.1 A Synchronous Variant of the Radio-based Signaling System 228
8.1.2 Stabilization . 229
8.1.3 Robustness Checks . 232
8.1.4 Summary of the Application of Analyses . 237
8.1.5 Application of Formal Debugging . 238
8.1.6 Summary of the Application of Formal Debugging 245

8.2 Application of Verification using Observer Pattern 246
8.2.1 Summary of Application of Observer Pattern Verification 251

8.3 Application of Verification using Symbolic Timing Diagrams 251
8.3.1 Component Proof for ACTIVATE_CROSSING_CTRL 252
8.3.2 Compositional Verification of CROSSING . 256
8.3.3 Compositional Verification of SYSTEM . 274
8.3.4 Summary of the Application of STDx Verification 290

9 Conclusion and Outlook 293
9.1 Outlook . 294

Bibliography 297

vi

1 Introduction

1.1 Reactive Safety Critical Embedded Systems

Electronic control systems have become an essential part of our every day life. Digital electronic
control devices are utilized in vehicle control, communication systems, industrial process automa-
tion, household appliances and in various other fields of application. In many cases, the user of
a device does not even know of its control units. Such systems, which use a computer to per-
form a specific function, but are neither used nor perceived as a computer, are generally known as
embedded systems.

In earlier times embedded control systems were mainly applied to situation analysis - e.g. speed-
display - or situation assessment - e.g. warning systems. Enabled by the increase of efficiency of
modern electronic controls, nowadays embedded systems take over also execution of actions (e.g.
drive by wire) or even active control in many cases (e.g. autopilot). The more these applications
take over active control the more they become safety or mission critical.

Sensors and actuators form the environment of these systems. Embedded systems are required
to continuously interact with their environment at the speed of the environment. In contrast to
normal programs, which are invoked with some parameters, prompt for inputs to be processed and
terminate after their computations, embedded systems are expected not to terminate and to always
react to external stimuli. This is why these systems are called reactive. Events to be noticed and
processed by the embedded system may arise unpredictably at any state of operation. Quite often
stringent timing constraints have to be satisfied for reactions.

Incorrect behavior or failures of safety critical systems may endanger human lifes or can lead
to severe environmental pollution. For example, a failure of a car’s brakes control system may
have catastrophic consequences. Embedded systems are often used in such life critical application
areas, where reliability and safety play an important role - and where the user does not perceive
the requested function to be performed by a computer.

The development of embedded control systems takes a growing time portion of the overall devel-
opment time and is a price factor of increasing importance in safety critical application domains. For
example, up to 80 embedded controllers are utilized in a high class automobile and about 25-30% of
the overall development costs are spent for their development [Bec99]. Among them are ABS (Au-
tomatic Brakes System), ESP (Electronic Stabilization Program), Central Locking Systems. Many
embedded control systems - as for example a Central Locking System - seem not to be safety critical
at first glance. But, in order not to endanger the inmates of the car it must be guaranteed that the
system releases the door locks in case of an accident under all circumstances. Analogical important
requirements have to be fulfilled in many application areas for embedded control systems.

Independent of the amount of embedded control systems also the complexity of their functionality
still increases. While earlier applications, such as a speed-display, had a rather straightforward
realization, modern embedded control systems often control a wide range of functions, as for example

1

1 Introduction

an autopilot.
Meeting the safety requirements is a major aspect in the development process of complex reactive

safety critical embedded systems. It depends on the criticality of the system under development
(SUD) how much effort needs to be spent for the validation and verification of safety critical prop-
erties during the development process. Establishing evidence for meeting the requirements not only
for the final product, but also for each development activity, avoids deep iteration cycles or, worst
case, a complete failure of the development.

Taking these risks into account, many development process regulations elaborate on strategies
aimed at avoidance or at least earlier detection of development flaws.

1.2 Model Based Development

The increasing complexity of computer-controlled devices, combined with tightening development
deadlines, force the developers of embedded system products to change the development process.
Concept-to-code solutions are increasingly used to integrate the analysis, design, implementation
and testing phases of embedded systems design. Modeling instead of coding is an attractive al-
ternative to conventional development processes, in which design errors and flaws can often only
be revealed by intensive testing at the end of development. In particular, inconsistencies in only
textual specifications are a severe source of errors, which can become very expensive or lead to a
complete failure of development. By enabling programmers to build applications in an iterative
manner, linking every facet of the design process, product behavior can be completely validated up
front, before anything is built.

Modeling techniques are used to capture and structure requirements of a system. The approaches
vary in detail between different projects and different CASE tools employed in the projects. How-
ever there are some common principles. Their goal is to generate a well organized description of
the system to be built. System modeling approaches use executable models containing additional
information within the model structure, and simulation techniques for the presentation and analysis
of concepts.

Embedded designs can be optimized using such models in a variety of ways. The interaction
of the system with its environment can be captured using graphical formalisms. Functional de-
composition into sub-components and their communication can be modeled in an iterative manner.
Critical functionality can be explored in a depth first analysis, first modeling the critical parts of the
system, while non-critical parts are left as abstract as possible. Requirements can be captured at an
appropriate abstract level and analyzed using simulation capabilities of the respective CASE-tool.
The overall system architecture can be derived in an iterative process exploring a number of design
alternatives.

Statemate, distributed by I-Logix, Inc., USA, is a graphical design, simulation and prototyping
tool for the rapid development of complex embedded systems. Requirements and specifications are
captured using graphical formalisms. Models can be simulated, allowing the developer to discover
errors in the requirements and specifications early in the process when they are inexpensive to
correct. The simulation tool is also likely to be used by the software engineers as a simple debugging
tool. It supports the users by allowing detailed control over the execution and current status of the
model. Graphic panels are often used at this stage to help understand the overall execution of a
model.

“Using this graphical language, engineers can analyze and simulate the graphical model

2

1.3 Formal Verification

to show customers how a system is expected to behave and to actually test that it
functions correctly. This validation of system definition and operation identifies defects
early in the design process, eliminating problems before they become expensive, difficult
or even impossible to detect.” [LIS02]

In general, executable specifications provide the basis for model validation through animated sim-
ulation. The system under development is functionally validated with reference to the predefined
requirements. The dynamic interaction of system components is simulated for virtual system inte-
gration testing. Such validation phases lead to the production of iterative prototypes. They can be
employed to evolve the model in the design phase toward a definition of its software-architecture,
while automatic code-generation tools can speed up the implementation phase. Test-vectors gener-
ated from executions of the model can be kept for application with later software products of the
design process.

The models are used by engineers to communicate the behavior of the model to customers and
domain experts, and to discuss whether the modeled behavior is an appropriate solution for certain
requirements. This communication with the company’s external suppliers or customers allows the
engineers to "test drive" specifications before writing any software, thereby eliminating ambiguities
common with textual specifications, resulting in a higher product quality.

Statemate’s integrated tool for checking consistency is used by the engineers to expose badly
formed models before time is wasted in simulation. But Statemate models may show other
undesired effects which can not be detected by static analysis performed by the check tool, because
detecting these effects requires complex dynamic analyses. Among these modeling artefacts are,
for example, conflicting transition-triggers and hazardous data accesses. Statemate explicitly
supports non-deterministic choice of conflicting graphical transitions. While non-determinism might
be acceptable in an abstract modeling approach, a reference model for later phases of system
development should not contain such non-determinism, neither between graphical transitions nor
between data accesses in concurrent parts of the model.

1.3 Formal Verification

In order to ensure correctness w.r.t. such undesired artefacts formal verification techniques can
be employed. Formal verification aims at providing a mathematical proof of correctness w.r.t. a
requirement specification for all possible sequences of input stimuli. Within the field of formal
verification, there are two major approaches: theorem proving and model checking. A theorem
prover supports the user by offering and applying tactics and rules to a proof-obligation in order
to establish a mathematical proof. While theorem proving is in general an interactive technique,
model checking is a fully automatic approach. A model checker determines if the model satisfies
a given requirement under all circumstances. In case of a violation, a witness is provided by the
model checker, showing the sequence of input stimuli and reactions of the model which led to the
violation of the requirement specification.

Even though model checking is a fully automatic verification procedure, it requires a formal model
as input as well as an unambiguous formal specification, usually written in a textual temporal logic
formula. In general, formalization of requirements is difficult and requires expert knowledge. It is
thus instrumental to tune handling of formal verification tools to easy-to-use applications, which
can be utilized by engineers, requiring as little expert knowledge as possible.

3

1 Introduction

The Statemate verification environment (STVE) presented in this work offers robustness anal-
yses for transition non-determinism, read/write and write/write hazards as well as for range-
violations in variable assignments. For each kind of conflict a specific analysis can be invoked.
As result of a structural model analysis, potential conflicts are offered to the user for selection. For
each selection, the verification tools searches the entire state space of the model for a computation
sequence reaching a situation in which the conflict is observed. If any such computation sequence
exists, a simulation control program is created which can be loaded and executed with the State-

mate simulator to drive a simulation to the particular situation in the model. Alternatively the
computation sequence can be visualized as a diagram showing the valuations of all data-items step-
by-step. Since the verification environment is tightly integrated with the Statemate tool, such
analyses can be performed by developers already during development. Application of the offered
robustness checks and elimination of undesired artefacts increases the quality of the model, yielding
a reference model for the development process.

Different ’formal debugging’ techniques are offered by the verification framework for dynamic
exploration of the model under construction. Developers can perform checks in order to search
for computations that take selected transitions. Checks are offered to determine whether single
selected basic states or combinations of states are reachable. Most generally, developers can check
whether there exist computations reaching configurations, which are specified by arbitrary user
defined expressions. Again, witnesses for such computations can be simulated with the Statemate

simulator. Thus, developers are supported in detecting dead code or debugging their models using
fully automated formal techniques. Robustness checks and debugging techniques are applicable at
every decomposition level of models, allowing developers to focus on sub-components even if models
have grown to a complexity which is not easy to handle by formal methods.

Beyond the robustness and debugging checks the verification environment offers an easy to use
verification support for the verification of functional requirements. In order to formalize require-
ments the developer can instantiate specifications from a set of predefined specification patterns.
For example, a pattern for ’Q happens at most X steps after occurrence of P’ can be selected, and
model specific expressions be mapped to the parameters Q,P and X. The set of predefined patterns
covers a wide range of often used specification schemes. Patterns can be instantiated as commit-
ments as well as assumptions about the environment of the model. Critical functional requirements
such as safety, timing or mutual exclusion properties can be verified during the development itera-
tion cycle, without requiring expert knowledge. Of course, pattern-based assumptions can also be
used for ’formal debugging’ and in robustness analyses.

Robustness analyses, formal debugging as well as pattern-based verification are optimized in the
STVE for debugging and on-the-fly verification of less complicated properties, hiding away the
details of the underlying mathematical machinery. All techniques are integrated with a graphical
user interface, that allows to apply the various checks by a simple push-button handling.

For the verification of more complex system specific properties, a graphical specification for-
malism is offered by the verification environment. Symbolic Timing Diagrams (STDx) is a visual
specification language allowing the user to specify temporal requirements in an intuitive graphical
formalism. Symbolic waveforms are used to specify sequences of valuations for variables of a model.
Temporal relations of events, i.e. changes of valuations, can be specified by drawing arrows between
them. These arrows can be annotated with qualitative or quantitative timing constraints. Diagrams
can be used to specify required behavior (commitments) as well as to express assumptions about
the environment. From the individual diagrams, specifications can be built by grouping commit-
ment diagrams with assumption diagrams. We feel that using a graphical specification formalism is

4

1.4 Organization of this Thesis

more intuitive than formalizing specifications in temporal logic formulae. Like the other techniques,
specification verification using STDx is integrated with a graphical user interface that hides away
the details of controlling the formal verification tools.

A proof-manager offers proof obligation construction and execution of verification tasks at every
decomposition level of the model. The proof-manager keeps track of the already verified require-
ments and supports compositional verification and hierarchical reasoning with respect to the system
structure. Validity of a top-level requirement of a system can be conluded from verified requirements
of its components. Thus, properties of distributed protocols can be concluded from verification re-
sults for the contribution of sub-components involved in the protocol.

1.4 Organization of this Thesis

Chapters 2,3,4 and 5 describe fundamentals. Chapter 2 gives an overview of some prominent devel-
opment process regulations and highlights the role of formal models in the development of safety-
critical embedded systems. In particular the relationship between model based development and
the German V-model standard [ESt97] and the placement of formal verification in this relationship
are discussed.

Basic features and capabilities of the CASE-tool Statemate are described in chapter 3, aspects
regarding the execution of models are discussed in section 3.2. Statemate supports two different
time models for simulation, a step-oriented time model and a so-called asynchronous execution
semantics, in which a model reacts to stimuli with series of steps unless it stabilizes and no further
reaction is possible without new external stimuli. Simulation time only passes between consecutive
stabilizations, even though internal reactions adhere strictly to the sequentiality of steps.

Section 3.3 explains the case-study of a radio-based signaling system, which serves as running
example throughout this thesis. This case-study models the interaction of a train with level crossing
via a radio link. The case-study will also be referred to in chapter 8, where experiences and results
of regarding application of the presented verification techniques are discussed.

An overview of automatic formal verification techniques is provided by chapter 4.
In chapter 5, the representation of Statemate models for verification is described. The chapter

starts with short description of the compositional semantics of Statemate models as presented by
Damm et al. in [DJHP97]. The description aims at summarizing the compositional semantics as far
as possible w.r.t. presentation of the concepts of compositional verification (presented in chapter
7). In section 5.3, we describe the interpretation of time, which forms the basis of our treatment of
time in the verification of models of embedded systems. We focus on the asynchronous execution
semantics, for which steps as well as simulation time have to be regarded. Section 5.4 explains (1)
the representation of the decomposed view to the behavioral descriptions of sub-components, and
(2) the management of specification views to these sub-components.

Requirement capturing for embedded systems is the focus of chapter 6. The chapter contains a
description of robustness analyses techniques as well as a description of formal debugging techniques.
As a common basis of pattern verification as well as for verification using Symbolic Timing Diagrams
(STDx) specifications, section 6.3 presents a formalization of Timed Symbolic Automata (TSA).
Basically, TSA are automata on infinite words which are not only triggered by observation of
particular events, but take also timing aspects into account. In particular, TSA are capable of
quantitative treatment of both steps and simulation time for the asynchronous execution semantics
of Statemate models. We show in this section that for a particular sub-class of TSA, the acceptance

5

1 Introduction

criterion reduces to a simple invariant. The section provides also a description of observer module
generation from TSA for application in verification. Observers are specification automata, which
are combined with the model to be verified in a parallel composition. When executing the combined
model, the observer tracks the computations of the model and judges whether the observed behavior
complies with the specification. A specialized variant of TSA - pre-defined specification pattern -
is briefly presented in section 6.4. Chapter 6 concludes with the presentation of a formal TSA-
semantics for an extended variant of STDx, which is capable of quantitative specifications w.r.t.
both steps and simulation time according to Statemate’s asynchronous execution semantics.

In chapter 7, we overview the optimizations and abstractions, which can be applied within the
verification environment. In section 7.3 rules for compositional verification using observers - obtained
from TSA - are presented. Section 7.4 describes the integration of compositional verification with
the Statemate verification environment. Dependencies between tautology proofs and the proofs for
sub-component specifications contributing to compositional proof are managed by a proof-manager.
A proof-manager is presented, which keeps track of the validity of proofs w.r.t. changes applied
to the model or to the specifications. Reasoning rules for invalidation or revalidation of proofs
according to the proof hierarchy and to changes in sub-component models or specifications are
captured by a proof-graph.

Experiences and results regarding the application of the presented verification techniques are
documented in 8. Chapter 9 concludes this work with a summary and identification of directions
for future work.

6

2 Development Process

Several widely accepted standards and quasi-standards were established by national and interna-
tional organizations regulating the development process for safety critical systems in the differ-
ent application domains. Among them are the German V-Model [ESt97] by the “Bundesamt für
Wehrbeschaffung”, the CENELEC EN 50126,EN 50128 and EN 50129 [fES97] by the “Comite Eu-
ropeen de Normalisation Electrotechnique”, DO-178B [RTC92] by the “Radio Technical Commission
for Aeronautics” (RTCA), ISO 9001 and ISO 9126 by the “International Standardization Organiza-
tion”.

DO-178B

RTCA is a private, non-profit organization that addresses requirements and technical concepts for
aviation. The products of RTCA are recommended standards and guidance documents that focus
on the application of electronics technology to implement new or modified concepts and to satisfy
related requirements. The DO-178B standard and its predecessor DO-178A form the basis for
the certification of many on-board systems involving software, especially in non-military projects
[BPR98].

The standard defines software levels according to so-called “failure condition categories”:
A. Catastrophic
B. Hazardous/Severe-Major
C. Major
D. Minor
E. No Effect
The software levels are based on the “contribution of software to potential failure conditions as

determined by the system safety assessment process. The software level implies that the level of
effort required to show compliance with certification requirements varies with the failure condition
category” [RTC92]. The main focus of DO-178B is the regulation of the quality assessment process
with respect to the software levels. On the basis of a risk evaluation an adequate validation and
verification strategy is determined. If one component fulfills a very critical task this component is
to be tested most thoroughly (“hardest/most critical first”). [fEA01, 22]

DO-178B identifies and describes process objectives for the different phases of the overall process
and provides guidelines w.r.t. to the different software levels. These guidelines are in the form of:

• Objectives for software life-cycle processes.

• Descriptions of activities and design considerations for achieving those objectives.

• Descriptions of the evidence that indicate that the objectives have been satisfied.

7

2 Development Process

The standard recommends various activities already in the early phases of software planning and
development. In order to ensure that safety related requirements are properly implemented through-
out the software life-cycle, already the sofware planning “should choose the methods and tools to
achieve the error avoidance or detection necessary to satisfy the system safety objectives” [RTC92].

The standard requires that each process produces evidence that its outputs can be traced to their
activity and inputs, showing the degree of independence of the activity, the environment, and the
methods to be used.

Moreover, the standard discusses the characteristics, form, configuration management controls,
and the content of the software life-cycle data.

The characteristics of the software life-cycle data are:
Unambiguous: Information is unambiguous if it is written in terms which only allow a single

interpretation, aided if necessary by a definition.
Complete: Information is complete when it includes necessary, relevant requirements and/or

descriptive material, responses are defined for the range of valid input data, figures used are labeled,
and terms and units of measure are defined.

Verifiable: Information is verifiable if it can be checked for correctness by a person or tool.
Consistent: Information is consistent if there are no conflicts within it.
Modifiable: Information is modifiable if it is structured and has a style such that changes can be

made completely, consistently, and correctly while retaining the structure.
Traceable: Information is traceable if the origin of its components can be determined.

EN5012x

The CENELEC EN5012x standards focus on the field of railway applications. In particular EN50126
regulates the specification and demonstration of Reliability, Availability, Maintainability and Safety,
and hence addresses system issues on the widest scale. EN50129 mainly regards the approval of
electronic systems in railway application, and hence has a focus on physical safety-related aspects of
electronic systems. The third part in the group of related standards EN50128 regulates the software
development process for railway applications:

“The key concept of this European Norm is that of levels of software safety integrity.
The more dangerous the consequences of a software failure, the higher the software safety
integrity level will be.

This European Standard has identified techniques and measures for 5 levels of software
safety integrity where 0 is the minimum level and 4 the highest level. Four of these
levels, 1 to 4, refer to safety-related software, whilst level 0 refers to non safety-related
software.” [fES97, 4]

The standard reflects the increasing need for advanced validation techniques in the development of
train system applications, which increasingly involve both complex and safety critical control units.
Besides quality assessment requirements the standard also regulates the development process itself.
It highly recommends to develop applications with safety critical integrity levels using formal meth-
ods, in particular supporting various forms of analysis to check for different correctness properties
[fES97, 50128 Annex A].

The software development life-cycle described by standard EN50128 is similar to the German
V-Model, which will be considered in the following.

8

2.1 Model Based Development Process

2.1 Model Based Development Process

The construction of reliable embedded systems can be significantly improved using a model-based
and tool supported development process. Research results suggest that such a process contributes
significantly to increase the quality of the developed product as well as to better efficiency of the
development itself. In [Jon91] it has been shown that:

• more than 50 % of serious errors are made during design (25 % during implementation); about
30 % of medium class errors are made during design (30 % during implementation)

• analytical techniques performed on early-phase description of the product (e.g., structured
approaches, design reviews) require generally at least less than 50 % of the effort in both error
detection and correction needed for later-phase techniques (e.g., integration test, field test)

• those analytical techniques of the early phases are at least twice as effective to detect errors
of the early phases than those later-phase techniques [SRS+03].

Modern CASE-tools (Computer Aided Software Engineering) allow the developer to easily create
models representing requirements of the system. Modeling can be very early applied in the devel-
opment process in order to evaluate conceptual aspects:

Hanxleden et al. [vHBK98] describe the model based development of a bus based airbag system:

“The starting point is a concept of the product, which may include a set of require-
ments, market studies, rudimentary algorithms, legacy systems to build on, or hardware
choices. The concept will exist in a variety of forms, such as verbal specifications, pre-
sentation materials, software, or only people’s ideas and imaginations. Once the concept
has reached a certain level of detail-enough that people can draw state transition dia-
grams to explain certain behaviors-it should be translated into a system model. This
model contains the system’s hardware and software components, such as the central
control unit and peripheral units in the air bag example. It also contains a model of the
environment, such as energy sources, sensors and actuators, or connecting buses. The
model should be phrased in a precise, unambiguous syntax. “

During the different phases of the development process, different aspects of the system under de-
velopment are addressed (for the domain of embedded systems, e.g., overall functionality, time and
resource limitation, partitioning and deployment, scheduling). Specific models can be built for the
different phases of the development process. Since models of embedded systems, often develop from
monolithic single - functionality models to distributed, interactive multi-functionality networks, a
central aspect of these models is treatment of interaction and communication as well as time-related
aspects.

Modeling can be applied - in terms of the V-Model - in the system requirement analysis phase,
in system design, for HW/SW-requirements analysis, during the architectural and partly in the
detailed design phase. (Formal) verification techniques can be applied to verify that a formal
specification of one phase is a refinement of the preceding phase.

The models can be handed to the customer and validated using simulation. The basis of com-
munication between development teams is not only a textual requirement definition but also an
executable (graphical) specification formalizing the requirements.

9

2 Development Process

Furthermore, models must support specific aspects needed for the application domain. By sup-
porting domain and application specific modeling elements, model information about the system
under development becomes available, leading to stronger analysis and generation techniques (e.g,
in the domain of embedded systems, checking the worst case time bounds of a task, or generating
a bus schedule from the communication description of component models).

Models should contain only those aspects needed to support the development phase they are
applied to, and this way reduce the complexity of descriptions as much as possible. Furthermore
modeling helps to avoid producing faulty or inconsistent descriptions [SRS+03].

Regarding the focus on certain view points of the system under construction a distinction into
conceptual and physical models can be made:

conceptual models are used to describe functional or behavioral concepts in an abstract manner, for
example using statecharts. They focus on what a system should do and how the system or parts
of it should behave. Identified sub-functions are modeled as components and relations and
interactions between these parts are described. In essence, conceptual models do not expose
implementation details. Nonetheless, they can be used to explore many interesting aspects of
the overall behavior, such as safety or causality of in and output behaviors, making analysis
and generation support available even at early stages of the development process. Conceptual
models are typically built in requirement analysis and overall system design phases.

physical models consider implementation details, such as for example hardware/software partition-
ing, physical timing, communication bandwidth or power-consumption of hardware parts.
Physical models are employed mainly in later phases of the development process, when con-
crete implementation details need to be considered.

One major benefit of a model based development process is, that integration of the overall system
can be virtually applied to the system model in the decomposition phases. The proper interaction
of sub-systems can be validated using virtual integration. System-level requirements can be verified
using compositional verification techniques. Virtual integration can avoid deep iteration cycles and
thus help to reduce overall development costs. “Numerous studies have shown that correcting an
error during integration costs over 10 to 1000 times more than correcting it at specification time”
[iL00].

“Virtual prototyping will not offset classical emulation or prototyping techniques; these still have
their place in the development cycle, but rather complement them as an early equivalent in the
design cycle and promote an early start of the software development cycle, reducing product risk
and Time To Market. It can be successfully employed as first verification point of the hardware-
software integration and the system as a whole” [Tho02].

EN 50128 highly recommends modeling and formal techniques for the development of system
with higher safety integrity levels [fES97, Annex 1].

Without a model based development process, embedded software is often still coded by hand
following textual descriptions of the desired product attributes. In this case, the product is validated
at a very late stage in the design process, often resulting in expensive post-implementation surprises,
as there are performance and safety obstacles and delays in release schedules. Software testing may
take 30 percent to 60 percent of development time [DC01].

10

2.2 The V-Model

2.2 The V-Model

The standard V-Model (EStdIt - General Directive 250/251/252) by the “Bundesamt für Wehrbeschaf-
fung” forms a guideline, how to develop software compliant to the ISO 900x family of standards
(especially ISO 9001). Therefore, the V-Model describes the development process from a functional
point of view. It does not describe any special organizational models because it shall be used in
different organizations and companies. The V-Model is a generic process description, which has
to be adapted to project-specific processes. The standard regulates all activities and products and
the logical interdependencies between activities and products during the development process. The
development process is improved by establishing quality assurance activities and allocating meth-
ods to steps in the design process. Identification of typical phases and intermediate products of the
process form the basis of traceability which is seen as a major pre-requisite for process improvement.

We will not discuss similarities and differences of the mentioned standards in detail. The generic
V-Model has the benefit of being applicable to almost all application areas and being intuitively un-
derstandable. Because of its process-based view point, we will consider the V-Model in more detail.
The CENELEC standard refines the generic process description of the V-Model with respect to the
Safety Integrity Levels1. For the development of safety critical embedded systems a combination of
the process-based view of the V-Model with the strictness of the CENELEC standards seems to be
the best fit.

The V-Model identifies four roles in the development process. Each of this roles has its clearly
defined responsibilities:

Project Management . The project management is responsible for the overall project-planning,
definition of the software development environment, initialization of the other sub-models, definition
of milestones, e.t.c.

Software Development. Software developers are not only responsible for developing the pure soft-
ware parts of the model. Quality assessment and assurance are part of the development process.
Thus, software developers are responsible for producing process data of various kinds (e.g. docu-
mentation of software and process, quality assessment documents as well as test cases for later use
etc.).

Configuration Management . Configuration management is in charge of providing the development
tools and environment. Version control for all products is a key responsibility of the configuration
management.

Quality Assurance. The role of quality assurance is very important in the V-Model. Quality assur-
ance has not only to assess the quality of products, but also to define requirements and constructive
measures in advance as inputs to the sub-model of software development.

The collaboration of these four roles is described in detail for each activity of the development
process in [ESt97].

Product quality can be assured by applying analytical quality assurance measures as well as by
applying constructive quality measures. Quality assurance defines the quality requirements accord-
ing to the plan data defined by the project management. If the quality assurance measures are
constructive, as for example the use of specific design tools or certified compilers, they take place in
sub-model Software Development. Analytical measures can also be applied already in early phases
during development. Typical examples are resource monitoring systems, simulation and debug-
ging. Software developers and configuration management have to agree on a specific configuration

1without directly referring to it

11

2 Development Process

structure, always reflecting the actual state of the development progress. Version control as well as
change management are under control of configuration management, which provides - according to
milestones - certain configurations of the product to quality assurance for quality assessment.

Normally, system development is handled in upgrades. An entire System is planned, but only
realized in parts while the functionality grows continually. A first system version is made available
(e.g. handed to the user) as soon as possible; this system version should include the basic func-
tionality already meeting the basic quality requirements. Later versions of the system essentially
expand this functionality.

This step-by-step approach is referred to as “incremental development”. Within this incremental
process products may take on the following states:

“planned” : The product is being planned. This is the initial state of all products.

“b.proc.” : The product is being processed. It is either in the “private” development area of the
developer or under control of the developer in the product library

“submitted“ : From the developer’s point of view the product is completed and subject to config-
uration management. It is subjected to quality assurance assessment. In case of the product
being rejected by quality assurance, it is returned to the state “b.proc.” or else it is considered
as “accepted”. Beginning with state “submitted”, the developer can only change the product
by updating its version number.

“accepted” : The product has being checked and released by quality assurance; it can only be
modified if the version number is updated.

planned b.proc. submitted accepted

Figure 2.1: V-Model: States of a Product

The minimal state transitions of a product are shown in figure 2.1

The life-cycle Model

The standard is named after its life-cycle model, which looks like a large V. Figure 2.2 shows a rough
sketch of the life-cycle model. The life-cycle model can be iteratively applied, either traversing all
phases iteratively or looping in only a subset of the defined phases until the prerequisites for the
following phase is fulfilled.

A project starts at the upper left position in the left leg of the V with system requirement anal-
ysis. In this phase the overall (and user-level) requirements are collected and analyzed. Technical,
organizational and other conditions of the process itself, as well as quality requirements regarding

12

2.2 The V-Model

the product are defined. The system is structured from a user-level point of view and a detailed
threat and risk analysis takes place in this phase. The central functionality must be clearly defined
and described. Depending on the criticality of the system, quality criteria to be met by the process
are defined. The results of this phase form the input for the following system design phase.

System

System Design

HW/SW

Architectural

Implementation

SW-

 Integration

 Analysis
Requirements

 Requirements

 Design

 Design
Detailed

 Integration

System

Transition
to

Utilization

D
ecom

position
C

om
po

si
tio

n
Figure 2.2: V-Model: schematic life-cycle model

Based on the requirements stipulated during system requirement analysis, a solution proposal
is generated for a possible technical system structure. This proposal is evaluated and refined and
technical requirements are derived from the requirements identified and defined in the previous
phase. The proposed system architecture defines interfaces of the system to the environment and
between proposed sub-systems. Also in this phase the specification of the system integration plan
is set up, which describes interfaces and functionality of the sub-systems, defines quality criteria
and allocates resources. The system architecture is assessed regarding the criticality of the system
and its components. Safety integrity levels are assigned to critical components and to the system.
The standard recommends to keep the number of interfaces between critical parts and non-critical
parts of the system as small as possible. The feasibility of the proposed system architecture is
investigated.

An allocation of the requirements defined in the system requirement analysis phase to elements
of the proposed system architecture is performed. The standard demands that the allocation of
requirements and marginal conditions to the elements of the technical architecture must fulfill the
following criteria:

• Every requirement must be allocated to at least one element of the technical archi-
tecture, ideally exactly to one element.
• Each requirement is allocated to the lowest element in the refinement levels which

makes it possible to meet the requirement completely. Normally, the total of the re-
quirements have to be allocated to various refinement levels.
• Provided that a requirement is of general importance to elements, it must be con-

sidered within the scope of the allocation which individual architecture elements this
requirement really has to fulfill.

13

2 Development Process

• The allocation must be realized in such a manner that it will be possible to prove
the fulfillment of the requirement by checking the corresponding architecture element
[ESt97, 4-18].

The results of the system design phase are inputs to the next phase, the HW/SW requirements
analysis. Dependent on the concrete requirements of the project, a partitioning into hardware and
software components of the system is determined. Hardware parts of the system are not considered
in the V-Model in detail. Technical requirements for the hardware and software parts of the system
are derived from the requirements established in the system design phase and from constraints with
respect to the partitioning.

Next follows the architectural design phase. For the software parts of the system, the decompo-
sition into components, processes, modules, and databases is performed. Performance and security
considerations play an important role in this phase. Internal and external software interface descrip-
tions and the integration plan are refined according to the requirements identified in this phase.

Before starting the implementation, the process now enters the detailed design phase. The oper-
ational information is updated with design related details. The software components are specified
down to the programming specification level, with regard to their environments, their realization,
data handling, error- and exception handling, etc. Concrete resources and timing requirements are
analyzed and determined. Again the integration plan is refined and quality criteria are defined to
be met when putting the components together later in the process.

With respect to the derived specifications and requirements now the software components are
implemented.

After the implementation phase, the software components have to be collected and to be put
together to modules following the integration plan as defined in the architectural and detailed design
phases.

Quality assessment as defined and prepared in the decomposition phases is performed during
the software integration phase. The integration strategy can follow numerous different strategies:
bottom up or top down or even a sandwich strategy. Especially for safety critical systems, it might
be useful to early integrate critical and important functions. Missing parts can be represented by
dummy implementations. Substructures can be iteratively replaced by improved versions. Simulated
or emulated parts can be used instead of concrete implementations. The integration strategy should
be defined already in the decomposition leg of the V.

At a certain state of module integration the system integration phase can be started. Again this
phase can follow different strategies, depending on the integration plan defined in the corresponding
decomposition phases.

With the first integrated version of the overall system the transition to utilization phase can be
entered. It depends on the concrete project how such an possibly incomplete prototype can be used
in a simulated or real environment.

While ascending the composition leg of the V, the system under development is assessed with re-
spect to the integration plan and the criteria defined in the decomposition leg of the V. As described
before, when moving down the V a representation is generated according to the requirements derived
in the phase before. Cross-Checks (tests) are defined for later use in the integration phases. The
generated representation is assessed with respect to the requirements regarding the product and the
process. Figure 2.3 shows one refinement step in detail. Evidence of meeting requirements is estab-
lished by validation and verification, often referred as V&V activities. Validation and verification
aim at answering different questions:

14

2.3 Placement of STVE-Techniques in the Model Based Development Process

Figure 2.3: V-Model: Performing one Refinement Step

Validation : “Do we build the right product?”

Verification : “Do we build the product right?” [fEA01]

For validation of a product, the system developed so far is assessed with regard to functional
(customer-) requirements. The primary focus of validation is to show that the expectation of the
user is satisfied by the product. In contrast to validation, verification shows if a product meets
the requirements specified during previous activities and does not contain undesired functionality.
Verification focuses on non-functional requirements, such as reliability, safety, performance, etc.
Prominent methods employed for verification are analytical, such as FMEA (Failure Modes and
Effect Analysis), FTA (Fault Tree Analysis), exhaustive testing, reviews, formal verification and
prototype studies. In order to enable successful application of verification techniques, the require-
ment specifications must be unambiguous, consistent, complete and verifiable.

Unambiguity means that there is only a single interpretation of the specification, consistence
means that there are no conflicts between specifications. Completeness denotes the fact, that
all necessary information is included in the specification. The specification is called verifiable if
(a person or) a tool can check the specified system for correctness. Specifications must also be
modifiable, i.e. have structuring and style, which allows to apply changes consistently and correctly
[RTC92].

Informal specifications written in natural language are often ambiguous, it is difficult to guarantee
consistence and completeness. In contrast, formal specifications can be easier assessed with respect
to the above criteria. Since formal specifications follow a clearly defined syntax and semantics,
analysis and assessment of formal specifications can be supported by software tools, such as code-
analyzers, compilers, simulators or formal verification tools.

2.3 Placement of STVE-Techniques in the Model Based
Development Process

Statemate allows the user to formalize requirements by models and thus to detect inconsistencies,
ambiguities or incompleteness of specifications. Due to the simulation capabilities of the Statemate

system, models can be used as executable specifications. The models can be modified or features
can be added without much effort or risk, allowing assessment of the functionality of the designed
system already very early in the development process.

Even though Statemate’s integrated check tool is able to detect many completeness and correct-
ness errors in badly formed models, syntactically correct models may show undesired effects which

15

2 Development Process

can not be detected by the check tool, because finding these effects requires dynamic analyses.
Among these modeling artefacts are conflicting transition-triggers and hazardous data accesses,
which should not occur in reference models for later phases of system development. In view of
the increasing complexity of embedded controllers, simulation is in general not sufficient to ensure
correctness under all circumstances. The pure amount of possible computations is too large to
be entirely covered by simulation. Thus, simulation can expose conflicts in a large model only at
random.

Formal verification can be applied to a model, completing the repertoire of the developers for
examining the dynamic behavior of the modeled system. The Statemate verification environment
(STVE) offers simple, but formal analyses for conflicts that may occur in a model. These robustness
checks cover:

• transition non-determinism (concurrently enabled transitions),

• read/write hazards (a variable is read and written simultaneously)

• write/write hazards (concurrent write accesses to a variable)

• range-violations in variable assignments (a variable is assigned an out-of range value)

For each kind of conflict a specific analysis of the model can be invoked without a need for expert
knowledge regarding formal verification.

For each detected potential conflict, a verification task can be invoked searching the entire state
space of the model for a dynamic occurrence of the conflict. If the potential conflict turns out to
be a real one, a simulation control program is created which can be loaded and executed with the
Statemate simulator to drive a simulation exposing the conflicting situation.

Besides these ’robustness analyses’, different ’formal debugging’ aids are offered by the verification
framework for purposeful dynamic exploration of the model under construction. Formal debugging
can be applied in order to produce simulations

• reaching particular basic states (graphical states)

• reaching configurations of basic states (according to a user selected set of states)

• taking a particular transition (graphical transition)

• In the most general form, developers can check whether there exist computations reaching a
configuration, which has been specified by a user defined expression.

Formal debugging can be applied in order to detect dead code or to produce simulations driving
the model into particular configurations of interest.

Thus, developers are supported in examining models under development using fully automated
formal techniques. Robustness checks and debugging techniques are applicable at every decomposi-
tion level, allowing developers to focus on sub-components even if a model has grown to a complexity
which is not easy to handle by formal methods.

Beyond robustness and formal debugging checks the STVE offers an easy to use verification sup-
port for the verification of functional requirements. In order to express functional requirements
the developer can instantiate specifications from a set of predefined specification patterns by map-
ping the formal parameters of the appropriate patterns to model specific expressions. The set of

16

2.3 Placement of STVE-Techniques in the Model Based Development Process

predefined patterns covers a wide range of frequently used specification schemes, which can be in-
stantiated as requirement as well as for specifying assumptions about the environment of the model.
In contrast to robustness checks and formal debugging, patter-based verification is oriented towards
certification, i.e. the specification is expected to hold for the model.

Critical functional requirements such as safety, timing or mutual exclusion properties can be
verified during the development iteration cycle, without requiring expert knowledge.

Robustness checks, formal debugging and pattern verification can be applied as on-the-fly tech-
niques by developers during the development cycle. In fig. 2.1, this corresponds to state b.proc. By
this means, the techniques described so far can be seen as constructive quality assurance measures,
which help to increase the quality of the developed system already during development. Formal
verification enables the developer to ensure that the model adheres to basic quality criteria before
submitting the models for acceptance. The same techniques can, of course, also be applied as
analytical measure after submission of the model for acceptance to quality assurance.

The expressive power of pattern verification is limited by the extent of the pre-defined pattern
library. For efficiency reasons, pattern are offered only with a limited amount of formal parame-
ters. Hence, only relatively simple requirements can be captured by pattern instances, specifying
a temporal relationship between up to four parameters. In order to gain a deeper insight into the
inter-component communication and for the verification of more complex functional requirements,
the graphical specification formalism Symbolic Timing Diagrams (STDx) can be used to specify
temporal requirements graphically. Like pattern verification, also verification using STDx specifica-
tion is oriented towards a true result (also referred to as certification), i.e. the expectation is that
the specified property holds on the model.

While robustness checks, formal debugging and pattern verification require little knowledge about
formal verification techniques, using STDx is not applicable without expert knowledge. In addition,
formal specification and verification of intricate requirements is complicated and time consuming.
Thus, verification using STDx should be performed at higher levels of model maturity and stability
than during the fast development iteration. This, again corresponds to the iteration cycle (cf. Fig.
2.1) proposed by the V-model: When a development phase is completed and the model is submitted
to quality assurance, more extensive verification may serve as quality criterion for acceptance. The
effort for verification of all requirements is justified by the benefit of getting evidence for meeting
the requirements. Establishing quality assessment by verification using STDx specifications requires
expert knowledge at a critical phase of the development. The submission arc from submitted to
state accepted is triggered by the quality assessment team. Formal techniques enrich the repertoire
of quality assessment methods.

The offered verification techniques can be applied to the entire system model as well as only to
sub-components. This can be used to assess the allocation of requirements to components of the
system according to the regulations by the V-model as cited on page 13.

Formal verification also supports virtual integration. Especially for safety critical systems, crit-
ical and important parts of the system can be modeled first, while missing parts are represented
by dummy implementations. For verification of the already modeled parts of the system, often
assumptions about the environment must be formalized. These assumptions are claims about the
missing parts of the model and can hence, serve as requirement specifications for their realization.

Statemate models serving as executable specifications are life-cycle data in a development pro-
cess. Formal verification as offered by the STVE supports the development team in producing
unambiguous, verifiable, consistent, modifiable, and traceable life-cycle data as required by the
standards.

17

2 Development Process

Formal techniques can be used in a model based development process to create a golden device
that has a fully and rigorously validated specification. This golden device is taken as basis for all
subsequent implementation steps, e.g. for automatic code generation or for successively replacing
the sub-models by code.

18

3 Using Statemate

This chapter gives a short introduction to the design-tool Statemate. In section 3.1 we briefly
describe the main concepts of statecharts, activity-charts and the expression language of Statem-

ate. Section 3.2 brings the simulation capabilities of the tool set into focus and explains the two
different time models regarding which Statemate models can be interpreted by the simulator. In
section 3.3, we present the case study, which will serve as running example throughout this thesis.
The case study will be used to evaluate the concepts and tools presented in the remainder of this
work (cf. chapter 8).

3.1 Statemate

In order to improve both the efficiency of the development process and the quality of the product,
model based development processes have been established by many companies developing safety
critical embedded systems.

“Modeling is a proven and well-accepted engineering technique. We build models to communicate
the desired structure and behavior of our system clearly, and unambiguously. We build models to
improve our understanding of the system under consideration, uncovering errors and defects well
before anything has been built. Building models allows us to try out new ideas and concepts with
a minimum of cost and a minimum of risk. We build models to manage risk” [LIS02].

In a variety of companies Statemate is employed as CASE tool (Computer Aided Software
Engineering).

The Statemate system is commercial tool-set, built around the visual language of statecharts
[Har87]. It has been under development and extension since early 1984 [HLN+90]. Founded in 1987,
i-Logix has maintained and extended the tool-set since then. In 1996 the tool-set was re-introduced
as Statemate magnum1 with many advanced modeling features, providing powerful tools for
development, analysis and documentation of complex reactive systems. Statemate enables engi-
neers to rapidly design and validate complex system level products through a combination of graphic
modeling, simulation, code generation and documentation generation. As a result, Statemate has
emerged as a standard for high-end embedded systems development within the medical, automotive,
aerospace, and defense industries2.

1We will in the following use the shorter name ’Statemate’ instead of always referring to ’Statemate magnum’.
2Among the companies employing Statemate in their development process are such prominent companies as, for

example:

• Aerospatiale, Boeing, BAE Systems, EADS, and Lockheed Martin in the avionics-domain,

• BMW, DaimlerChrysler, Denso, Nissan, Renault, Volkswagen, and Volvo in the automotive domain,

• CISCO, Motorola, Nokia, and Siemens Telecom in the telecommunications domain [iL04]

An up-to-date list of customers using Statemate can be found at
http://www.ilogix.com.

19

http://www.ilogix.com

3 Using Statemate

General Concepts

The offered high-level modeling concepts qualify Statemate particularly for usage in the early
phases of a model based development process. Conceptual models are built already in the require-
ment analysis phase in order to analyze functional aspects of the initial requirements and to explore
design alternatives.

The underlying database concept allows multiple developers to work independently with their
instances of the model. Changes and derivatives of the original model can be checked again into
the database and thus made accessible to the team. The version control of the database provides a
concept of configurations which individually reflect particular phases of the model evolution.

Part of the tool-set is a simulator, which can execute the model under construction. The simula-
tion of models can be run in batch mode or controlled by user interaction, either with or without
panels. A panel editor enables the user to build easy-to-handle graphical interfaces for the simu-
lation. Construction and usage of panels supports the developer in exploring and demonstrating
the behavior of models. Meaningful simulation of easy-to-build conceptual models is one of the key
arguments for following a model based development process, where models capturing concepts at an
abstract level serve as executable specifications and reference models for subsequent phases. Besides
other visualizations such as a waveform viewer, the graphical design objects are animated during
a simulation, such that the developer can easily observe e.g. which parts of the model are active,
which transitions are taken, or which outputs are produced. Since the semantics of Statemate

models is defined in terms of simulation we will come back to the different aspects of execution in
section 3.2.

The visual formalisms offered by Statemate support different modeling concepts and styles.
Three graphical modeling languages can be used to develop a model according to a functional,
behavioral or structural point of view. Activity-charts serve for the description of functional as-
pects, statecharts [Har87] are used to model behavior, and module-charts describe a structural
view. Module-charts are used as data-flow diagrams constituting the implementation of the system,
its partitioning into hardware and software blocks, and the communication among these blocks.
This physical model aims at specifying which physical module implements which given conceptual
model - implemented by activity-charts3. Since this work focuses on conceptual modeling, we will
not regard module-charts.

Conceptual models are built using activity-charts and statecharts. Activity-charts are used to
partition the conceptual model into functional blocks. Ideally, each activity-chart of a Statemate

model represents a separated function of a system. Flow of data and control among activity-charts
can be specified graphically by flow-lines. Activity-charts can be used in a hierarchical manner. They
can be decomposed again into activity-charts in order to structure a function into sub-functions.
Leaves of this decomposition are basic-activities. Basic-activities are modeled either by statecharts
or by so called mini-specs, which are programs written in the Statemate action-language4.

3In Statemate module-charts are mainly used for documentation purposes. [HP98] explains the intended relation
between activity-charts and module-charts.

4
Statemate also supports activities implemented by other, external programming languages, such as C or VHDL.
External implementations are useful for implementation of target-architecture dependent functions, such as e.g.
integration with a particular operating system. Since such a detailed implementation leaves the conceptual level,
this feature is out of the scope of this document.

20

3.1 Statemate

Statecharts

Statecharts extend conventional input/output automata by a concept of hierarchy, parallelism, and
broadcast communication. They are basically hierarchical state-transition diagrams, where states
can contain entire statecharts. Regarding its possible sub-states, a state is called either OR state,
AND state or basic state. Sub-states of an OR state can only mutually be active. A sub-state of
an AND state can only be active if also the sibling sub-states of the AND state are active. Basic
states are at the bottom of the hierarchy and do not have further sub-states.

A state is entered or activated by taking a transitions ending in that state, it is exited or de-
activated by taking a transition starting in that particular state. Transitions are not restricted to
a particular hierarchy level of the statechart. They can cross multiple levels of the state hierarchy.
Figure 3.1 shows an example: States C1, C2, B1, B2 and D are basic states, while ST_TOP, C and B

are OR states and A is an AND state.

ST_TOP

C1 C2

B1 B2

C

B

A

D

Figure 3.1: Simple Statechart

Transitions in Statemate statecharts are either so-called default-transitions or transitions be-
tween states. Default-transitions activate their target states when entering the enclosing state. In
figure 3.1, states C1, B1 and D are targeted by default-transitions. D is activated when ST_TOP is
activated. States C1 and B1 are activated when A is activated.

In order to increase the readability of statecharts and the flexibility of the visual formalism,
Statemate offers a variety of transition related concepts which will be explained in the following.
[HN96] gives a detailed description of these concepts.

• Transition connectors : transitions do not need to start or end in states, but can also be con-
nected to so-called transition-connectors. Each possible combination of transition-segments
connected by transition-connectors between a start and an end state forms a so-called com-
pound transition. Only an entire compound transition can be taken at once. It is not possible
to take only a single segment of a compound-transition and get stuck at a connector.
Connectors increase the readability of statecharts, avoiding the use of redundant (and possibly
conflicting) transitions. Besides condition connectors Statemate offers default-, termination-
, history- and deep-history-connectors which can be used as start- or end of transitions.

– Default-connectors : default-transitions can be connected to transitions using a condition-
connector. It is thus possible to determine the default-state of a statechart dynamically,

21

3 Using Statemate

depending on which transition-segments connected to the default-transition by a default-
connector are enabled.

– Termination-connectors : when a transition ending in a termination connector is taken,
the enclosing activity is de-activated (stopped). The de-activated activity can only be
activated again by an external activation. Thus, using termination connectors, self-
terminating activities can be realized.

– History- and deep-history-connectors : if a transition ending in a history-connector is
taken, all active sub-states of the enclosing OR state are memorized. If the OR state is de-
activated and entered again using a history-connector the stored configuration becomes
active again. A deep-history-connector not only memorizes the active sub-states of an
OR state, but also the complete configuration of active states below the active sub-state.

• Inter-level-transitions : transitions do not need to only start or end in basic states but also in
hierarchical states and may also cross multiple levels of the state-hierarchy. Thereby, the state
hierarchy is used to determine the resolution of conflicts. If transitions of different levels could
be taken in the same step, Statemate priorizes the highest level transition. For example, if
in figure 3.1 the transitions starting in A and the one starting in B2 are concurrently enabled,
the transition starting in A will be chosen. Also the effect of taking a transition depends
on the state hierarchy. If the transition from state B2 to state D is taken, all sub-states of
B are de-activated and since B is a sub-state of AND state A, also A is deactivated - which
automatically de-activates also the sub-states of C.
Hence, if an inter-level-transition is taken, always the entire state hierarchy is de-activated
which is on lower hierarchy levels than the top-most state left by the transition. If a transition
ending in an AND or OR state is taken, the default transition(s) or history-connector(s) in
the entered hierarchical state determine which sub-states of the state are activated.

Transitions are labeled with a trigger- and an action-part. In general, transition labels are of the
form ’e[c]/a’, where e is an expression ranging over events, c is a boolean expression - not referring
to events - , and a is the action-part of the transition to be executed when taking the transition5.
The conjunction of event-part e and condition-part c forms the trigger. A transition can only be
taken if both parts of the trigger evaluate to true. All parts of a transition label are optional -
the default for e and c, respectively, is true, whereas the default for action-part a is to perform no
action at all. The transition-trigger of a compound transition is logically built from the triggers of
all chosen transition segments connected by condition-connectors. Accordingly, the action-part of a
compound transition is built from all action-parts of these segments. Triggers of transitions enabled
at the same step need not be mutual exclusive and there is no static resolution strategy which
transition is priorized in such a case, except for - of course - the hierarchy rules6. Statemate

permits conflicting transitions - non-determinism can be utilized for abstract modeling. On the
other hand, if non-determinism is not desired, it remains the responsibility of the developer to
ensure determinism of a model.

5In Statemate conditions and events are strictly distinguished. While conditions can be arbitrary boolean expressions
rranging over the variables of a model, events are dedicated volatile occurrences, which are visible only for one
step in the execution of a model. We will consider this distinction in more detail in the sequel.

6Other CASE-tools provide e.g. a user defined weighting of transitions (Ascet) or a clockwise priorization (State-
flow).

22

3.1 Statemate

In addition to the use of transitions, each state can be associated with a so-called static reaction,
which has the same format like transition labels. A static reaction is considered (and the action
is performed if the event and condition expressions both evaluate to true) only when the state in
question is active - and no outgoing transition can be taken. As a variant of this concept reactions,
can also be bound to entering or exiting a state.

Data-items

A data dictionary collects data type and variable declarations, as well as function and procedure
definitions. Various data types can be used in the model: events, integers - optionally bound by
upper and lower bounds or a number of bits - , enumerations, reals, bits, conditions, strings and
bit-arrays. Statemate supports also compound types such as records, unions, arrays and queues.
The designer may build user defined types of arbitrary nesting depth from these basic types using
compound types. Based upon these types, variables can be defined and used in the model.

Variables are associated with a scope, they can be local to a particular activity or be globally
visible in the model. The default scope is determined by the first usage of the variable. The
designer can change the visibility or scope of a variable in the data-dictionary in order to e.g. share
a data-items among different activities. If not explicitly assigned a new value within an action,
normal variables keep their values. Especially activation or deactivation of activities or states has
no influence on once assigned values of variables.

In contrast to normal variables, events have a different semantics: Events are visible only for one
step in the execution of a model - events can be consumed only in the step after being issued, in
the step thereafter events are no longer remembered.

Expression Language

Besides user-defined events, the Statemate action-language provides a set of special events - asso-
ciated with the different kinds of objects, such as ’en(s)’ which is issued when state s is entered, or
’fs(c)’ which is issued when condition c becomes false. For each variable v the implicit events ’wr(v)’,
’rd(v)’ and ’ ch(v)’ indicate that v has been written or read, respectively, or has changed its value.
Some of these implicit events apply also to more complex expressions, such as e.g. ’fs(<expr>)’
issued when boolean expression expr becomes false.

Part of the expression language are also special events for scheduling of activities, such as ’st!(A)’,
starting - or activating - an activity A or ’sp!(A)’ stopping - or de-activating - A. Activities can
alternatively be only suspended and resumed later by scheduling events (’sd!(A)’ and ’rs!(A)’,
respectively). The actual activation status of an activity can be referred to using a set of dedicated
events and conditions e.g. ’st(A)’ (started), ’hg(A)’ which means hanging, i.e. activity A being
suspended but not resumed yet, ’ac(A)’ meaning active, i.e. not stopped yet, e.t.c. These scheduling
events play an important role for modeling a reactive system. Using these events, Statemate

enables the developer to realize arbitrary scheduling - activating and de-activating parts of the
model according to the requirements of whatever protocol. Table 3.1 gives an overview of the
events and conditions related to the scheduling of activities.

The expression language also provides constructs to refer to time. Since the model itself contains
no encoding of time, time refers to simulation time which is controlled by the simulator when
executing the model. We will discuss the execution of models and the interpretation of time in

23

3 Using Statemate

action comment status comment

activation st!(A) start A st(A) event emitted if A started
de-activation sp!(A) stop A sp(A) event emitted if A stopped
status ac(A) condition, true if A is active
status hg(A) condition, true if A is active but suspended
suspension sd!(A) suspend A

resumption rs!(A) resume A

Table 3.1: Events and Conditions related to Scheduling

detail in the following section 3.2. References to simulation time are supported in two different
ways:

timeout events explicit timing information can be introduced in a model by using timeout events.
The general form of a timeout event is ’tm(e,T)’, where e is an event starting a timer, and
T is an expression determining the amount of abstract time units after which a timeout is
indicated to the model. The timer is reset each time e occurs.

scheduled actions While timeout events can be used in transition triggers in order to enable a
transition a particular time after a certain event was issued, scheduled actions permit to time-
trigger actions. The general form of scheduled actions is ’sc!(a,T)’, where a is the action
to be performed after T time-units of simulation time will have expired. Once scheduled
nothing can prevent a from being executed. This is a notable difference to the interpretation
of timeout events, where the timer will be reset if its triggering event is observed again, before
issuing the timeout.

Combination of Statecharts and Activity-charts

Statecharts are a comprehensive formalism for modeling behavior and are due to hierarchical struc-
turing often considerably more compact than equally expressive traditional input/output automata.
While being adequate for describing a behavioral entity, statecharts in no means support separation
of functions. On the other hand, the graphical language of activity-charts is aimed at separating
functional entities of the design. Although mini-specs can be used to describe behavioral aspects
of an activity-chart, they lack the intuitiveness of using statecharts. With the combination of
the closely related functional and behavioral aspects of activity-charts and statecharts Statemate

offers adequate formalisms for building conceptual models:
”The backbone of the system model is an activity-chart, which is a hierarchical data-flow diagram,

and in which the functional capabilities of the system are captured by activities and the data
elements and signals that can flow between them” [HN96]. Each of these activities can contain at
most one statechart per decomposition level.

Statechart implementations of activities - basic activities - are called control activities if they
dynamically control activation or de-activation - or suspension and resumption - of activity-charts
which are placed on the same hierarchical level. Dynamic activation and scheduling of activity-charts
using scheduling event expressions forms the connection between the functional and the behavioral
view. If an activity contains no control-activity (in its graphical decomposition), all sub-activities

24

3.2 Execution of Statemate Models

are activated whenever the activity itself is activated. If it contains a control-activity, only the
control-activity is activated. This control-activity is responsible for starting, stopping, suspending,
and resuming all other activities of the same decomposition-level. If a control-activity is terminated
or terminates itself, all controlled activities are terminated.

According to their usage within a system model, for controlled activities three different termina-
tion modes are distinguished:

controlled-termination The activity can only be terminated by the controlling control-activity.

self-termination The activity can terminate itself, the controlling control-activity needs to either
poll for the status of this activity or to react on its termination event.

procedure-like The activity performs its actions when activated (within one step) and terminates
afterwards.

So far, we have considered Statemate merely from a constructive and syntactical point of view,
even though execution aspects could not be entirely disregarded. Of course, this section can not
focus on all interesting aspects of Statemate models, nor is it the scope of this document to provide
a description of all Statemate modeling features. A detailed description of modeling features as
well as a discussion of their concepts can be found in [HLN+90, HN96].

All modeling techniques as well as the expression language constructs listed above - far from
being complete - are aimed at a dynamic execution of models making use of these constructs.

3.2 Execution of Statemate Models

The simulation capabilities of Statemate play a central role in its prominence as development tool
for embedded systems. Simulation can be performed at each level of decomposition. Single activity-
charts or statecharts can be executed in isolation as well as the entire model can be executed at once.
Arbitrary sub-models, each possibly consisting of various levels of activity-charts and statecharts
can be selected for simulation. The Statemate simulator has been built fault-tolerant regarding
incompleteness of models7 and can be invoked in every phase of development - after applying a
static check ensuring correctness w.r.t. declaration and usage of data-items and proper usage of
graphical constructs. This check - called check model - is not mandatory, but strictly recommended
in order to avoid waste of time with simulations resulting in execution errors.

The capability of simulating a sub-systems in the context of the entire system model - or in
isolation - even in early phases of the development contributes to the idea of virtual integration in
a model based development process.

The simulator can be used interactively, such that the user can drive the simulation either with
user-designed panels or by directly influencing data-items, providing events and injecting all desired
changes to the model. In interactive simulation, the user has a high degree of control over the
simulated model and the progress of simulation time. In addition to interactive simulation, the
simulator can also be controlled using so-called simulation control programs (SCP). SCPs can be
used to drive the model according to pre-recorded stimuli. The entire simulation can be controlled
using this procedural interface, without requiring user interaction. In the verification environment

7sometimes issuing warnings or error messages if incompleteness leads to execution problems.

25

3 Using Statemate

SCPs are extensively used to provide simulations according to witnesses obtained from verification
tasks.

The Statemate simulator can execute models using two different interpretations, a synchronous
and a so-called asynchronous simulation semantics. The most important differences between these
interpretations lie in the interaction with the environment and in the concept of time. It must
be emphasized that time in this context always does not refer to to physical time but only to the
virtual time of the simulator, which is controlled by the simulator according to the chosen execution
semantics.

Synchronous Simulation Semantics In the synchronous simulation semantics, the system executes
a single step per virtual time unit and then accepts new external stimuli. As result of perform-
ing action parts of transitions and static reactions, new events are generated and variables are
assigned new values. The environment can provide new input stimuli at each step. Execu-
tion of a step performs infinitely fast in zero simulation time. Simulation time advances only
between consecutive steps.

Asynchronous Simulation Semantics In contrast to the synchronous interpretation, the system
continues computing steps unless no further transition can be taken. Only if no further
reaction to external or internal changes has to be performed, the model becomes stable. The
environment can stimulate the system with new inputs only if such a stable status is reached.
A maximal sequence of single steps after taking the input stimuli until reaching again a
stable state is called a super-step. Similar to the synchronous interpretation, the execution
of a super-step is assumed to consume no time. Simulation time advances only between
consecutive super-steps.

In [HN96], Harel emphasizes that the time interval between the execution of two consecutive steps
or super-steps, respectively, is not part of the semantics. The interval “depends on the execution
environment and the time model, over which users of the tool have significant degree of control”.
Hence, it depends on the user - in interactive simulation - how much simulation time passes between
successive steps or super-steps.

”The time calculated in dealing with the explicit time expressions appearing in timeout
events and scheduled actions is measured in terms of some abstract time unit common
to an entire statechart. Different statecharts can have different time units, in which case
the relation between them must be specified prior to model execution”[HP98].

[HN96] provides a detailed informal description of the Statemate simulation semantics of stat-
echarts. Modeling reactive systems using the full bandwidth of capabilities of Statemate is ex-
plained in [HP98] by example.

The execution semantics of Statemate models is defined in a constructive way by defining a
basic step algorithm. We only will give a sketch of the basic step algorithm here, for a detailed
description see [HN96].

Basic Principles of Execution

At the beginning of each step, the environment supplies the model with external stimuli. These
stimuli trigger transitions and static reactions of the model, together with changes that occurred

26

3.2 Execution of Statemate Models

in the model during the previous step or due to advancing simulation time. As result, the model
changes its status. Transitions are taken, some states are exited and some other are entered. Values
of conditions and data-items are modified, activities are activated or de-activated, and new events
are generated.

All these changes take place respecting some basic principles :

δ-delay Reactions to external and internal events, and changes that occur in a step, can be sensed
only after completion of the step. Calculations of one step are based on the situation at the
beginning of the step. The values of conditions and data-items regarded in expressions during
a step computation are the values from the beginning of the step. Actions performed during
a step do never affect other actions performed within the same step8. A δ-delay can not be
measured in terms of simulation time. Regarding simulation time, δ is infinitely small - it just
preserves the temporal order of cause and effect.

momentariness Events “live” for the duration of one step only, the one following that, in which
they are generated. Events are not “remembered” in subsequent steps.

greediness Always a maximal subset of transitions and static reactions is executed.

synchronism The execution of a step itself is assumed to take no time. The time advancing between
the execution of two consecutive steps is not part of the semantics, but depends on the
execution environment. Hence, several steps may be executed at the same point in simulation
time.

The concept of a δ-delay copes with a serious problem of synchronous languages. The perfect
synchrony hypothesis [BB91] - which has been widely accepted by the reactive systems community
- postulates that reactions to external stimuli and internal communications take zero time. It is
asserted that response to external events takes place immediately. Hence, in synchronous languages,
inputs and outputs for a computation of a model are observed at the same moment. This assertion
leads to the so-called causality paradoxon of synchronous languages, which can be illustrated by the
simple example of a transition labeled with ’not(E)/E’, where E is an event. The action performed
if E is not observed, prohibits its own cause. By respecting a δ-delay, Statemate avoids this
causality problem, since the effect of transitions can have no impact on triggers within the same
step. Self-triggering, i.e.: events that are executed based on their own occurrence - or non-occurrence
- and not caused by external events - is impossible within one step.In order to realize the concept
of a δ-delay for modification of the status, the basic step algorithm performs assignments in two

8The term δ-delay is borrowed from VHDL: “VHDL has a two-stage model of time. This two-stage model is referred
to as the simulation cycle. (...) During the first stage of the simulation cycle, values are propagated through the
data pathways (signals). This stage is complete when all data pathways which are scheduled to obtain new values
at the current simulation time are updated. During the second stage, those active elements (processes) which
receive information on their sensitivity channels are exercised until they suspend (via the execution of a wait
statement). This stage is completed when all active processes are suspended. At the completion of the simulation
cycle, the simulation clock is set to the next simulation time at which a transaction is to occur and the cycle is
started again. (...) The above model means that there is always some delay between the time a process puts a
value on a data pathway and the time at which the data pathway reflects that value. In particular, if no delay is
given in the assignment of a value to the data pathway a delta delay is used. This delay does not update the time
of the simulation clock but does require the passing of a new simulation cycle. (...) When a value is assigned in
the pathway it is not immediately available to processes which read the value from the pathway. There is a delay
between assigning and updating a signal value” [LSU95].

27

3 Using Statemate

phases. In the first phase, the effects of assignments are projected using a list of pairs, each one of
the form <element, new-value>. Only after all assignments to be performed have been considered
for the old values of the elements, the second phase really assigns the new values to the affected
elements.

The algorithm computes the set of enabled compound transitions w.r.t. the priority rules of
the hierarchy. The set of transitions is split into non-conflicting subsets. For each of the sets of
compound transitions the enabled static reactions are computed which are defined in states that are
currently active and are not exited by a compound transition of the set. In case of conflicting subsets
of compound transitions the simulator offers the user the selection of one of the nondeterministic
alternatives9

Regarding conflicting write accesses to variables, the simulator follows a different strategy: Here
only a warning is issued to the user; the written value is chosen according to an internal resolution
strategy without prompting for user-interaction.

It is important to distinguish between the ’basic step algorithm’ defining the execution of State-

mate models and the various features of the simulator.
In the synchronous time model, simulation time is automatically increased by one time unit

between two successive steps. For the asynchronous time model the situation is different: Since
the execution of steps does not advance the simulation time, the simulator’s operator has to do so
explicitly. Therefore the simulator offers several different go commands that let the user control
the advance of time during simulation.

In addition to the different go commands the simulator offers a ’continuous’ simulation in which
the model continuously computes steps and time advances automatically by one time unit per super
step. The user can interactively provide the system with inputs, for example using a control panel.

Stepwise simulation enables easier debugging of the model. In a step-by-step simulation mode
the simulator allows the user to nearly arbitrarily influence values of local variables and conditions
of a model as well as to provide the model with events. Hence, the user can also assigning values
to local variables which could never be assigned by the model itself in any normal simulation.

Perfect Synchrony Hypothesis

Both variants of Statemate’s execution semantics are based on the assumption that internal
computations take zero time. Internal communication among activities is synchronous in the syn-
chronous as well as in the asynchronous semantics. It is thus interesting to consider both variants
regarding their conformance with the perfect synchrony hypothesis:

For Statemate’s synchronous execution semantics it is obvious that the perfect synchrony hy-
pothesis does not hold: the model reacts to external events with a chain-reaction of generating
internal events, each of them triggering reactions in the subsequent steps. The time it takes to react
depends on the number of steps needed to complete the reaction of the system.

Regarding simulation time, the synchrony hypothesis holds for the asynchronous execution se-
mantics. Reaction to external events with a series of steps, with one event triggering another, until
reaching a stable status consumes no simulation time. The entire super-step takes zero simulation
time. Time may only advance after the reaction to external events has been completed and the
model has reached a stable status. But also the asynchronous execution semantics does not fully
comply with the perfect synchrony hypothesis: the model can only emit events during a super-step.

9In contrast to the simulator, the Statemate code-generator selects one of the alternatives arbitrarily.

28

3.3 Case Study: Radio-based Signaling System

The model only becomes stable if no reaction to external or internal changes took place in the
previous step, and thus no event has been emitted. In contrast, events provided by the environment
are only sensed in stable states. Hence, w.r.t. event communication, the underlying step execution
has to be regarded and reactions of the model are only observable between consecutive stable states.

Compositionality

A drawback of the asynchronous interpretation by the simulator is being not compositional. State-

mate supports the simulation of activities of arbitrary design-levels. When simulating a system
model using the asynchronous interpretation, the environment can provide the model with new
stimuli only in stable states - the communication with the environment is asynchronous. In con-
trast, local communication among activities of the model is synchronous, i.e. changes can take effect
every step. This becomes different, when simulating an internal activity in isolation - without the
enclosing design-level. Sibling internal activities of the model do not belong to the scope of this
simulation, but belong to the environment. Communication with these - now external - activities
is treated as communication with the environment according to the asynchronous semantics. Thus,
the interpretation of activities depends on the chosen scope for the simulation, because parallel com-
position of activities is always step-based. Only the communication of the composed model with its
environment is interpreted according to the asynchronous execution semantics. Statemate does
not support an asynchronous communication among activities of a parallel composition.

Another issue of compositionality for both the synchronous and the asynchronous semantics is
the treatment of shared variables: Data-items can be shared among different activities. Simulation
regards data-items only w.r.t. the simulation scope. When simulating an internal activity in
isolation, effects of data accesses from external activities are not regarded. Although a data-item
might be accessed outside the simulation scope, it is treated to be local to the simulated activity.

In [DJHP97] Damm, Josko, Hungar and Pnueli have presented a formal compositional seman-
tics for the synchronous and asynchronous semantics of Statemate designs. We will discuss the
representation of Statemate models according to this semantics in section 5.

3.3 Case Study: Radio-based Signaling System

In the previous sections, Statemate’s modeling and simulation capabilities have been briefly ex-
plained. In this section we will present an example application of Statemate. This application
will be used as reference example throughout this document.

The model has been developed within the DFG (Deutsche Forschungsgemeinschaft/German Re-
search Foundation) focus area program Integration von Techniken der Softwarespezification für in-
genieurwissenschaftliche Anwendungen (Integration of Software Specification Techniques for Engi-
neering Applications). The application is one of two reference case studies of the focus area program
which were provided in order to be able to compare the results of the individual projects. Modeling
has been carried out by the projects USE and FORMOSA. A detailed description of the model can
be found in [KT00] and in [Klo03].

The Statemate application models the radio based interaction between trains and level crossings.
Train and crossing react autonomously as far as possible. The communication medium establishing
communication between train and crossing is also part of the model.

Conventional railway crossings are controlled by wayside hardware, for example sensors which
announce an approaching train to a crossing, signals indicating the status of the crossing, etc.

29

3 Using Statemate

This hardware is permanently installed and must be able to handle trains with various differing
properties, like different length, speed, and so on. A high effort is necessary to keep the hardware
operational and to control its correct behavior. Thereby, national standards inhibit transnational
traffic. Currently, a locomotive has either to be able to adapt to another national standard or has
to be exchanged when trains cross frontiers of different countries.

European railway companies currently investigate better and more flexible solutions for the control
of railway traffic. Among these solutions radio-based communication plays an important role,
since permanently installed wayside elements can be avoided. Protocols can be adapted to varying
situations. For example, a fast train could announce itself earlier to a crossing than a slow one. A
crossing could react according to priorities. Since the components required for the communication
are located directly at the train and the crossing, less maintenance effort is necessary compared to
conventional solutions.

The train sends its requests and messages to the communication medium which propagates them
to the crossing and vice versa. Hence, at this top-level view the system consists of three communi-
cating core activities: TRAIN, COMMUNICATION , and CROSSING. Train driver, ’physical’ components,
such as barrier and lights with their sensors, and the crossing control center are modeled as envi-
ronment. This environment interacts with the signaling system by indicating, for example, a lights
defect or sensing the state of the barrier. The core system has to behave appropriately under these
environmental circumstances.

In order to describe a generic situation and to keep the model as simple as possible, the focus of
modeling has been the communication between one train and one crossing. Hence, an interleaving
of two or more securing procedures is not covered by the case study. Also, two or more trains
approaching the same crossing are not regarded. Additionally, only the essentials of the involved
ingredients are regarded in the model, e.g. only these parts of the train which are relevant to the
communication protocol were modeled.

It has been a general decision in the model development to keep some details abstract. Some of
the functions belonging to parts of the model are realized in a virtual manner. The environment
provides the results of these abstract functions as input to the model. This has been justified
by the wish to provide all individual projects of the focus area program with a uniform basis for
their particular approaches, permitting differing interpretations concerning details which are not
directly relevant to the protocol. On the other hand, a basic idea of the model based development
is illustrated by the application: abstraction from details which are not relevant to safety or mission
critical properties of the system under construction.

Figure 3.2 shows the top-level of the radio-based signaling system. TRAIN, CROSSING and COMMUNI-

CATION are modeled as internal activities of top-level activity SYSTEM. DRIVER, SENSOR , LIGHTS,
BARRIER, and OPERATION_CENTER are external activities contributing to the communication pro-
tocol between the internal activities only indirectly. In reality, physical components like SENSOR ,
LIGHTS and BARRIER can fail due to physical malfunctions. This is taken into account by providing
inputs for these components indicating defects.

A train approaching a crossing reaches a specific distance, which is called activation point. This
activation point is the latest position at which a train can initiate the securing of a crossing in order
to pass without braking. In the radio-based protocol this point is determined dynamically. In order
to determine the exact position of the activation point, the delay for communication setup, message
transmission, the time required to secure the crossing, and speed and position of the train have to
be taken into account.

In order to determine the activation point, the train possesses a track chart which keeps relevant

30

3.3 Case Study: Radio-based Signaling System

Figure 3.2: Top-level of Radio-based Signaling System

information about the track, like maximal speed, positions of crossings, stations and so on. Accord-
ing to this track chart, the train places control points at all positions to be specifically regarded.
With each of these control points a target speed is associated, which steadily has to be compared
to the actual speed. The train accelerates or reduces speed according to this comparison. In the
model version presented here, the track chart has been left empty, an input provides the train with
the position of the crossing instead.

After an amount of time has elapsed, which under normal circumstances is required to secure
the crossing, the train requests a status report of the crossing - this is modeled in statechart
WF_CROSSING_SAFE (cf. figure 3.7) using a timeout event with constant CCT (Crossing Closing
Time). If the crossing is safe, the crossing issues a safe-report, otherwise the crossing does not
respond at all. At this point the hardware failure detection comes into play: if the lights or the
barriers indicate a malfunction, the crossing will not indicate a secured status.

A sensor detects the passing and sends a signal indicating that the train has passed to the crossing.
After receipt of this notification the crossing returns to its normal state, i.e. raises the barriers and
turns off the lights.

The model only adheres to this protocol, if communication could be established. The commu-
nication component indicates successful setup by issuing an event. If communication could not be
established or crossing has not send a safe-report in time, the train has to be stopped in a secure
distance before the crossing.

31

3 Using Statemate

TRAIN

Figure 3.3: Activity TRAIN

Activity TRAIN consists of several sub-components (figure 3.3), where sub-activity TRAIN_CTRL

forms the core functionality of the train : Communication with a crossing is performed by ac-
tivity ACTIVATE_CROSSING, which is mainly modeled by statechart ACTIVATE_CROSSING_CTRL (fig-
ure 3.6) , while controlling the speed of the train is modeled by activity SPEED_CONTROL, which is
implemented by statechart SPEED_CONTROL_CTRL (figure 3.5).

Mini-spec BRAKE reacts to the event BRAKE which is issued by activity SPEED_CONTROL if the train
is driving too fast.

32

3.3 Case Study: Radio-based Signaling System

Figure 3.4: Statechart ODOMETER_CTRL

Statechart ODOMETER_CTRL (figure 3.4) computes time-triggered - once per time-unit - the actual
speed and position according to acceleration- and deceleration-commands. Record ODATA with its
components SPEED and POS is used in SPEED_CONTROL_CTRL to determine the distance from crossing
and to compute the maximal allowed speed in order not to overrun an unsecured crossing. Both
statecharts ODOMETER_CTRL and SPEED_CONTROL_CTRL closely interact by performing computations
mutually based on the results of computations of the other statechart.

Figure 3.5: Statechart SPEED_CONTROL_CTRL

33

3 Using Statemate

Statechart SPEED_CONTROL_CTRL (figure 3.5) consists of two parallel sub-states; the upper one
computes the maximally allowed speed (NOMINAL_SPEED), whereas the lower one checks if the train
speed is below the maximum. The actual computation is deferred to the function COMPUTE_NOMINAL_SPEED

which takes the dynamic train data (ODATA) and the next control point (CP) as parameters.
A control point is set to a location in front of a crossing and represents an unsecured crossing.

Control points must not be passed by a train unless the crossing is secured, i.e. the target speed at
reaching a control point has to be zero until the crossing is secured. Control points can be set, i.e.
the target speed at its position is set to zero, or deleted, i.e. the target speed at its position is set
to the maximal value for this track segment. All control points in a track segment are set when the
segment is assigned to a train.

If the driver’s preselected speed (D_SPEED) is greater than the train’s actual speed (ODATA.SPEED),
train is accelerated, otherwise it is decelerated. When the train speed is greater than the permitted
speed (NOMINAL_SPEED), state FREE_RUN is exited, FORCE_BRAKE is entered and the brake is activated.
Once the train speed is less than the permitted maximal speed, again state FREE_RUN is re-entered.
If permitted and actual train speed are both zero, the train has to be stopped, state FORCE_STOP is
entered and SPEED_CONTROL_CTRL emits the event STPPED to ACTIVATE_CROSSING_CTRL. Only those
stops are indicated by emitting STPPED which result from NOMINAL_SPEED dropping to zero. If the
train stops for other reasons, no STPPED event is issued; the train may resume its course on its own
without manual release (RELEASED_MAN) by the driver.

Figure 3.6: Statechart ACTIVATE_CROSSING_CTRL

Statechart ACTIVATE_CROSSING_CTRL (figure 3.6) handles the communication between train and
crossing. An important detail is not visible in figure 3.6: State IDLE contains an action which is
performed on entering the state. Since store TRACK_CHART is empty in this version of the model, this

34

3.3 Case Study: Radio-based Signaling System

entering-action sets the crossing position CP.POS according to an input abstracting from a concrete
track chart. Additionally, another input provides the model with the information whether this
crossing shall be treated as already regarded. Treating a crossing as already regarded disables the
entire protocol between TRAIN and CROSSING and involving COMMUNICATION. In this case, TRAIN can
also pass an unsecured CROSSING. We will discuss the problematic effect of this input in section 8.1.

Once the train reaches an activation point – indicated by the condition V_ACTIVATION_POINT_P

– state IDLE is exited and WF_CROSSING_SAFE is entered. In hierarchical state WF_CROSSING_SAFE

the protocol between train and communication is realized (figure 3.7).

Figure 3.7: Statechart WF_CROSSING_SAFE

On entering WF_CROSSING_SAFE communication is started. Once connection has been established,
the crossing is requested to secure itself using event ACTIVATE_CROSSING_SND. On receiving an
acknowledgment from the crossing, the train sends a status request after waiting an amount of time
(CCT=Crossing Closing Time) which corresponds to the time needed for the crossing to carry out the
securing procedure. At this point an important difference exists between asynchronous execution
and synchronous execution of the model: When executing the model in the asynchronous execution
semantics, CCT=8 is an adequate delay before sending the status request, because CROSSING can
under some circumstances complete its securing in this interval. In the synchronous execution
semantics, for CCT<12 the crossing will never be able report itself secured. This will be discussed in
more detail in section 8.1.

Simultaneously with sending the status request a TIMER is started which supervises TRAIN reaching
CROSSING in time. Being in state REQUEST_CROSSING_STATUS of WF_CROSSING_SAFE, TRAIN waits
for a status message of CROSSING. The hierarchical state WF_CROSSING_SAFE is exited by either one
of two inter-level transitions: Either a safe status report (CROSSING_SAFE_REC) of the crossing is

35

3 Using Statemate

received or the the train has been stopped due to statechart SPEED_CONTROL_CTRL (STPPED). In case
of TRAIN not being stopped by SPEED_CONTROL_CTRL due to a pending status report, TRAIN may
pass the crossing - as long as this remains possible before receiving a TMOUT event from TIMER. Hence,
a delayed or missing status report forces TRAIN to treat CROSSING to be faulty. Once having entered
state FAULTY_CROSSING, TRAIN may pass CROSSING only after manual release (RELEASED_MAN) by
the driver.

COMMUNICATION

Figure 3.8: Statechart COMMUNICATION_CTRL

Communication between TRAIN and CROSSING is established by a radio link. In top-level ac-
tivity SYSTEM the information exchange is grouped by information flows T_SEND and T_RECEIVE

between TRAIN and COMMUNICATION, respectively, C_SEND and C_RECIEVE between CROSSING and
COMMUNICATION. Sent signals (in T_SEND/C_SEND) are forwarded by COMMUNICATION via the appro-
priate receive channel (C_RECEIVE/T_RECEIVE). Communication has to be explicitly enabled and dis-
abled, which is initiated by the train. Therefore T_SEND also contains the events ST_COMMUNICATION
and SP_COMMUNICATION to start and stop the communication. Confirmation of the communication
establishment (COMMUNICATION_ESTABLISHED) is contained in T_RECEIVE.

Activity COMMUNICATION is realized by statechart COMMUNICATION_CTRL (cf. figure 3.8).
All interactions except setting up and terminating the connection take place in a static reaction

of state COMMUNICATE, which has been added as comment below state COMMUNICATE in figure 3.8. As
long as COMMUNICATE is the active state, receive-events (suffix ’_REC’) are issued for their associated
send events (suffix ’_SND’).

36

3.3 Case Study: Radio-based Signaling System

CROSSING

Figure 3.9: Activity CROSSING

Activity CROSSING (see figure 3.9) contains the overall software control of the crossing which is
responsible for coordination of the whole securing process. The component software control (located
in activity CROSSING_CTRL) interacts with the involved hardware control which is located in activity
ELEMENT_CTRL. The controlled ’physical’ hardware is provided by the external activities LIGHTS,
BARRIER, and SENSOR.

The statecharts of the four activities CROSSING_CONTROL, BARRIER_CONTROL_CTRL, LIGHTS_CON-
TROL_CTRL and SENSOR_CONTROL_CTRL interact very closely.

CROSSING_CTRL

CROSSING_CTRL (figure 3.10) is provided with events and conditions from the three other statecharts
of CROSSING reporting their respective mode of operation and itself provides the other statecharts
with commands.

37

3 Using Statemate

Figure 3.10: Statechart CROSSING_CTRL

The initial state IDLE remains active until CROSSING_CTRL receives the event ACTIVATE_CROS-

SING_REC. If the system is not in an error condition, state PROTECTION_PROCESS will be entered
which encapsulates all further states. A hardware error is present if at least one of the components
red light, barrier or sensor operates incorrectly. Condition HW_TROUBLE is defined in CROSSING_CTRL

as disjunction of the free input conditions RED_ERR, SENSOR_ERR, and the condition BARRIER_ERR

which is provided by BARRIER_CONTROL_CTRL (figure 3.11) and reflects the fact that:
(1) free input condition CLOSED has not become true ’maximal closing time’(MCT) time units after

the command CLOSE_BARRIER, or
(2) free input condition CLOSED has not become false again ’maximal opening time’(MOT) time

units after the command OPEN_BARRIER

Upon entering state PROTECTION_PROCESS, sub-state SWITCHING_LIGHTS_ON is activated and event
TURN_LIGHTS_ON is issued. Statechart LIGHTS_CONTROL_CTRL (figure 3.12) reacts on receiving
this event by triggering first the YELLOW light and then the RED light - sent to external activity
LIGHTS. Control remains in state SWITCHING_LIGHTS_ON until either receipt of event LIGHTS_ON

or detection of a red light malfunction (RED_ERR), with both events originating from statechart
LIGHTS_CONTROL_CTRL. Using events TURN_LIGHTS_ON, TURN_LIGHTS_OFF (issued by CROSSING_CTRL)

and LIGHTS_ON (issued by LIGHTS_CONTROL_CTRL), a fragile hand-shake protocol with mutual de-
pendences is defined. Moreover, this protocol depends on the free inputs RED_ERR and YELLOW_ERR..

After having successfully secured the crossing by traffic lights, event CLOSE_BARRIER is sent to
BARRIER_CONTROL. The system remains in the state CLOSING_BARRIER until either the barrier closing
process is completed (indicated by BARRIER_CLOSED) or a hardware error of the physical barriers is
reported (BARRIER_ERR). Under normal conditions the control stays in the state BARRIER_CLOSED

until

38

3.3 Case Study: Radio-based Signaling System

(1) the train has passed (indicated by the event PASSED issued by the activity SENSOR_CTRL), or
(2) the message CROSSING_FREE_REC arrives (originating from TRAIN and indicating that the train

was not able to reach the crossing in a reasonable time) , or
(3) the ‘maximum barrier closed time’ (MBCT) has expired.
On entering BARRIER_CLOSED condition IN_SAFE is set to true indicating a secured state of

CROSSING observable at system-level. IN_SAFE is set to false again on exiting BARRIER_CLOSED.
Condition IN_SAFE will be referred to in the application examples of Symbolic Timing Diagram
verification as the basic observation regarding CROSSING’s securing status.

Only as long as state BARRIER_CLOSED is the active state, a status message requested by means
of STATUS_RQ_REC is answered with CROSSING_SAFE_SND. In case of the crossing being not able
to secure itself - BARRIER_CLOSED is not the active state - , CROSSING simply ignores the status
request. An explicit error message is not transmitted. This is a failsafe implementation: the train
may pass the crossing only after receipt of CROSSING_SAFE_REC, which is the event associated with
CROSSING_SAFE_SND via COMMUNICATION.

BARRIER_CONTROL_CTRL

Figure 3.11: Statechart BARRIER_CONTROL_CTRL

Statechart BARRIER_CONTROL_CTRL is aimed at controlling the correct responses of the physical bar-
riers to the issued commands. Free input condition CLOSED indicates the actual status of the barriers.
Only if OPENED is the active state of BARRIER_CONTROL_CTRL the demanding event CLOSE_BARRIER
from CROSSING_CTRL is translated into an LOWER event triggering the barriers. Accordingly, only if
CLOSED is the active state, then the demand OPEN_BARRIER effects RAISE to be sent to the barriers.
If free input condition CLOSED is not true ’maximal closing time’ (MCT) after LOWER, or if the barriers
remain CLOSED ’maximal opening time’ (MOT) after RAISE, BARRIER_CONTROL_CTRL enters its state
ERROR and indicates a barrier error using condition BARRIER_ERR to CROSSING_CTRL. CROSSING_CTRL

39

3 Using Statemate

only knows of the actual state of the physical barriers via the condition BARRIER_ERR and the events
BARRIER_CLOSED and BARRIER_OPENING controlled by BARRIER_CONTROL_CTRL.

LIGHTS_CONTROL_CTRL

Figure 3.12: Statechart LIGHTS_CONTROL_CTRL

LIGHTS_CONTROL_CTRL controls the physical lights according to the commands TURN_LIGHTS_ON and
TURN_LIGHTS_OFF issued by CROSSING_CTRL. Thereby, the intervals between changes of the lights
have to adhere to some minimal time limits: MGT - minimum green time - guarantees that cars
can cross the crossing between to closures. Local variable GT capturing the green time is increased -
by timeout triggers - when staying in states OFF and PENDING, respectively, and reset when entering
OFF either initially or from state ON. MYT - minimum yellow time - permits car-driver reaction delays
between green and red phase of the lights. Local variable RYT capturing the residual yellow time is
reset when entering YELLOW from either OFF or PENDING and increased - by timeout triggers - when
staying in state YELLOW. Finally, MRTC - minimum red time (closing) - guarantees a minimal delay
between switching the red lights on and indicating LIGHTS_ON, which triggers CROSSING_CTRL to
provide BARRIER_CONTROL_CTRL with a CLOSE_BARRIER command.

SENSOR_CONTROL_CTRL

For reasons of completeness, figure 3.13 shows statechart SENSOR_CONTROL_CTRL. This small state-
chart is responsible for issuing a PASSED event after free input SENSOR_ON indicated a passing train,
by first becoming true and then false again. Since PASSED is consumed in CROSSING_CTRL and is
the only perception of CROSSING of a train having passed the crossing, SENSOR_CONTROL_CTRL plays
a central role in the protocols between CROSSING_CTRL, LIGHTS_CONTROL_CTRL and BARRIER_CON-

TROL_CTRL.

40

3.3 Case Study: Radio-based Signaling System

Figure 3.13: Statechart SENSOR_CONTROL_CTRL

Timer Constants of the Case-Study

Tabular 3.2 lists all timer constants of the model together with their value and a short description.
As they are used in timeout-events, the listed timer constants determine the real-time behavior of
the case-study.

ELT=1 Establishing Lag Time setup time for communication chanel,
delay in COMMUNICATION

MCT=2 Maximum Closing Time tolerated closing duration,
before reporting error

MOT=2 Maximum Opening Time tolerated opening duration,
before reporting error

MBCT=40 Maximum Barrier Closed Time Maximal duration of closed barrier,
before assuming train to be stopped

MRTC=4 Minimum Red Time (Closing) Red Light must be on for a certain amount
of time before lowering barrier

MYT=2 Minimum Yellow Time duration of yellow light before
changes are permitted

MGT=4 Minimum Green Time minimal duration of green light, before
changes are permitted

CCT=8/12 Crossing Closing Time TRAIN guesses how much time crossing
needs in order to close barrier

Table 3.2: Timer Constants in the Case Study

41

3 Using Statemate

42

4 Model Checking

Although conceptual modeling can help to circumvent particular problems in the development of
embedded systems - like inaccurate, contradictory or erroneous specifications - a conceptual model
may itself contain modeling flaws. When used as reference model, correctness of the model under
all circumstances is an important issue. Since implementations in later development phases will
adhere to the reference model, the quality of the development process depends on the quality of the
models. The best evidence for a model conforming to the requirements can be produced by formal
proofs that the model behaves as expected under all circumstances. Formal verification techniques
can be applied to formally prove, that a model never violates its requirements.

Two well-established approaches to formal verification are theorem proving and model checking.
Theorem-proving is in general an interactive verification approach, where a user is supported in
manually performing a proof task. The theorem prover offers and applies rules to the proof obliga-
tion. Although modern theorem provers like PVS1 [OS19] or Coq2 are endued with also automated
strategies, theorem proving remains an interactive verification technique, requiring much expert
knowledge about the model and its requirements as well as about the technique itself.

Model checking, on the other hand, is an automatic technique for verifying finite state systems.
Given a finite state representation of the system and a specification, the model checking algorithm
determines whether the system fulfills the specification. Temporal logic model checking, is a tech-
nique developed independently in the 1980s by Clarke, Emerson and Sistla [CES83] and by Queille
and Sifakis [QS81]. In this approach specifications are expressed in a temporal logic and systems
are modeled as finite state transition systems. An efficient search procedure is used to check if a
given finite state transition system fulfills a formal specification.

The semantical model representation, on which model checking procedures are based, are ex-
plained in sections 4.1 and 4.2. In section 4.3, we will explain temporal model checking for the
branching time temporal logic CTL. Section 4.4 introduces model checking with fairness constraints.
A symbolic representation of the model using Binary Decision Diagrams (BDD) is described in sec-
tion 4.5.

In a variant of the model checking procedure, the specification for verification of the system model
is - like the system - represented by an automaton. This technique is applied for linear temporal
logic, for which first a so-called tableau is generated, which is a formal automaton that captures
all runs satisfying the negation of the formula. Model checking is then performed by checking the
parallel composition of model and tableau for language emptiness. Model checking linear temporal
logic will be briefly described in section 4.6.

Section 4.7 explains, how model checking of invariants can be realized using a modified reachabilty
computation.

This simplified model checking technique can also be exploited for verification using so-called

1http://pvs.csl.sri.com/
2http://coq.inria.fr/

43

http://pvs.csl.sri.com/
http://coq.inria.fr/

4 Model Checking

synchronous observers, where the parallel composition of a model with a specification automaton is
examined. Here, the specification automaton observes the model and complains if a run of the model
violates the specification that is encoded by the observer. We will briefly discuss this approach in
section 4.8.

Another simplified model checking technique - bounded model checking using satisfiability check-
ing - is considered in section 4.9. Finally, as a further possibility to tackle verification complexity,
section 4.10 briefly discusses abstraction techniques.

4.1 Synchronous Transition Systems

The model checking algorithm requires an adequate system representation, capturing the status
and status changes over time according to the possible computations of the reactive system.

A reactive system starts working with an initial valuation of its variables. Periodically, the systems
reads some inputs from its environment. Depending on the inputs and the values of its variables,
the system changes the values of its variables or leaves them unchanged. Hence, a particular
status of a reactive system can be described by the values of the system’s variables. Reactions and
computations of the system can be described by the changes of these values according to the current
status and external stimuli.

Intuitively, state transition systems are a well suited representation of reactive systems. A state
transition system with the possible valuations of the system’s variables as its states and transitions
describing the possible changes of the valuations can be used to formalize this intuition. The
execution steps performed by the system can be characterized by the valuations of all its inputs and
variables and their changes over time.

We assume that each variable v of the system ranges over a finite set of values Domv, called the
domain of v.

Definition 4.1 (Valuation)
For a given system, let V = {v1, . . . , vn} be the set of system variables.
A valuation for V is a function which associates each variable v ∈ V with a value in the domain

Domv of variable v:
σ : V → DomV , where DomV =

⋃

v∈V

Domv ,

Let Σ(V) = {σ|σ : V → DomV } denote the set of all possible valuations of V.
If V is obvious from the context we will use the notation Σ instead of Σ(V).
Given a subset V ′ ⊆ V , the restriction of a valuation σ ∈ Σ(V) to V ′, denoted by σ ↓V ′ , is a

valuation of V ′, given by σ ↓V ′ : V ′ → DomV ′ .
�

A snapshot of the valuations at a particular instant of time is interpreted as a state of the model.
If all variables range over finite domains then the set of states is a finite set. In general, variables can
not change their values arbitrarily. Thus, depending on a state of the model only a specific set of
variables can be changed to certain values, i.e. only particular states are reachable from the current
state. This relationship between states and their possible successor states determines a transition
relation [PS97].

Definition 4.2 (Synchronous Transition System (STS))
A Synchronous Transition System S = (V,Θ, ρ) consists of the following components:

44

4.1 Synchronous Transition Systems

• V is a set of typed variables.

• Θ is the initial condition. It is a satisfiable assertion characterizing the initial state.

• ρ ⊆ Σ(V) × Σ(V) is the transition relation. ρ(σ, σ′) relates a state σ ∈ Σ to its possible
successors σ′ ∈ Σ by referring to both unprimed and primed versions of the variables. The
unprimed version of a variable refers to its value in σ and the primed version of the same
variable refers to its value in the possible successor state σ ′. If ρ(σ, σ′) = true , we say that
state σ′ is a S-successor of state σ in STS S.
ρ is totally defined, i.e. ∀σ ∈ Σ∃σ′ ∈ Σ : ρ(σ, σ′) = true.

�

A computation or run of STS S is an infinite sequence of valuations σ ∈ Σ(V) where each valuation
is obtained from the previous by a transition according to transition relation ρ. Hence, a run π of
a model can be characterized by an infinite sequence of valuations of the set of model variables:

Definition 4.3 (Run of a System)
Given system S with system variables set V :
A run π : σ0, σ1, σ2, ... of STS S is a finite or infinite sequence of valuations σi ∈ Σ of V , i ∈ N0,

s.t. the following conditions hold:

• σ0 satisfies the initial condition (σ |= Θ)

• State σi+1 is a S-successor of σi, for each i = 0, 1, 2, ...

An infinite run is also called a computation.
�

Definition 4.4 (Consistency and Viability)
We denote by Comp(S) the set of all computations of STS S. S is called

• consistent, if Comp(S) 6= ∅, i.e. S has at least one computation.

• viable, if every finite run π of S can be extended to a computation

�

Temporal logics proved to be useful for the specification of reactive models. The order of events
and their relation over time can often be described without referring to time explicitly. Temporal
logics extend boolean logics by introducing temporal operators such as “Gp” which states that
formula p holds globally or “pUq” which states that formula p is valid until formula q becomes valid.
Formulas are interpreted over the set of runs of a finite state system. For example, a run π fulfills
Gp if formula p holds for every valuation occurring in π.

In the implementation of the model checking algorithm as presented in [CES83] states and transi-
tions of the model are represented explicitly. For models with small numbers of states this approach
works fairly well. For industrial sized real world models the number of states is often too large to
be handled explicitly. 1987 Burch, Clarke, Dill and McMillan introduced an algorithm using a sym-
bolic representation of the state transition graphs [McM93, BCM+90]. Since the symbolic approach
captures the regularity of the state space of models, it is possible to verify systems with orders of
magnitude larger numbers of states than could be handled with the explicit-state algorithms.

45

4 Model Checking

4.2 Kripke-Structures

A model checker interprets a temporal logic formula w.r.t. runs of a state transition representation
of a model. In order to be suitable for the algorithm, the model representation should capture those
properties that must be considered by the algorithm. On the other hand the representation must
be easy to handle and abstract from those details which do not affect the verification result.

The state transition graph which optimally fits the needs of model checking algorithms is a Kripke
structure. Informally, a Kripke structure is a symbolic transition system extended with a labeling
function that labels each state with the set of atomic propositions which are true in that state.

Definition 4.5 (Kripke-Structure)
A Kripke structure is a tuple
M = (AP, S, S0, R, L) , where

• AP is a set of atomic propositions

• S is a finite set of states,

• S0 ⊆ S is the set of initial states,

• R ⊆ S × S is a transition relation. R must be totally defined, that is ∀s ∈ S : ∃s′ ∈ S :
(s, s′) ∈ R.

• L : S → 2AP is a function that labels each state with a set of atomic propositions which are
true in that state.

Let in the following the set of states S be given by the possible valuations of the system variables,
i.e. S:=Σ(V) for the set V of variables of the system for which Kripke structure M has been build.

A path in M is an infinite sequence of states Π = s0s1s2.... such that s0 ∈ S0 and (si, si+1) ∈ R
for i ≥ 0.

Let paths(M, s0) denote the set of all paths in M starting with state s0.
�

Though the transition relation R is defined totally, not every state s ∈ S needs to be reachable
from the set S0 of initial states by applying the transition relation. The subset of reachable states
of S can be computed from S0 and R by starting with S0 and iteratedly applying R.

We already emphasized the similarity of STS and Kripke structures. In the remainder of this
work, we will denote the Kripke structure M obtained from a STS S by K(S):

Definition 4.6 (Kripke Structure of STS)
Given a synchronous transition system Sys = (V,Θ, ρ). Let K : STS →′ Kripke Structures′ be

a function, which constructs a Kripke structure K(S):=M from Sys, where M = (AP, S, S0, R, L)
with

• AP are atomic propositions regarding valuations of the variables in V .

• S = Σ(V).

• S0 are the initial states according to Θ.

46

4.3 CTL Model Checking

• R = ρ.

• L : S → 2AP is a function that labels each state σ ∈ S with a set of atomic propositions which
are true in that state.

�

4.3 CTL Model Checking

The specification language for which Clarke, Emerson and Sistla [CES83] presented their model
checking algorithm was the propositional branching tree temporal logic CTL (Computation Tree
Logic).

In CTL temporal operators are only permitted in combination with universal path quantifiers A
or existential path quantifier E.

Definition 4.7 (CTL) The syntax of CTL is defined by:

1. Every atomic proposition p ∈ AP is a CTL formula

2. if f1 and f2 are CTL formulas, then so are ¬f1 , f1 ∨ f2 , EXf1 , EGf1 , E[f1 U f2]

�

The semantics of a CTL formula is defined with respect to Kripke structures. The propositional
connectives ¬ (negation) and ∨ (or) have their usual meaning. Temporal operators of CTL are

X next state - EXf1 holds in a state s if there exists at least one direct successor state of s for which
f1holds. AXf1 ≡ ¬EX¬f1 holds in a state s if f1 holds for all successor states of s reachable
within one step.

U until - is a binary operator. E[f1Uf2] holds in a state s if f1holds in s and there exists a path
along which f1 holds for all states until eventually f2 holds for some state s′. A[f1Uf2] ≡
¬E[¬f2 U (¬f1 ∧ ¬f2)] ∧ ¬EG¬f2 holds in a state if f1 holds in s and f1 holds for all states on
all paths starting in s until eventually f2 holds for some state on the path.

F finally - is an abbreviated notation for true U f1.

G globally - is the dual operator of F - i.e. AGf1 ≡ ¬EF¬f1. EGf1 holds in a state s if f1 holds in s
and there exists at least one path such that f1 holds for all states on the path. AGf1 holds in
a state s if f1 holds in s and for all states on all paths starting in s.

A state s of a model M satisfies a CTL formula f denoted by M, s |= f , if
M, so |= p iff s0 |= p, with p ∈ AP
M, s0 |= ¬f iff s0 6|= f
M, s0 |= f1 ∨ f2 iff s0 |= f1 ∨ s0 |= f2

M, s0 |= EXf1 iff ∃s1 : (s0, s1) ∈ RM ∧ s1 |= f1

M, s0 |= EGf1 iff ∃Π = (s0, s1, ...) ∈ paths(M, s0) : ∀i ≥ 0 : si |= f1

M, s0 |= Ef1 U f2 iff ∃Π = (s0, s1, ...) ∈ paths(M, s0) : ∃k ≥ 0 : M, sk |= f2 ∧
∀0 ≤ j ≤ k : M, sj |= f1

47

4 Model Checking

As abbreviation M |= f is written if M, si |= f for all initial states si ∈ So.
Due to the duality of existential (E) and universal quantification (A) each CTL-formula can be

transformed to a formula where none of the temporal operators is negated and negations occur
only at the level of propositions. Based on this negation normal form, it is sometimes useful to
define sub-classes of CTL. The sub-class of negation normal CTL-formulas in which only universal
quantification is used is often referred to as ACTL and in contrast ECTL is the sub-class of negation
normal formulas which make only use of the existential quantification.

All CTL formulae can be expressed in terms of ¬f, f1 ∨ f2, EXf, E[f1 U f2] and EGf , due to the
duality of existential and universal quantification, e.g. AFf = ¬EG¬f . Hence, algorithms for only
the cases EXf , EGf and E[f1Uf2] are required.

The model checking algorithm determines whether a given Kripke structure M satisfies a CTL
formula f for all initial states so ∈ S0. For this purpose, the algorithm first computes the set of
states satisfying the CTL formula.

If all initial states of the Kripke structure are elements of the computed set, there can not exist
any path through the structure which violates the specification. On the other hand, if there are
initial states not satisfying the CTL formula, i.e. which are not in the computed set, then the
specification is violated along some path through the structure.

In a first phase the model check algorithm starts to label each state of the Kripke structure with
the sub-formulas of f of length 1 which are valid in that state. Successively the states are labeled
with valid sub-formulas of increasing length up to the length of the formula. The length of the
formula is determined by the total number of operators and operands. If f contains no temporal
operators it consists entirely of atomic propositions. For formulas of the form ¬f the states are
labeled that are not already labeled with f . For formulas of the form f1 ∨ f2 states are labeled
which are already labeled with f1 or f2.

• The set of states satisfying EXf can be determined by searching the states which are labeled
with f . All predecessors of these states are labeled with EXf.

• E[f1 U f2] is handled by searching those states which are labeled with f2. From this set of
states the algorithm works backwards using the reverse transition relation to find all states
which can be reached by a path in which each state is labeled with f1. The states along this
paths are labeled with E[f1 U f2].

• In order to label the set of states satisfying EGf , the algorithm searches for a path along which
each state is labeled with f.

The labeling algorithm for EGf is based on the decomposition of the Kripke structure into strongly
connected components.

Definition 4.8 (Strongly Connected Component)
A strongly connected component C is a maximal substructure such that every state in C is

reachable from every other state in C along a path entirely contained in C. C is nontrivial if it
either consists of more than one state or if it consists of one state with a self-loop.

�

The algorithm determines strongly connected components by the following construction rule of a
labeled transition graph :

48

4.4 Fairness

Rule 4.1 Derive M ′ = (AP, S′, R′, L′) from M = (AP, S, S0, R, L) where S′ = {s ∈ S|M, s |= f1},
R′ = R|S′×S′ , and L′ = L|S′ . Note that R′ may not be total.
M, s |= EGf1 iff
(1) s ∈ S′ and
(2) There exists a path in M ′ that leads from s to some node t in a nontrivial strongly connected

component C of M ′ [CGP99].
�

Arbitrary nested CTL formulas f are handled by successively applying the state labeling algorithm
to the sub-formulas of f up to the length of f .

After termination of the labeling algorithm for all states s and for all sub-formulas fi of f holds:

M, s |= fi ⇔ s is labeled with fi.

4.4 Fairness

In many cases it is desired to do verification with respect to certain properties not expressible in CTL.
For example, when verifying a system, one may be interested in only these computations in which a
certain requested resource is not blocked forever (because the resource is always already allocated by
a concurrent process). There is a need to express constraints on computations, requiring recurring
conditions - so-called fairness constraints. In [CES83], a modification of the model check algorithm
has been presented, which permits the specification of fairness constraints. Fairness constraints can
be defined using a set of CTL formulas, representing sets of states of the Kripke structure.

The extension of the model checking algorithm to CTL with fairness constraints makes use of
strongly connected components. A strongly connected component is fair, if at least one of the
states denoted by the fairness constraints is a state of the strongly connected component. A new
proposition Q is introduced and all states are labeled with Q from which there exists a path to a
fair strongly connected component. Checking EXf under fairness constraints is then performed by
checking EX(f ∧ Q). Computing E[f1 U f2] under fairness constraints is performed by computing
E[f1 U (f2 ∧ Q)] instead. EGf is computed under fairness constraints the same as above (cf. section
4.3) with the only difference that strongly connected component C is also required to be fair.

The semantics of CTL with fairness constraints implemented by the modified model checking
algorithm is referred to as fair semantics.

There exist a variety of slightly different definitions of fairness constraints. Sometimes fairness
constraints are also treated as model properties. For this purpose the definition of Kripke structures
is modified to capture fairness as well.

Definition 4.9 (Fair Kripke Structure)
A fair Kripke structure is a 6-tuple M = (AP, S, S0, R, L, F) , where

• AP , S, S0, R, and L are defined as in definition 4.5, and

• F ⊆ 2S is a set of fairness constraints.

If Π = s0s1.... is a path of M, then inf(Π) = {s | s = si for infinitely many i} denotes the set of
states occurring infinitely often in Π. Π is a fair path if and only if inf(Π) ∩ Fi 6= ∅.

�

49

4 Model Checking

4.5 Symbolic Model Checking

So far we have considered explicit-state Kripke structures to ease the explanation of the algorithm.
The explicit-state representation contains redundant information. The size of the state space for
explicit-state models grows exponentially in the number of variables. Algorithms employing explicit-
state representations are reasonably applicable only to systems with a very restricted number of
variables.

The size of models model checking algorithms can cope with increased dramatically with the
symbolic approach introduced by [BCM+90]. The basic idea of the symbolic model representation
is that both the set of states of a Kripke structure and its transition relation can be represented by
their characteristic functions.

Definition 4.10 (Symbolic Representation)
Since the states S of a Kripke structure M = (AP, S, S0, R, L) are the possible valuations σ ∈ ΣV

of the set of system variables V , the characteristic functions for the initial state set and the transition
relation can be expressed as boolean predicates ranging over the valuations of the set of variables
V :

Let χS0 : ΣV → B be the characteristic function of the initial states S0 ⊆ S, s.t χS0(σ) = true iff
σ ∈ S0.

Let τR : ΣV ×ΣV → B be the characteristic function of transition relation R, s.t. τR(σ1, σ2) = true
if (σ1, σ2) ∈ R.

�

The representation of the transition relation determines how the predicate representing a set of
states is transformed to characterize the successor set of states. For these predicate transformers,
i.e. predicates denoting predicate transformations, primed variables denote the the value of the
variable after application of the transformation.

Using a symbolic model representation permits a more concise definition of the model checking
algorithm than in the explicit case: reachability computation as well as the decision procedures for
temporal operators can be based on fix-point operations:

Definition 4.11 (Reachability Computation) Let v, u denote valuations of V. The set Cn of
states reachable within n steps can inductively be computed:
C0 = {u|χS0(u)}
Cn+1 = {u|χS0(u) ∨ ∃v ∈ Cn : τR(v, u)}
Due to the finiteness of the model characterized by χS0 and τR, there exist an upper bound, i.e.

a fix-point for this iteration:
∃n : ∀m ≥ n : Cm = Cn .

�

• The set of states satisfying EXf1 can be computed by ∃v : f(v) ∧ τR(u, v) .

• Fix-point computations similar to the reachability computation are applied to determine the
sets of states satisfying EGf1. The set of states satisfying EGf1 is computed using the fix-point
iteration scheme f1 ∧ EX(EGf1) .

• The iteration scheme used for computing the set of states satisfying E[f1 U f2] is f2 ∨ (f1 ∧
EX(E[f1 U f2]) [JEKD90].

50

4.5 Symbolic Model Checking

Representing sets of states as well as the transition relation by boolean predicates would have
been not that successful without a combination with a data-structure called reduced ordered binary
decision diagrams(ROBDDs) [R.E86, Bry92].

Informally a ROBDD is a rooted, directed acyclic graph with

• one or two terminal nodes of out-degree zero are labeled 0 or 1 respectively

• a set of non-terminal nodes of out-degree two with one outgoing edge labeled 0 and the other
labeled 1

• a variable name attached to each non-terminal node

• a linear variable order such that for all paths from the root node to the terminal nodes the
order is respected

• no two distinct nodes have the same variable and the same 0 and 1 successors

• no non-terminal node has identical 0 and 1 successors

Besides being an efficient data-structure for boolean formulas, binary decision diagrams permit very
efficient manipulations of the represented formulas [Bry92]. Due to maximal sharing of nodes and
their linear variable order ROBDDs are a canonical description of a boolean formula - w.r.t. the
variable order. As one of the most important consequences, checking for semantical equivalence of
two formulas can be done in constant time by checking for isomorphism of their ROBDDs.

The same as for the explicit-state model checking algorithms, there exist modifications of the
symbolic model checking algorithms to deal with fairness constraints. Symbolically checking a
CTL formula under fairness constraints requires another fix-point computation. This fix-point
computation determines for each state in the set of states satisfying the CTL formula whether there
exists a fair path containing the state. Only states which satisfy the CTL formula and are located
on fair paths of the model are regarded by this symbolic model checking algorithm.

Detailed descriptions of symbolic model checking with and without fairness constraints can be
found in, for example, [CGP99].

An important issue of model checking not mentioned so far, is the ability of most available model
checkers to provide counterexamples for violated specifications [EOKX95]. Counterexamples are
essential in localizing subtle errors in complex designs. Unfortunately, the quality of a counterex-
amples for a CTL formulas depends on the structure of the formula. A counterexample for an
existential specification would require the enumeration of all paths from the initial states showing
that there exists no path satisfying the specification. For universal branching time specifications
(=ACTL) the counterexample may be a tree3. Fortunately, for a large class of specifications the
counterexamples are simple paths. While paths are intuitively understandable to the user, the
inspection of a tree is much more complicated.

Although the model checking algorithm for CTL is quite efficient, a temporal logic with linear
time interpretation offers a more natural semantics. Linear interpretation has the advantage of being
interpreted w.r.t. computation sequences. In contrast to CTL, counterexamples for violations of
linear time temporal logic formulas are always paths.

3E.g. AX(p) ∨ AX(q) might be violated for a state s having one successor state s1for which p ∧ ¬q holds and another
successor state s2 for which ¬p ∧ q holds. In this case, AX(p) ∨ AX(q) is violated by a computation tree.

51

4 Model Checking

4.6 LTL Model Checking

Temporal operators in CTL have to be used always with either universal or existential quantification.
Thus, CTL formulas are always state formulas, specifying computation trees rooted in the state the
formula refers to. In contrast to CTL the temporal logic PTL (propositional linear temporal logic)
often referred to as LTL (linear temporal logic) is aimed at the specification of paths instead of
trees.

Definition 4.12 (LTL) The syntax of LTL formulas is defined by:

1. Every atomic proposition p ∈ AP is a LTL formula

2. if f1 and f2 are LTL formulas, then so are ¬f1 , f1 ∨ f2 , Xf1 , Gf1 , f1 U f2

�

The semantics of Xf1 , Gf1 , and f1 U f2 is defined with respect to paths Π of a Kripke structure
M :

M,Π |= p iff Π0 |= p, with p ∈ AP
M,Π |= ¬f iff Π 6|= f
M,Π |= f1 ∨ f2 iff Π |= f1 ∨ Π |= f2

M,Π |= Xf1 iff Π1 |= f1

M,Π |= Gf1 iff ∀i ≥ 0 : Πi |= f1

M,Π |= f1 U f2 iff ∃k ≥ 0 : M,Πk |= f2 ∧ ∀0 ≤ j ≤ k : M,Πj |= f1,

where Πi denotes the i-th state in path Π. As in the definition of CTL, Ff1 is used as abbreviation
of true U f1.

If a LTL formula f holds for all possible paths of a Kripke structure M, often M |= f is written
instead of ∀Π : M,Π |= f .

In contrast to CTL the algorithm for model checking propositional linear time logic requires an
additional construct, a so-called tableau [CGH97, BCM+90]. A tableau Tf of a LTL formula f is the
most general model satisfying f , i.e. each possible path in Tf is a path satisfying f . Consequently,
let T¬f be the most general model of the negation of f contains all paths violating f . Model checking
whether a model M satisfies a given LTL specification f can be performed by checking that M ||T¬f

has no possible computations. Hence, in order to check satisfaction of a LTL formula f by model
M , the product structure of tableau T¬f and the Kripke structure of M has to be built.

CTL model checking can be applied to this product structure in order to compute the set of
states satisfying EG true. If there are states satisfying EG true, then the product automaton is not
empty - i.e. there exists a path in the model for which the negation of LTL formula f is a valid
specification. Thus, model M can not satisfy LTL formula f . On the other hand, if the product
automaton is empty, then the negation of the LTL formula f does not specify any run of the model
- i.e. model M satisfies f .

The tableau associated with a propositional LTL formula f is a fair Kripke structure T =
(APf , ST , ST0 , RT , LT , F) with APf as its set of atomic propositions. Each state of T is labeled

52

4.6 LTL Model Checking

with a set of elementary formulas el(f) obtained from f using the following rules4:

el(p) := {p|p ∈ APf}

el(¬f1) := el(f1)

el(f1 ∨ f2) := el(f1) ∪ el(f2)

el(Xf1) := {f1} ∪ el(f1)

el(f1Uf2) := {X(f1Uf2)} ∪ el(f1) ∪ el(f2)

The set ST of T is 2el(f) and the labeling function is defined by LT : ST → 2APf . In order
to define the transition relation RT an additional function sat(f1) is required which associates for
every elementary formula f1 ∈ el(f) a set of states in ST in which f1 is satisfied:

sat(f1) := {s | f1 ∈ s}, where f1 ∈ el(f)

sat(¬f1) := {s | s 6∈ sat(f1)}

sat(f1 ∨ f2) := sat(f1) ∪ sat(f2)

sat(f1 U f2) := sat(f2) ∪ (sat(f1) ∩ sat(X(f1 U f2))

The transition relation RT of the tableau is built w.r.t. elementary formulas of the form Xfi. RT
is built in a way, s.t. if some state s is labeled by a formula of form Xfi, then the successor states
of s w.r.t. RT are labeled by the elementary formulas el(fi). Hence, if Xfi is true at a state, all
successors w.r.t.. RT satisfy fi . On the other hand, if ¬Xfi is true in a state, no successor state
satisfies fi.

Using the definition of sat, RT is formally defined by :
RT (s, s′) =

∧

Xfi∈el(f)

s ∈ sat(Xfi) ⇔ s′ ∈ sat(fi)

The set of initial states S0 of T is the set of states satisfying the LTL specification f. Thus ,
S0 = sat(f) .

Starting in the initial states, a tableau contains all paths satisfying the LTL formula f for which
it was generated according to the construction rule above, but up to now also paths are permitted
which do not adhere to fairness requirements. Without restrictions through fairness constraints, a
tableau for f1Uf2 contains also paths on which f1 ∧¬f2 holds forever, which is not according to the
definition of U.

For a tableau Tf of LTL formula f , the fairness constraints F restricting the valid paths of Tf
are given by:
{sat(¬(f1 U f2)) ∪ sat(f2) | f1 U f2 occurs if f}
In order to check whether the system satisfies a LTL formula f , the product structure P =

(APf , S, S0, R, L, F) of the tableau T¬f = (APf , ST , ST0 , RT , L, FT) for ¬f with the Kripke structure
M = (APf , ST , ST0 , RT , L, FT) of the system has to be built, where:

• S = {(s, s′) | s ∈ SM , s
′ ∈ ST and LM (s)|APf

= LT (s′)}. LM |APf
is the restriction of the

labeling function of M to the atomic propositions of the tableau T¬f . Only the states fulfilling
the same atomic propositions of APf are regarded. All the other states of M and T¬f are
disregarded in the construction for P .

4The algorithm described in the following as well as the notation has been taken from [CGP99].

53

4 Model Checking

• S0 = {(s0, s
′
0) | s0 ∈ SM0 , s

′
0 ∈ ST0 and LM (s0)|APf

= LT (s′0)}. Initial states of the product P
are the initial states from M and from T¬f which fulfill the same atomic propositions of APf

• R((s, s′), (t, t′)) iff RM (s, t) ∧ RT (s′, t′). Only these transitions exist in P for which a corre-
sponding transition exists in M and in T¬f . R is not necessarily total by construction. If R
is not a total relation, all states which do not have successors are removed from S and R is
restricted to the remaining states.

• L((s, s′)) = LT (s′). The labeling only labels states with 2APf

• F = {(s, s′) | s′ ∈FT }. The product structure inherits the fairness constraints of the tableau.
For this construction it is assumed that the model structure itself has no fairness constraints.

Using the product-structure P = M ∩ T¬f , which is built from the tableau T¬f for the negation
of the formula f to be checked and from the Kripke structure M of the model, now M |= f can
be checked by checking M ∩ T¬f for emptiness. If there exist runs of M , satisfying LTL-formula f ,
then these runs can not be paths of T¬f . Hence, M ∩ T¬f = ∅ if and only if all runs of M satisfy f
and thus are no runs of T¬f .

4.7 Invariance Checking

In practice some important properties can be specified by invariants, i.e. formulas of the form:
AG(φ), where φ is a boolean formula containing no temporal operators. Provided that no fairness
constraints have to be fulfilled, checking whether a boolean formula is an invariant of a model does
not require the full effort of temporal logic model checking. An invariant must hold on all possible
paths of the model, including the initial states. In order to find a violation of AG(φ) it suffices to find
a path from an initial state of a model to a state in which φ is violated. Since deciding the truth of
a boolean formula for a particular valuation of its variables is trivial using ROBDDs, verification of
invariant properties can be performed by symbolic model checking very efficiently using a modified
reachability computation algorithm [VIS96a, VIS96b].

Let Ci be the set of states reachable with the i-th application of the transition relation to the
initial states as in definition 4.11. For each of the sets Ci of the fix-point computation, the validity
of boolean formula φ is checked. If φ is not true for some Ci, the formula can not be an invariant
of the model. On the other hand, if φ holds for all Ci - up to the set of all reachable states - , then
AG(φ) is a valid invariant of the model [CGP99].

Only for valid invariants the model checker has to perform the entire reachability computation,
violations of specifications are detected before completion. Hence, the worst case complexity for
invariance checking is that of computing the set of reachable states of the model.

Fairness constraints can not be regarded by this algorithm, since these specify paths through the
set of reachable states, which needs not to be computed in advance for invariance checking.

4.8 Verification using Synchronous Observers

When no fairness constraints have to be regarded in order to check a desired property of a model,
invariance checking can also be applied to more complicated specifications by encoding them as
observers. Basically, an observer is an automaton which is aimed at following and assessing the

54

4.9 Bounded Model Checking using Satisfiability Checking (BMC)

runs of a model. Running in parallel to a model the observer then indicates whether an observed
run of the model conforms to the specification, for which the particular observer has been built.

The parallel composition of model and observer is built in such a way that the observer only
observes the behavior of the model without restricting it in any way. Verification is then performed
by ”checking that the parallel composition of the program and its observer never causes the observer
to complain” [HLR93].

Ideally, an observer should be designed in such a way that its single output changes its value
immediately whenever a computation of the model violates the encoded specification.

The verification approach using synchronous observers has - to our knowledge - first been pre-
sented by Halbwachs, Lagnier and Raymond [HLR93]. There, the approach is explicitly restricted
to safety properties, which can be checked without considering fairness constraints: “... the desired
properties of a program can be easily and modularly expressed by means of an observer, i.e., another
program which observes the behavior of the first one and decides whether it is correct. Thus, the
same language is used to write the program and its desired properties. The verification then consists
in checking that the parallel composition of the program and its observer never causes the observer
to complain. This verification can often be performed by traversing the finite control automaton
built by the compiler” [HLR93].

In general, the critical properties of a reactive system are often only required to hold, provided that
the environment also behaves correctly, that is, under some assumptions about the environment.

Observers can also be used to express required properties of the model environment. Using
observers in combination with invariance checking, assumptions can be expressed by referring to
the observer outputs on the left hand side of an implication which has to hold invariantly.

Since observers can be implemented using the same description language as the one used for the
model itself all facilities of the description language can be used to capture the specification. Hence,
it is possible for example to realize counters in order to count particular observations. In contrast,
counting is impossible using CTL or LTL.

Even though, especially the combination of invariance checking and observers shows very promis-
ing complexity results even for complicated specifications, application of observers is obviously not
a-priori restricted to invariance checking. Encoding a specification into an observer using the same
language as is used to describe the model to be verified - and performing verification on the basis
of the parallel composition of model and observer - can of course also be used in combination with
temporal logic model checking.

In chapter 6 two areas of application will be discussed in detail: verification (1) using predefined
observer patterns provided by a library, and (2) using observers automatically generated from
graphical specifications provided by Symbolic Timing Diagrams.

4.9 Bounded Model Checking using Satisfiability Checking (BMC)

State-of-the-art symbolic model checkers are able to handle models with hundreds of state variables.
Symbolic model checking is based on a boolean encoding of models, using ROBDDs (or short
BDD). Although binary decision diagrams permit very efficient manipulations of the represented
formulas, BDDs generated during model checking often become too large for currently available
computers when verifying large systems. In addition, finding an optimal ordering of variables plays
an important role since the size of ROBDDS depends on the variable order. Reordering of ROBDDs
after application of boolean manipulations can drastically decrease the size of the representation.

55

4 Model Checking

Unfortunately, reordering of ROBDDs is time consuming and only based on heuristics. For some
examples no space efficient ordering exists.

Procedures deciding satisfaction of propositional boolean expressions in non-canonical form avoid
the potential state explosion problems of ROBDDs.

Biere,Clarke, Cimatti, Fujita and Zhu proposed to apply satisfiability checking for falsification
[BCC+99]:

The basic idea is to consider counterexamples of a particular length k and generate a
propositional formula that is satisfiable iff such a counterexample exists.

Satisfiability checking can be used to check for reachability of a particular variable valuation within
the first k steps of a system. By applying the transition relation k -times to the initial states, a model
of the k -th step of the system can be derived. Hence, the conjunction of the first k applications of
the transition relation to the initial states yields a model of the first k steps. Using this unrolled
model, satisfiability of a particular valuation is checked w.r.t. bound k:

Essentially, there are two steps in bounded model checking. In the first step, the sequential
behavior of a transition system over a finite interval is encoded as a propositional formula. In the
second step, that formula is given to a propositional decision procedure, i.e. a satisfiability solver,
to either obtain a satisfying assignment or to prove there is none. Each satisfying assignment that
is found can be decoded into a state sequence, which reaches states of interest. In bounded model
checking only finite length sequences are explored [CBRZ01].

Formally, bounded model checking is performed as follows:

Definition 4.13 (Bounded Model Checking)
Given :

• a Kripke structureM = (AP, S0, S,R, L), withAP ranging over the variables V = {v1, . . . , vn}

• an ECTL formula φ and

• a user supplied bound k

Let Vi = {v1i
, ..., vni

} be an instance of the set V of variables that is built by substituting
each variable vj ∈ V with a new variable vji , i.e. Vi:={v1, ..., vn}[v1i

/v1, ..., vni
/vn]. Let TR

be a boolean predicate ranging over the atomic propositions for two instances Vi, Vi+1 of V , s.t.
[[TR(Vi, Vi+1)]](σi, σi+1) = true iff τR(σi, σi+1) = true (cf. definition 4.10 on page 50). The unrolled
transition system [M]k is then characterized by the predicate:

[M]k:=







XS0(V0) if k = 0

XS0(V0) ∧

k − 1
∧

i = 0

TR(Vi, Vi+1) if k > 0
, where

XS0(V0) is a predicate representing the characteristic function χS0 of the initial states, i.e.
[[XR(V0)]](σ) = true iff χS0(σ) = true.

From φ a bounded predicate [φ]k is formed regarding the instances V0, ..., Vk of V , which is
satisfiable if and only if φ is true along a path of length k in [M]k.

56

4.10 Abstraction

The predicate [M,φ]k:=[M]k ∧ [φ]k can be checked for satisfiability:

[M,φ]k is satisfiable, iff ∃(σ0, ..., σk) : [[[M,φ]k]](σ0, ..., σk) = true, i.e.

∃(σ0, ..., σk) :



[[XS′
0
(V0)]](σ0) ∧

k − 1
∧

i = 0
[[TR′(Vi, Vi+1)]](σi, σi+1)



 = true, with

σi : V → DomV , where XS′
0
(V0) is a predicate representing the characteristic function χS′

0
of the

initial states S ′
0 of [M,φ]k, and TR′(Vi, Vi+1) is a predicate representing the characteristic function

τR′ of the transition relation R′ of [M,φ]kw.r.t. two instances Vi, Vi+1 of V .
�

In order to verify validity of an ACTL formula φ for all paths Πk of length k, it is sufficient
to show that [M,¬φ]k is not satisfiable. If, on the other hand, bounded model checking finds a
sequence of valuations [σ]k for which [M,¬φ]k is satisfied, also M violates φ within the first k steps.

Since only paths of length k are considered, bounded model checking under-approximates the
system under consideration:

• Bounded model checking finds counterexamples very fast. For some use-cases, finding coun-
terexamples is arguably the most important feature of model checking.

• Counterexamples showing violations of [φ]k are of minimal length. This feature helps the user
to understand a counterexample more easily.

• Since bounded model checking uses much less space than BDD based approaches, it can handle
much larger systems than symbolic model checking . Unlike BDD based approaches, bounded
model checking does not depend on variable ordering, and hence requires no time consuming
dynamic reordering.

The advantages of bounded model checking over symbolic model checking are very promising for
all use-cases where violation of formulae is highly probable. On the other hand, applying under-
approximation is restricted to only these cases, where a ultimative evidence of positive validity is
not required.

4.10 Abstraction

Often an interesting way to attack the verification complexity is the application of abstractions.
The principle idea is to consider a more abstract but less complex model than the concrete one,
in order to obtain a desired verification result. Abstractions can be achieved by restricting the
possible runs of the model, e.g. by setting inputs to constants or restricting domains of variables
of the model. On the other hand, abstractions can be obtained by permitting more possible runs
of the model, e.g. by weakening conditions of the model. Also, simple replacement of e.g. large
domains of variables with enumerated domains is an abstraction - capturing all possible values of
the variable but requiring less bits for its representation than the original domain.

Abstractions should be applied to the model w.r.t. the verification context, i.e. the expected
result. Only abstractions should be applied which permit a conclusion from the result of the
abstract verification task to the un-abstracted model. Given a model M and an abstraction Abs,
where MA:=Abs(M), we distinguish:

57

4 Model Checking

over-approximation MA has a less restricted behavior than M , or in other words MAhas strictly
more possible runs than M . For an ACTL formula φ holds: (MA |= φ) ⇒ (M |= φ).
From MA 6|= φ no conclusion about Mand φ is possible. For ECTL formula φ, we have:
(MA 6|= φ) ⇒ (M 6|= φ), but (MA |= φ) 6⇒ (M |= φ).

exact approximation MA shows an indistinguishable behavior to M in terms of observations.
(bisimulation argument)
As one of the simplest examples we might be only interested in the sign of an integer variable.
While the domain of the variable could be chosen to be unbounded for the original model
M , it is sufficient to distinguish the cases negative,zero,positive for the value of the variable
for MA. Using an appropriate abstraction mapping, a large domain can be represented by a
much smaller domain containing at least enough values to distinguish all relevant cases.
For an exact approximation and for a CTL formula φ holds: (MA |= φ) ⇔ (M |= φ).

under-approximation MA has a more restricted behavior, i.e. has strictly less possible runs than
M . For an ACTL formula φ holds: (MA 6|= φ) ⇒ (M 6|= φ). For an ECTL formula φ holds:
(MA |= φ) ⇒ (M |= φ).

We will consider some abstraction techniques integrated with the STVE in section 7.2.

4.11 Verification Tools integrated with STVE

The STVE is integrated with the model checker VIS [VIS96a, VIS96b], which itself uses the RoBDD-
package CUDD by Fabio Somenzi [Som98]. VIS is a state-of-the-art symbolic model checker inte-
grating various different formal verification procedures, such as : invariance checking, CTL model
checking, LTL model checking, language emptiness checking as well as combinational and sequential
equivalence checking. For the context of this work, mostly invariance checking is the preferred tech-
nique for robustness analyses, for formal debugging, pattern verification as well as for specification
verification using STDx .

Also integrated with the STVE is a bounded model checker, which is based on the SAT solver
Prover Plug-In, trademark of Prover Technologies AB in Sweden, the United States and other
countries. As already stated above, application of bounded model checking is in particular useful,
when a violation of the verified property is the expected outcome of a verification activity. This is
the case in all drive-to-checks as well as for robustness analyses in early phases of development (cf.
sections 6.1, 8.1).

The user can choose either VIS or the bounded model checker as verification engine for robustness
analyses, formal debugging and also for pattern verification. Specification verification using STDx is
restricted to usage of the VIS model checker (cf. sections 6.5, 6.3, and 7.4), because only a complete
verification procedure is appropriate for verification of fulfillment of requirement specifications.

58

5 System Representation for Formal

Verification

This chapter is concerned with a compositional representation of Statemate models for verification.
Section 5.1 gives an overview of a compositional semantics for Statemate models and brings key
aspects of this semantics regarding compositional verification into focus. In section 5.2 compositional
synchronous transition systems are introduced, which provide the basis of the formal semantics
definition. Real time aspects regarding the verification of Statemate models are considered in
section 5.3. Finally, section 5.4 explains the languages System Modeling Interface (SMI) that is
used for the representation of behavior and System Structuring Language (SSL) which serves as
language for representing the structure of system models. In this section also the integration of
Symbolic Timing Diagram specifications with the structural representation of Statemate models
is explained. This integration forms the basis of compositional verification, which will be discussed
in chapter 7.

5.1 A Compositional Semantics for Statemate Models

In Statemate, simulation can be carried out for each level of the activity hierarchy. The simulation
depends on the selected scope and is in this respect not compositional, i.e. execution of internal
activities in isolation is not consistent with the simulation of the entire model: When using the
asynchronous time model for simulation, the simulator provides the simulated activity with input
stimuli in stable states only.1In contrast, when simulating an internal activity in the context of the
entire system, events generated by sibling activities - i.e. other internal activities within the system
but not belonging to the chosen simulation scope - are sensed between stable states at a granularity
of single steps.

Thus, the immaculate and unaltered behavior of an internal activity can be observed only when
simulating the activity within the scope of the entire system, i.e. in its concrete environment.

Since simulation is a key issue for the role of models as executable reference specifications in
a model based development process, the definition of a formal semantics has to conform to the
execution of models as supported by the simulation tool.

Statemate’s simulation is based upon the ’basic step algorithm’, as presented informally by
Harel and Namaad in [HN96](cf. section 3.2). The algorithm defines how a new status is computed
based upon the actual status and external stimuli. The actual status is determined by the states,
events, conditions and variables of the model.

Thereby, the assumed flow-directions of events, conditions and data-items - local, input, output
- are of great importance for the execution of a model:

1In interactive simulation the user can inject external changes also between steps of a super-step. This feature is
out of scope of a formal semantics and is not supported in the verification tool set.

59

5 System Representation for Formal Verification

• When using the asynchronous time model for the simulation of a model, external events and
changes of values are sensed only at stable states, while local events and value changes are
sensed at every step. Hence, an internal activity of a system, in general behaves differently
when simulated in isolation compared to embedded simulation with the system containing
the activity. Variables and events of the system - which are not controlled by the considered
but by sibling activities - are treated as external when simulating the activity in isolation,
although they are, at all, local to the system.

• Reaching a stable state in the asynchronous interpretation is a dynamic property of the chosen
simulation scope. Since changes of data-items or events which are controlled by the simulation
environment are sensed only at stable states, an activity may become stable when simulated
in isolation. The interaction with sibling activities belonging to the system might cause super-
step divergence when simulating the same activity as part of the system.
The simulation tool classifies events into ’internal’ and ’external’ depending on the chosen
simulation scope. An asynchronous system model will reach a stable status only if no internal
activity has to process pending internal events. Otherwise the actual super-step is continued
- possibly forever - unless no more internal events are to be processed. Hence, the choice of a
simulation scope has a significant impact on dynamic stabilization.

• Sharing variables with other activities of the system, in general leads to different behavior
of an activity when simulated in isolation compared to its behavior when simulated as part
of the enclosing system. When a shared variable is changed by another sharing activity, it
changes its value nondeterministically from the point of view of the considered activity.

For the verification of systems modeled with Statemate, a formal semantics is required which
is compositional w.r.t. the decomposition of systems into subsystems. It must be ensured, that
considering a subsystem in isolation yields results which are consistent with the behavior of the
entire system.

Compositionality has been a key topic for the definition of the reference semantics presented by
Damm, Josko, Hungar and Pnueli in [DJHP97]. Their compositional semantics forms the basis
of a model representation which is rich enough to model the Statemate parallel composition
by intersection of the infinite traces generated by the involved components. The compositional
semantics has been implemented in the model representation realized and presented by Brockmeyer
[Bro99].

The compositional semantics is based on the definition of distributed protocols to which the
compositional models of internal activities contribute. This way, all dynamic properties of the entire
system are consistent with the properties of internal activities considered in isolation. In particular,
distributed protocols for accesses to shared variables, for scheduling of controlled activities as well
as for dynamic stabilization w.r.t. the asynchronous semantics are defined by the compositional
semantics. The possible interactions with sibling activities within the system boundaries are taken
into account even when considering an activity in isolation.

“Roughly, compositional models have to provide room for padding arbitrary (but still “legal”)
environment interactions into computations of a component. Alternatively, the construction of
compositional models can be phrased as a requirement on the model to support a sufficiently rich
class of observables for assumption-commitment style reasoning to be complete” [DJHP97].

While the informal semantics definition of Harel and Namaad lacks a concept of activity interfaces,
one of the key concepts of the semantics definition is that of a formal interface for each activity

60

5.1 A Compositional Semantics for Statemate Models

w.r.t. the system boundaries, which can only be obtained from a data- and control-flow analysis
w.r.t. the entire system.

For an activity A, all events - including implicit events -, conditions and data-items, as well as
auxiliary events and conditions for controlling the activation status of A, are treated as variables
of A. These variables are classified regarding their usage inside and outside of A. Variables not
used outside of A are local variables of A. Otherwise, if a variable is used inside and outside of
A, it contributes to the observable behavior of A and hence has to be classified as observable of
A. For each observable of A the interface specifies its direction, i.e. whether this observable is an
input or an output of A. According to the compositional semantics, bidirectionally used objects (
’inout ’) are split into directed copies. Shared variables are modeled using additional components
maintaining the concurrent accesses to the variable. Consequently, the direction of each interface
variable is either ’input ’ or ’output ’.

In the synchronous semantics, inputs - regardless if driven from outside the system-model or from
other components of the system - are read at the beginning of the step and all components perform
a step in parallel.

Regarding the asynchronous execution of Statemate models, observables driven from outside
the considered activity - but within the system - must be treated differently from observables that
are controlled by the environment of the system. Therefore, inputs from sibling activities within
the system are marked as fast inputs of the interface, while inputs controlled by the environment of
the entire system are slow inputs.

Fast inputs can change at every step of the execution, while slow inputs can only change in stable
states of the system. Indeed the distinction between externally and locally generated events and
value changes of variables is paramount for the definition of a super-step: it terminates, if no further
steps can be taken on the basis of events or changed values generated locally in the system. When
considering an internal activity in isolation, events from other activities or variables written by
other activities of the system have to be read from fast inputs - according to the formal interface.

Since asynchronous stabilization is a dynamic property of the entire system, becoming stable is
modeled by the compositional semantics using an explicit distributed protocol between the activities
of the system. Enabling the activities to take part in this protocol, the activity representations and
their interfaces are extended with observables indicating local stability and sensing the willingness of
their neighboring activities to become stable. The contribution of one component to this distributed
protocol is described on page 65.

As example, consider figure 3.2 on page 31. Activity SYSTEM consists of three sub-activities :
TRAIN, COMMUNICATION and CROSSING. From the perspective of internal activity TRAIN the envi-
ronment consists partly of the environment of top-level activity SYSTEM on the one hand, since
TRAIN is triggered by external stimuli provided by the environment. On the other hand, also
COMMUNICATION and CROSSING are part of the environment of TRAIN. Inputs to TRAIN provided by
the environment of top-level activity SYSTEM have to be represented by slow inputs. In contrast,
variables written by activity COMMUNICATION and consumed by TRAIN have to be modeled by fast
inputs in the interface of TRAIN..

Slow inputs which can change only at Super-step-boundaries are modeled by introducing a local

buffer for each slow input. These buffers have to be explicitly updated with real inputs in stable
states.

Slow inputs are then accessed by the model only by referring to these buffers. In contrast,
communication between internal activities of the model is modeled as fast communication in the
compositional semantics.

61

5 System Representation for Formal Verification

We can only give an informal description of activity interfaces here. We refer to [DJHP97] for
the complete and formal definition.

Definition 5.1 (Interface of an Activity)
The definition of intf(A) takes the data- and control-flow of the entire system containing A into

account. Thereby, the interface is partitioned into three parts:

Explicit Part: the explicit part consists of user-defined events, conditions, and data items which
are used in graphical or textual declarations of A:

• intf(A) contains all data-items, conditions and events as inputs which are used read-only
in A.

• Events, conditions and data-items which are only written in A (but not read) are outputs
of intf(A).
If conditions or data-items can be written also by another activity of the system, they may
be affected by a write/write conflict. In this case, they are split into an adequate input
and output portion, s.t. conflicting accesses are resolvable. Also the model representation
of activity A for verification has to take this split into account. intf(A) contains an input
as well as an output for this shared element. In order to distinguish the input from the
output, both have to be named differently2.

• Events, conditions and data-items which are read and written in A can be either locals
of A - if they are not used in other activities - or are shared with other activities of
the system. If an element is read by other activities, it must at least be an output in
intf(A). If it can also be written by another activity, an input must be provided which
can prevail over the local assignment to the element. A shared condition or data-item
must be represented in intf(A) again by an input as well as by an output, such that the
effects of conflicting assignments are preserved.

Implicit Part: the implicit part consists of the scheduling primitives used in A, plus the implicit
events associated with interface elements of the explicit part:

• For all scheduling events supported by Statemate - e.g starting an activity, stopping
an activity, e.t.c. - adequate in- and output-events are part of intf(A) according to the
control flow of the system (cf. page 63 et seq.).

• For each condition or data-item x of intf(A), the implicit events written(x), read(x),
changed(x) with same direction as x itself are part of intf(A) - indicating the respective
accesses to x according to the simulation semantics.

Auxiliary Part: the auxiliary part of the interface comprises

• If A is an activity of an asynchronous model, then also the set of events and conditions
required for the stabilization protocol is part of intf(A) (cf. page 65 et seq.).

2Accesses to shared data-items are controlled by so-called monitors, which are separate components that explicitly
resolve access conflicts

62

5.1 A Compositional Semantics for Statemate Models

• Since A can refer to simulation time in order to schedule actions and trigger transitions,
also advance of simulation time has to be regarded by A. For simplicity, it is assumed
throughout this work that time advances in commensurate units. For the synchronous
execution semantics it is assumed, that time increases by one time unit with every step.
In contrast, for the asynchronous execution semantics time is assumed to increase by one
time unit whenever the model becomes stable in terms of the asynchronous stabilization
protocol. For asynchronous models a dedicated output SUPER_SYNC - indicating stability
- is part of intf(A). Hence, SUPER_SYNC can be interpreted as tick of a clock capturing
the simulation time. The impact of stabilization on the interpretation of time will be
discussed in section 5.3.

• W.r.t. the chosen execution semantics, each input of the interface is either marked as slow
or fast, according to the location of its driver - i.e. the controlling sources in the embedding
system or in the environment of the system.

�

With respect to their fundamental importance for compositional verification, we will in the fol-
lowing focus on the distributed realization of the activity scheduling protocol as well as of the
asynchronous stabilization protocol.

In particular, scheduling of controlled activities has always to be regarded in compositional ver-
ification when controlled activities are involved in the considered properties. When verifying a
controlled activity in isolation, adequate assumptions have to be provided in order to consider the
activity in the correct activation state.

Regarding the asynchronous semantics, stabilization has a great impact on verification, because
time advances only in stable states. Even though time might not be explicitly considered, super-step
divergence of a system is at least a highly undesired behavior. Since the system accepts inputs from
the environment only in stable states, super-step divergence has in general to be treated to be a
severe failure of the system.

Scheduling of Controlled Activities Using a Distributed Protocol

The mechanisms for scheduling of controlled activities have been discussed in section 3.1 (cf. tabular
3.1). According to the compositional semantics, the component model of a controlled activity has
to be capable of being in all possible activation states. W.r.t. compositionality, the model of a
controlled activity has to assure, that e.g. reactions on inputs can only take place, if the activity
has been activated and has neither been stopped nor suspended by its controlling activity. The
scheduling-primitives with which an internal activity is controlled by a controlling activity have to
be provided as fast inputs of the controlled activity’s interface.

Continuing the example above, as activity TIMER (cf. figure 3.3 on page 32) can be started,
stopped, suspended and resumed by its controlling activity ACTIVATE_CROSSING_CTRL, TIMER it is
a controlled activity3 in activity TRAIN . Events and conditions indicating the state of activation
have to be signaled back to ACTIVATE_CROSSING_CTRL.

The events and conditions involved in this protocol - and therefore provided in the interface for
TIMER - are:

3The controlling statechart ACTIVATE_CROSSING_CTRL, which itself is not controlled by another activity, is automat-
ically started with the initial activation of TRAIN.

63

5 System Representation for Formal Verification

START, STOP, SUSPEND, RESUME input event
STARTED, STOPPED output event
HANGING, ACTIVE output condition
ACTION local event

Figure 5.1 illustrates the activation states of a controlled activity in a statechart-like manner.

STOP/
ACTIVE:=false;
HANGING:=false;
STOPPED

not SUSPEND/
ACTION

/HANGING:=false;
 STARTED

active

inactive

SUSPEND/HANGING:=true

RESUME/HANGING:=false

START/ACTIVE:=true

hanging

ACTION

schedule

not
hanging

Figure 5.1: Activation States of Controlled Activity

Listing 5.1 depicts algorithmically, how the local contribution of controlled activity TIMER4 to
the distributed protocol for scheduling control is realized according to the compositional semantics.
The listing describes the reaction of the model to scheduling primitives for a single step. In order
to distinguish between the actual value of a variable and its future value, we assume the variable to
exist in a primed and in an unprimed variant. The value of a variable at the beginning of the step
is referred to by the unprimed variant, whereas the new value of the variable is referred to by the
primed variant.

Notice that scheduling communication between control-activity and controlled activities is the
same for asynchronous and synchronous execution. Since the control of controlled activities is always
performed by an internal activity w.r.t. the entire system5, the distributed scheduling protocol of
the compositional semantics is always based on fast communication.

do step
begin

set primed version of local and output events to false

4We have chosen TIMER for this example, because the contribution of a controlled activity always consists of all
primitives. Since, for example TRAIN is not controlled by any control activity, starting and stopping of TRAIN is
not (and needs not to be) modeled in the compositional representation of TRAIN.

5In Statemate, implementation of controlled activities depends on the implementation of a controller. Hence, a
top-level activity can never be a controlled activity because the controlling activity has to be part of the same
design.

64

5.1 A Compositional Semantics for Statemate Models

if (ACTIVE) then
if (STOP) then

ACTIVE’:=false
HANGING’:=false
STOPPED’:=true
inactivate active states

else
if (not HANGING) then

if (SUSPEND) then
HANGING’:=true

else
ACTION’:=true

end
else

if (RESUME) then
HANGING’:=false
ACTION’:=true

end
end

end
else

if (START) then
STARTED’:=true
HANGING’:=false
ACTIVE’:=true
−− for asynchronous models:

LOCALLY_INSTABLE’:=true
activate initial states

end
end
if (ACTION’) then

execute one step of model
−− for asynchronous models:

for any assignment or state change : LOCALLY_INSTABLE’:=true
end

−− for asynchronous models:
Asynchronous synchronization block (cf. listing 5.2 on page 66)

end

Listing 5.1: Explicit Scheduling Protocol Program

Stabilization in the Asynchronous Execution Semantics

Like scheduling of activities, stabilization has to be modeled using a distributed protocol to which
all activity-models contribute.

In order to establish stability as a distributed property of all components, each component gen-
erates a local event LOCALLY_INSTABLE for any assignment or state change in order to indicate that
no stable status has been achieved within the current step.

Based upon the distributed determination of being locally instable or being able to stabilize,
asynchronous stabilization is modeled with a distributed protocol.

65

5 System Representation for Formal Verification

Listing 5.2 shows the contribution of one component to this distributed protocol. Events involved
in this protocol are :

STABLE_ENV input event
STABLE, SUPER_SYNC output event
PRESTABLE, LOCALLY_INSTABLE local event

if ((not(ACTIVE) and START) or
(”any state change or assignment has been performed in the current step”))

then LOCALLY_INSTABLE’:=true end

if (LOCALLY_INSTABLE’) then
PRESTABLE’:=false

else
if (not PRESTABLE) then

PRESTABLE’:=true
else

STABLE’:=true
PRESTABLE’:=false
if (STABLE_ENV) then

SUPER_SYNC’:=true
update input-buffers with primary inputs

end
end

end

Listing 5.2: Asynchronous Synchronization Block

Whenever an assignment or state change has been performed in the actual step, LOCALLY_INSTABLE
is generated. Only if LOCALLY_INSTABLE has not been generated during the actual step, the com-
ponent model becomes able to synchronize with other components in order to complete the actual
super-step. This pre-stability is indicated by the local event PRESTABLE. If the model does not
become locally instable again in the next step, a STABLE event is generated to indicate the will to
synchronize with the other activities. External to the activity-models6, the STABLE events of all
components are collected by a dedicated monitor. If all components emit STABLE events at the
same step, the monitor emits an event STABLE_ENV which is delivered to all components. Thus,
STABLE_ENV indicates the will of all other components to synchronize. Depending on the stability
of their respective environment, each activity-model generates its SUPER_SYNC event in synchrony
to the others activities. This distributed protocol triggers each activity-model to update its input
buffers. Hence, new inputs are accepted only in stable system states.

5.2 Compositional Synchronous Transition Systems

In [DJHP97] the semantics of Statemate models is defined in terms of compositional synchronous
transition systems (CSTS). CSTS are basically STS (cf. definition 4.2), enhanced with the definition
of an interface:

6This collection and logical combination of events is performed by so-called monitors, which are discussed in detail
in [DJHP97].

66

5.2 Compositional Synchronous Transition Systems

Definition 5.2 (Compositional Synchronous Transition System)
Given a STS S describing the behavior of activity A. By marking a subset E of the variables

V as externally observable, S results in a compositional synchronous transition system CSTS C =
(V,Θ, ρ, E), where V , Θ and ρ are defined the same way as for STS and

• E is a subset of V , the set of externally observable variables.

E itself consists of the disjoint sets:

• Ein ⊆ V of externally visible variables which are only read by A , and

• Eout ⊆ V of externally visible variables which can be modified by A.

ρ does not constrain Ein:

∀σ′1, σ
′
2 ∈ Σ(Ein)∃σ1, σ2 ∈ Σ(V) : ((σ′1 = σ1 ↓Ein

) ∧ (σ′2 = σ2 ↓Ein
) ∧ (σ1, σ2) ∈ ρ)

�

With respect to this definition, we now can define observation sequences as the restriction of
runs of synchronous transition systems to their externally observable interfaces. In contrast to the
definition of runs of a system, which does not take observability into account (cf. definition 4.3),
an observation sequence hides away the internals of a model.

Definition 5.3 (Observation Sequence)
Given a CSTS C = (V, θ, ρ, E) .
Let π:=σ0σ1σ2... be a computation of C, with valuations σi of V , i ∈ N0.
Let πobs:=π ↓E be the restriction of π to E, such that πobs is a sequence of valuations of the

externally observable variables E.
We call the restriction πobs to E an observation sequence.

�

Definition 5.4 (Parallel Composition of CSTS)
Given two CSTS C1 = (V1,Θ1, ρ1, E1) and C2 = (V2,Θ2, ρ2, E2) with (V1\E1) ∩ V2 = ∅ and

(V2\E2) ∩ V1 = ∅. The parallel composition of C1 and C2 is defined by C = (V,Θ, ρ, E), where

• V :=V1 ∪ V2

• E ⊆ E1 ∪ E2:
E:= E1in

\(E1in
∩ E2out)

∪ E1out\(E1out ∩ E2in
)

∪ E2in
\(E1out ∩ E2in

)
∪ E2out\(E1in

∩ E2out)

• Θ:=Θ1∧Θ2.Θ thus characterizes the set of initial valuations {σ ∈ Σ(V) |σ ↓V1∈ Θ1 and σ ↓V2∈
Θ2}

• ρ ⊆ Σ(V) × Σ(V) is given by
(σ, σ′) ∈ ρ iff (σ ↓V1 , σ

′ ↓V1) ∈ ρ1 and (σ ↓V2 , σ
′ ↓V2) ∈ ρ2

67

5 System Representation for Formal Verification

Let the parallel composition of C1 and C2 be denoted by C1||C2

�

If (V1\E1) ∩ V2 or (V2\E2) ∩ V1 are not empty, the variables in (V1\E1) or (V2\E2) need to be
renamed before applying the composition.

This composition does in general not preserve viability and consistency. It may be the case that
both, C1 and C2 are viable (consistent) but the composition is not. Observe that e.g. Θ may
characterize an empty set even if both Θ1and Θ2 are satisfiable. Or, one transition system may
require that a valuation with v = 1 has to be followed by a valuation with v = 2 and the other
system may demand that a valuation with v = 1 is followed by a valuation with v = 3. Hence a
system state with v = 1 reached in the composed system will have no successor.

It is an important fact for this entire work that the representation of Statemate models accord-
ing to the compositional semantics guarantees viability and consistency of composed Statemate

designs:
“In the modeling of statecharts we will not have such contradictory requirements in components.

Our semantics will not introduce deadlocks in a composed system when there is no correspond-
ing deadlock in one component. To achieve this, the semantics of one component will contain
all observable behavior of its environment. Semantical models satisfying this property are called
compositional” [DJHP97].

Fact 5.1 (Parallel Composition of CSTS for Statemate)
Given two CSTS C1 = (V1,Θ1, ρ1, E1) and C2 = (V2,Θ2, ρ2, E2) , s.t. C1 and C2 represent two

sibling activities A1 and A2 within the same parent-activity A (where w.l.o.g. let C1 be the repre-
sentation of A1 and C2 be the representation of A2) .

Then C:=C1||C2 is built from C1 and C2 such that :

• C is consistent

• C is viable

In particular, the representation guarantees that E1out∩E2out = ∅ by introducing monitors for shared
variables. A monitor observes all actions of the components which write on v, collects the values
and broadcasts a (nondeterministically) selected value to the environment. Furthermore it reads the
given value from the environment and transports appropriate values to the components. It does not
only manage the value of v but also the related read, written, and changed events.

Moreover, C1 and C2 are input enabled , i.e.:

∀σ′1, σ
′
2 ∈ Σ(E1in

)∃σ1, σ2 ∈ Σ(V1) : ((σ′1 = σ1 ↓E1in
) ∧ (σ′2 = σ2 ↓E1in

) ∧ (σ1, σ2) ∈ ρ1)

and likewise for C2.
�

This fact can be seen as an axiom, because we can not provide a formal proof without citing the
entire work of Brockmeyer [Bro99].

We simply extend the definition 4.6 (Kripke structure of an STS) to CSTS:

Definition 5.5 (Kripke Structure of CSTS)
Given a CSTS C = (V,Θ, ρ, E). Let K(C) denote the Kripke structure according to definition 4.6,

which is constructed from the STS S = (V,Θ, ρ) (by ignoring E).
�

68

5.3 Real-Time Aspects for the Verification of Statemate Models

5.3 Real-Time Aspects for the Verification of Statemate Models

Open embedded system continuously interact with their environments. A system reads inputs from
its environment, performs internal computations depending on these inputs, and finally delivers
results of its computations back to the environment. Often, these reactions have to take place
within particular time limits. Hence, not only functional correctness but also adherence to these
time limits is an important issue in the development of such a system. A reference model in a model
based development process should incorporate essential timing requirements at least in an abstract
manner.

In order to take reaction deadlines into consideration, the modeling formalism needs to be capable
of specifying not only qualitative temporal but also real-time aspects of the behavior of a system.
Although Statemate permits explicit references to time, time itself is not part of the execution
semantics. "The execution of a step takes zero time. The interval between the execution of two
consecutive steps is not part of the step semantics. Rather, it depends on the execution environment
and the time model, over which users have significant degree of control" [HN96].

In contrast to simulation, automatic verification clearly cannot allow interactions by user-commands
to prescribe how time is advanced7.

Leaving the treatment of time entirely to the simulator is a flexible concept and may be satisfac-
tory for simulation purposes. Regarding real-time properties, this concept may lead to interpretation
ambiguities of the model. When considering real-time properties, simulator settings and user in-
teraction - such as progress of time, the size of the chosen time units, and the chosen execution
semantics become essential for the behavior of a model. For reasoning about real-time aspects,
timing information must be associated with the runs of the model. This means either to augment a
model with explicit time information or at least an interpretation of its observable behavior w.r.t.
an implicit model of time.

In general, there are two options to model real-time: either time is modeled with a discrete
time domain, like natural numbers, or time is modeled with a dense time domain, like real or
rational numbers. In order to choose the appropriate time domain for verification it is important
to distinguish between physical and conceptual requirements. A dense time domain might be
unavoidable when considering implementations or real hardware w.r.t. physical time. In the model
based development process discussed in this work, Statemate is employed to build conceptual
rather than physical models. At the level of conceptual modeling, time should be treated in a more
abstract way. The chosen representation of time should permit quantitative temporal specifications
but abstract from physical implementation details. Hence, a discrete time domain is appropriate,
since the systems considered here are modeled using statecharts which perform their computations
step by step. Observations can change only at a granularity of steps. Thus, an adequate perception
of time could be an association of one step with one time unit. For the synchronous execution of
Statemate models this interpretation matches perfectly.

Regarding asynchronous execution of models, the interpretation of time is more sophisticated.

7Also in Statemate the interpretation of time varies among the different tools of the tool set:
”While the basic algorithm for a step ... is implemented in Statemate’s simulation and dynamic test tools, and

in its various code-generators, each of these executes a step under somewhat different circumstances, and the way
the two models of time are reflected in the execution differs slightly among them" [HN96].
”The software code generators generate one style of code; however, two different schedulers are provided that

support different time models. One of them uses the CPU time. That has the effect that steps, and therefore
super steps also, take more than zero time" [HN96].

69

5 System Representation for Formal Verification

On the one hand, the virtual simulation time elapses only between stable states. Thus, an appro-
priate perception of time associates a super-step with one unit of time. On the other hand, the
asynchronous semantics is defined upon sequences of steps. A global stabilization of the model
takes place if in the last step of a sequence of steps no action can be performed without reading
new inputs or increasing the virtual simulation time. Although steps are assumed to take zero time,
they are separated by δ-delays.

All activities of the model are executed in parallel; asynchronous stabilization is derived from the
synchronous behavior of the parallel parts of the model. Unfortunately, there is no fixed relation
between a super-step and the sequence of steps required to reach stabilization. In general, the
compositional model representations of internal activity have mixed interfaces, containing both fast
and slow inputs. Also scheduling of controlled internal activities by control-activities is represented
by fast communication. A control-activity can start, stop, suspend and resume its controlled ac-
tivities. The effect of this scheduling takes place immediately - regardless of the chosen simulation
semantics. According to the compositional semantics, super-step synchronization is represented by
a distributed explicit protocol. Only if all activities of a system are willing to become stable, the
system reaches a stable status. Thus, the activities have to communicate their local status to each
other in every step, in order to conjointly become stable. Becoming stable is then distributedly
computed by each activity based upon local stability and the status of the other activities.

It is an important issue of the asynchronous semantics that models need not always necessarily
become stable. Super-step stabilization (divergence-freedom) is itself a property that must be
verified for a system. The appropriate measure for verification of stabilization is an upper bound
for the length of all super-steps. Such a check - verifying if a user-guessed upper bound holds for
all super-steps - is offered by the STVE.

The important contribution of fast communication to the asynchronous interpretation requires
the ability of capturing also timing w.r.t. steps in specifications for verification of internal activities.
In order to specify synchronization and scheduling properties, the dedicated primitives of the model
representation must be observable for requirement specifications. Considering super-steps without
regarding internal step communication may be appropriate only for a black-box view of the entire
system. When specifying requirements for internal activities of a system, capturing fast communi-
cation is unavoidable. Thus, in requirement specifications for verification it is often necessary to
quantitatively refer to time in terms of super-steps as well as in terms of δ-delays.

In order to refer to observations with respect to time, the runs of a system are associated with
timing information.

Statemate’s asynchronous simulation semantics assumes time only to advance between consecu-
tive super-steps, while intermediate steps are executed sequentially without consuming time (except
for δ-delays). This concept of time is captured by the following definition:

Definition 5.6 (Timed Observation Sequence)
For a given CSTS C = (V, θ, ρ, E), we define:

• Let ΣE be the set of possible valuations of the observable variables E.

• Let π = σ0σ1σ2... be an observation sequence for E, with valuations σi ∈ ΣE , i ∈ N0.

• Let τ = τ0τ1τ2... be an infinite sequence of times τi ∈ N0, i ≥ 0 such that τ is monotonic
increasing: ∀i ∈ N0 : τi ≤ τi+1 . We call τ a time sequence.

70

5.3 Real-Time Aspects for the Verification of Statemate Models

A timed observation sequence ts = (π, τ) is a pair consisting of an observation sequence π (cf.
definition 5.3) and a time sequence τ such that σi is the valuation of E at time τi and in step i.
Let further TComps(C) denote the set of all timed observation sequences of C.

�

The chosen time model for verification of asynchronous models associates a super-step of the model
with an instant of time. Time is mapped to natural numbers and elapses in commensurate time
units. Throughout this work, for simplicity the value of a time unit is chosen to be 1. According
to this time model, a timed observation sequence can be obtained from a run of the model by
assuming a global clock which is increased with every super-step. For the asynchronous semantics,
observations at the granularity of single steps are associated with δ-delays, because the synchronous
communication underlying the asynchronous semantics is based on sequentiality of chain reactions
to internal and external changes sensed within a super-step. A quantitative treatment of δ-delays
and steps, respectively, can be achieved by interpreting the distances between positions in the
observation sequence. In contrast, a quantitative treatment of super-steps has to take dynamic
stabilization into account.

Definition 5.7 (Timed Observation Sequences and Stabilization)
Given a CSTS C = (V,Θ, ρ, E) describing the behavior of activity A for the asynchronous execu-

tion semantics, where E is the set of externally observable model variables of CSTS C (according
to the compositional semantics). In particular, part of the interface according to the definition
of intf(A) is the dedicated output SUPER_SYNC, which indicates super-step stabilization and hence
increase of time. The time sequence portion τ of a timed observation sequence can be obtained from
the sequence π:=σ0σ1... of valuations σi ∈ ΣE ,i ≥ 0 by counting truth valuations of SUPER_SYNC:

τi:=







0 i = 0

τi−1 + 1 [[SUPER_SYNC]](σi) = true

τi−1 otherwise

(5.1)

Consequently, π determines the timed observation sequence ts = (π, τ), where τ is derived from π
according to the above equation (5.1).

�

For the synchronous semantics, we disallow multiple steps in the same instant of time. Time is
not only monotonic, but strictly monotonic increasing. The following definition captures the notion
of time for the synchronous semantics.

Definition 5.8 (Simplified Timed Observation Sequence)

• Let ts = (π, τ) be a timed observation sequence, where τ be a monotonically increasing time
sequence.
In contrast to definition 5.6, we require τ to be strictly monotonic increasing, i.e.: ∀i ∈ N0 :
τi < τi+1.
Moreover, we require ∀i ≥ 0 : τi+1 − τi = 1.

We then call ts a simplified timed observation sequence.
�

71

5 System Representation for Formal Verification

Simplified timed observation sequences are the perfect perceptions of systems executing according
to the synchronous semantics. Since time is strictly monotonic increasing, ”next step” means the
same as ”next time”. A simplified timed observation sequence can hence be obtained from an
observation sequence by simply referring to the positions in the sequence.

5.4 System Representation for Formal Verification

A high-level design tool such as Statemate provides a broad range of modeling concepts and offers
the developer an intuitive, application oriented way of specifying a systems functional structure and
behavior.

Syntactical diversity aggravates implementation of efficient algorithms for analysis and verifica-
tion. Verification means performing computations on a semantical representation of a system. The
simpler this representation can be kept, the simpler and more efficient the verification tools can
be designed. Moreover, tailoring algorithms to a particular modeling tool - such as Statemate -
disables the reuse of the verification tools in another verification context. Thus, an intermediate
representation of Statemate system designs is used on the path down to the verification tool set.
The translation into the intermediate format maps high-level constructs of the modeling languages
to more basic - but semantical equivalent - constructs. In addition, the translation introduces explic-
itly all constructs into the model representation, which are required according to the compositional
semantics - such as e.g. the distributed stabilization protocol for the asynchronous semantics, the
interface declarations, etc.

In [Bro99], Brockmeyer presented an automatic and efficient translation of Statemate models
into an intermediate representation, putting the compositional semantics faithfully into practice.
Serving as basis for the verification tool set, the languages SMI (System Modeling Interface) and
SSL (System Structuring Language) have been developed in the context of [Bro99] and [Wit99].
SMI is particularly suitable for representing model behavior, whereas SSL has been designed for
representing the structure of a system and the communication flow among its activities.

SSL provides information about the structureof a system in a more coarse grained and in a
fine grained way, which will be explained later in this section. We will refer to the structure
representation and in particular to the mappings of the fine grained view in chapter 7, where
compositional verification and proof-management will be presented.

System Modeling Interface (SMI)

SMI has been designed to describe the behavior - not the structure - of embedded systems in an
imperative programming language style. SMI programs describe synchronous transition systems in
a step-by-step manner. Each run through the code corresponds to one step of the transition system.
The environment provides the program with new inputs, the program computes new values for its
variables and then waits for new inputs again. Depending on its actual status, the program controls
which variables are assigned with which new values and hence determines the next status of the
system that will become visible to the environment at the end of the step. This way, a SMI program
describes all possible steps which the transition system can perform.

Program statements and control structures of SMI are:

• Sequential composition - in general, all program statements are composed sequentially accord-
ing to the order of their appearance,

72

5.4 System Representation for Formal Verification

• Parallel composition : PAR S1 || ... || Sn RAP - the parallelly composed code blocks
S1,...,Sn are executed independently and without any defined order.

• If-then-else : if b then S1 else S2 end - if boolean expression b evaluates to true, then
code block S1 is executed, otherwise code block S2 is executed.

• Deterministic choices : DCASE [] b1:S ... [] bn : Sn DESAC - each of the choices is
guarded by a boolean condition. Since, at most one of the guards is expected to be true at
the same moment, the first choice whose guard evaluates to true is chosen.

• Non-deterministic choices : NCASE [] b1: S1... [] bn: Sn NDESAC - each of the choices
is guarded by a boolean condition, of which more than one can be true at the same moment.
In this case one of the choices for which the guard evaluates to true is nondeterministically
chosen.

• While loops: WHILE b DO S OD - if the boolean condition b evaluates to true, code block S

is iteratively executed unless b evaluates to false.

• assignments to variables - only local and output variables can be assigned with values. As-
signments to inputs and to constants are not permitted.

• SKIP - does nothing and leaves the state-space of the program unchanged.

In order to distinguish between the value of variables at the beginning of one step and the newly
assigned values, variables exist in a primed and an unprimed version. Primed variables denote the
actual values, while unprimed variables denote the ”old values”, i.e. the value at the beginning
of the step. Unprimed variables keep their value until the end of the actual step. The variables
are updated before performing the next step, i.e. the values of the primed variables are copied to
the unprimed variables. Inputs only exist in an unprimed version, since they are controlled by the
environment and do not change their value during the computation of a step. Assignments of values
are only permitted to primed variables.

Regular variables are externally observable only in their unprimed version. Hence, in general,
reactions to inputs can only be observed in the next step; but sometimes it is necessary to model
instantaneous reactions to inputs, i.e. within the same step. Therefore, SMI offers also a concept
of instantaneous variables. Instantaneous variables are observable only in their primed version.
However, also instantaneous variables keep their value for the next step.

Sometimes, it is not necessary to store temporary results of computations for the next step -
although shared among different assignments, intermediate values are sometimes of interest only in
the actual step. Therefore, SMI supports so-called auxiliary variables, which exist only in a primed
version, i.e. do not memorize their value for the next step. Since auxiliary variables are used only
for intermediate results, they are not observable from outside the program.

For the observation of particular internal values of a program, SMI supports a concept of mem-
oryless observers, which are outputs of the program making observable internal values of interest.
In contrast to auxiliary variables, these outputs are observable from outside the program. Like
auxiliary variables they also do not store their value for the next step.

The variables of a SMI program are collected and defined in a symbol table associated with the
program. Each variable is defined in terms of the following attributes:

73

5 System Representation for Formal Verification

• Name - the name of the data-object. All names are unique in a SMI program.

• Type - SMI supports a rich set of of types: integer, bit, enumeration, condition, string, bit-
array and real are basic types. Based upon these basic types arrays, unions, and records can
be recursively constructed. Integer, reals, bit-arrays and strings are in general unbounded
types. In order to keep the state space of the program finite, variables can be restricted to
subranges of these types.
Arrays, unions, records and subranges are defined using named type-declarations in the
symbol-table.

• Mode - SMI distinguishes a variety of modes as well as some combinations of these modes:
input, output, instantaneous_output, local, auxiliary, observer and constant.

– Inputs are used read only by the SMI program, they are controlled by the environment.
Note that inputs can always change at every step. In order to represent slow inputs
according to the compositional semantics of asynchronous models, buffers associated
with these inputs must be provided by an SMI program representing a super-step model.
These buffers are assigned with input-values only in stable states. Instead of referring to
a real input all accesses to a slow input are replaced by accesses to the associated buffer.
Thus, a slow input is modeled using the basic constructs of an input and a guarded
assignment, where the guard is the indication of a stable status.

– Local or output variables are controlled by the SMI program. The distinction into local
and output is used to denote the intended usage of the data-object. A local data-object is
read and written by the code and not expected to be read outside the code, while output
data-objects are intended to be read by the environment. In contrast to regular output
variables, mode instantaneous_output denotes output variables, for which the primed
version is observable from outside the program instead of the unprimed version.

– Modes auxiliary and observer are useful modes for variables which do not need to keep
their values for the next step. Since variables with mode auxiliary or observer variables
have a defined value only during a step, they do not enlarge the state space of the SMI
program.

– Constants can never change their value - in particular no primed version is required for
their representation.

• Initial value - For constants the initial value defines the value of the constant, otherwise -
for local and output variables the initial value defines the value at initialization. If no initial
value is specified, the variable will be initialized to a data-type specific default. For local and
outputs variables also initialization to a non-deterministically chosen value of their domain
can be specified.
Since inputs are controlled by the environment, they can not be initialized with a particular
value.

The semantics of SMI has been formally defined using Synchronous Transition Systems (STS, cf.
definition 4.2 and [PS97]) . By taking formally defined model interfaces into account, the semantical
definition has been lifted to Compositional Synchronous Transition Systems (CSTS, cf. definition
5.2 and [DJHP97]).

A detailed definition of SMI can be found and its semantics can be found in [BBEH99, BBEW98].

74

5.4 System Representation for Formal Verification

System Structuring Language (SSL)

SMI has been designed to describe the behavior of models. The symbol table associated with a
SMI program defines a set of variables and their directions according to their usage in the SMI
program. This way, all necessary information is provided for technical purposes. Variables added
to the SMI program for only technical reasons, as for example resolution of non-determninism, are
not distinguished from user defined variables in the symbol table. This ’technical interface’, as
provided by the symbol table, represents a glass-box view to a model, while the ’logical interface’
for requirement specifications has to provide a black-box view to the model, hiding away all internals
of the model, such as local variables and auxiliary inputs or observers:

• The translation from Statemate to SMI annotates the SMI program with additional observers.
For example, for each graphical transition an observer is added indicating the transition being
taken. Aimed at supporting specific analysis techniques - such as a drive to transition analysis
-, these observers do not belong to the ’logical interface’ of the represented activity.

• Auxiliary inputs are used for the resolution of non-determinism: SMI supports non-deterministic
choices of code blocks, for which the guards need not be exclusive. By introducing sufficiently
many fresh inputs, the choice of which code block will be executed can be left to the environ-
ment, thus making the non-deterministic choice internally deterministic.

• SMI programs representing activities according to the asynchronous semantics model slow
inputs using primary inputs and buffer-variables as described above. These buffers are local
variables from a technical point of view, which is correctly represented in the symbol ta-
ble. From the ’logical interface’ point of view the driving primary inputs are not observable,
whereas the buffers have to be considered as inputs.

For the definition of logical interfaces and their inter-connections w.r.t. information flow in the
represented system, SMI is embedded in SSL [SAC97], which borrows its structuring operators and
type concept from the hardware description language VHDL. The supported set of basic types and
declaration rules for composed types is rich enough to entirely comprise the type concept of SMI.

All type, sub-type and constant declarations which are required to define typed interfaces and
communication structure of a model are collected in so-called packages. The description of a sys-
tem’s structure refers to these packages containing the required type declarations in order to define
interfaces and the communication structure of the model. We will not consider packages im more
detail here, but refer to [SAC97] instead.

Besides packages, the units of a SSL structure descriptions are entities, architectures and config-
urations.

Definition 5.9 (SSL design description)
Formally a SSL design description is a quadruple

Des = (packages,Entities, Architectures, Configurations), where

• packages is a set of packages containing type, sub-type and constant declarations,

• Entities is a set of entity declarations, each providing a typed communication interface for a
portion of the design,

75

5 System Representation for Formal Verification

• Architectures is a set of architecture bodies, each of them referring to an entity of Entities,

• Configurations is a set of configurations, each of them referring to an entity and an archi-
tecture.

�

In an entity, the observables of components are listed together with their data-flow directions ’in’
or ’out’ and their data-types. This way, an entity provides a unique declaration of a component’s
interface. Each component (activity) of a system is associated with exactly one entity.

Definition 5.10 (Interface)
A SSL-interface IDecl is a set of communication signals, which are also called ports. For each of

the ports p ∈ IDecl, the following attributes are defined:

• name(p) is a unique identifier with respect to IDecl, i.e. all ports in an interface have different
names.

• mode(p) ∈ {in, out} defines the direction of p, and

• type(p) defines the data domain of p by referring to a type declaration in the scope of IDecl.

For an entity E, we will write Intf(E) to denote the interface of entity E.
�

Architectures are used to bind views to entities. They either provide structural descriptions or
serve as containers which incorporate views in view specific representations.

• A structural architecture is a description of a design decomposition level. Structural descrip-
tions are constructed via the declaration of components, their instantiation and definition of
their inter-connections. Component declarations are kind of local entity declarations. In fact,
they are very similar to entity declarations but in contrast to entities, they are no indepen-
dent units of the structure. Components are defined only in the context of the surrounding
architecture. From its component declarations, a structural architecture defines component
instances, to which entities with compatible interfaces can be bound.
Communication between components is represented by connecting their interfaces via signals,
i.e local communication channels. Signals are declared as typed objects locally to the struc-
tural architecture. In order to avoid multiple writer conflicts, each signal can be connected
to at most one output of a component, but to arbitrary many inputs of other components.
Hence, the direction of a signal is determined by the mapping to component interfaces.

• Simple architectures are used as containers for different views to be associated with an en-
tity. Simple architectures are placeholders; variables which can contain any kind of interface
related information. In the context of this work, they are used to associate entities with be-
havior descriptions represented by SMI code, or with a set of STDx requirement specifications.
By integrating SMI code or STDx requirement specifications into the structure description
of a model, architectures play a central role in the management of the decomposed model
representation for verification. Architectures enable the STVE to navigate a structural de-
sign description and to access the different views to the sub-components within an uniform
data-base format.

76

5.4 System Representation for Formal Verification

Definition 5.11 (Classification of Architectures)
Let Architectures be the set of architectures of a SSL design description. Let Akind be a function

indicating the kind of an architecture:

Akind : Architectures→ {behaviour, specification, structural}

Then, for A ∈ Architectures:

• Akind(A):=behavior, if A is a simple architecture containing a SMI program and a symbol
table

• Akind(A):=specification, if A is a simple architecture containing a set of STDx requirement
specifications

• Akind(A):=structural, if A instantiates at least one component instance.

Furthermore, let Contents(A) obtain a set of the contents of A, s.t.

Contents(A):=







∅ if Akind(A) = structural

{spec|spec is a set of STDx specifications } if Akind(A) = specification

{SMI − program, symbol − table} if Akind(A) = behaviour

�

The semantics of Contents(A) for Akind(A) = specification is discussed in section 6.5 and in
section 7.3, respectively. According to definition 5.2 and [DJHP97, Bro99], [[Contents(A)]] is given
by a CSTS, if Akind(A) = behavior. Of course, the definition of Contents(A) is a bit informal,
but sufficient for the intention of this work, because we only need a notion of an access-function to
the contents of architecture A and their meanings.

The semantics of structural architectures is considered in the remainder of this section. In practice,
the definition of kind and contents of architectures can easily be extended also to, for example, Live
Sequence Charts [Klo03], as it has been done for the cited work.

Each entity can be associated with different architectures: for example, a structural description,
another architecture containing a SMI program and a specification architecture containing a set of
STDx requirement specifications may refer to an entity. Configurations uniquely denote a pair of
one entity and one of its architectures.

Neither architectures nor configurations are independent units of a design structure, but always
refer to an entity.

Definition 5.12 (Relations among Entities, Architectures and Configurations)
Given a SSL description of a design, let

ent : Architectures ∪ Configurations→ Entities

denote the referenced entity for each architecture or configuration.
Furthermore, for each configuration let

arch : Configurations→ Architectures

77

5 System Representation for Formal Verification

denote the configured architecture.
Then, for a configuration and a configured architecture it must hold:

ent(arch(C)) = ent(C).

While the interface of each component of a system is represented by exactly one entity, the different
views to a component can be represented by arbitrary many architectures. Let Archs : Entities→
Architectures and Configs : Entities → Configurations denote the sets of architectures and
configurations respectively, which refer to a particular entity, s.t.:

• Archs(E) denotes the set {A ∈ Architectures|ent(A) = E}, and

• Configs(E) denotes the set {C ∈ Configurations|ent(C) = E}.

�

Structural architectures instantiate components of the declarations and assign names to these
instances. Like a local variable, a component instance is a typed placeholder for the instantiation of
an appropriate sub-design within a structural architecture. Although component instances have a
meaning only w.r.t. the instantiating structure, they rigorously define the interface to a sub-design
which can be instantiated within the structure. Later on, configurations bind concrete entities and
architectures to these local interfaces.

A structural architecture can best be compared to a hardware board. The board provides sockets
to plug in circuits with an appropriate pin-out. The layout of the board wires the pins of the
sockets, without implementing further behavior. Then, plugging the right circuits into the sockets
of the board is a matter of configuration. While the interface of the board does not change, the
configuration selects appropriate circuits to be plugged into the sockets.

In order to keep the formal treatment of component instances as simple as possible, we assume
that all component instances are assigned unique names8

Let CompInsts be the set of component instances of all structural architectures in a design. Then,
we write comps(A) to denote the set of component instances of a particular structural architecture
A, where comps is given by

comps : Architectures→ 2CompInsts.

The mapping of inter-connections between component declarations and the mapping of compo-
nent instances to entities consists of two parts. The structural architecture defines local component
interfaces and local inter-connection channels. The component interface objects are mapped to
either the local inter-connection channels or to interface objects of the entity to which the archi-
tecture is bound by a configuration. The configuration of a structural architecture not only binds
configurations - each identifying an entity-architecture pair - to the component declarations, but
also maps the component interface objects to interface objects of the instantiated entities.

By recursively associating configurations to components of a structural architecture, pairs of
entities with associated architectures are associated with the components. This way, entire design
hierarchies can be identified with their respective top-level configuration.

8In the technical realization, component instances are uniquely accessible using the information about instantiating
architecture and the entity referred to by the activity.

78

5.4 System Representation for Formal Verification

Definition 5.13 (Recursive Configurations)
A configuration C of a structural architecture A associates the component instances of A with

configurations. Let

Assocs : Configurations→ 2CompInsts×Configurations, s.t.

Assocs(C) denotes the set of associations for component instances of a structural architecture
arch(C) with configurations defined by configuration C ∈ Configurations:

{(comp_insti, Ci)|comp_insti ∈ comps(arch(C)) ∧ Ci ∈ Configurations}

• For ca ∈ Assocs(C)

– let Inst(ca) denote the component instance of association ca, and

– let Conf(ca) denote the configuration of association ca.

�

Using definitions 5.11 and 5.13, the configurations of a design description can be classified re-
garding the contents of the configured architectures.

Definition 5.14 (Classification of Configurations)
The classification of configurations w.r.t. the contents of the configured architectures is given by:

Ckind : Configurations→ {behavior, specification,mixed} , s.t.

.
for a given configuration C:

• Ckind(C):=behavior, if either

1. Akind(arch(C)) = behavior, or

2. Akind(arch(C)) = structural
∧
∀ca ∈ Assocs(C) : Ckind(Conf(ca)) = behavior

• Ckind(C):=specification, if either

1. Akind(arch(C)) = specification, or

2. Akind(arch(C)) = structural
∧
∀ca ∈ Assocs(C) : Ckind(Conf(ca)) = specification

• Ckind(C):=mixed, if (6 ∀ca ∈ Assocs(C) : Ckind(Conf(ca)) = behavior)∧(6 ∀ca ∈ Assocs(C) :
Ckind(Conf(ca)) = specification)

We further need a measure for the depth of a configuration. Let depth : Configurations → N be
this measure, where

depth(C):=







0 if AKind(arch(C)) = specification

∨AKind(arch(C)) = behavior

max{depth(Conf(ca)) + 1| otherwise

∀ca ∈ Assocs(C)}

�

79

5 System Representation for Formal Verification

Fact 5.2 (Depth of Specification Configuration)
Without further proof, we state the following fact: Integrated with the STVE is a tool that initiates

the architectures and configurations forming the specification configuration hierarchy for an existing
SSL design description. This tool guarantees that:

∀C : (Ckind(C) = specification) ⇒ (depth(C) ≤ 1)

�

Using SSL and SMI, Statemate models are translated into a modular intermediate representa-
tion suiting the compositional semantics. Hierarchy and communication relations of the components
are described by SSL, while the behavior of the components is described by SMI code assigned to ar-
chitectures of the structure description. Semantically, a SSL structure with behavioral architectures
is interpreted as the synchronous parallel composition of its components.

It depends on the complexity of a considered system component, if its SMI representation is
directly manageable by the verification tools or if the verification task has to be decomposed to
smaller sub-components. The translation of Statemate models to SSL and SMI produces equiva-
lent structural and behavioral representations for every activity, which is not a leaf of the hierarchy.
Statecharts can not be further decomposed. Hence, they are always represented by leaves of the
SSL hierarchy.

Fact 5.3 (Equivalent Behavioral Configuration for Structural Configurations)
The model representation using SMI and SSL according to [Bro99] guarantees that for each struc-

tural configuration Cstruc with Ckind(Cstruc) = behavior and depth(Cstruc) > 0 there exists a
configuration Cbeh with depth(Cbeh) = 0 and Ckind(Cbeh) = behavior, s.t. Cbeh is behaviorally
equivalent to Cstruc.

More formally:

Let C(C) denote CSTS C, which represents the behavior that is associated with ent(C) by C. Let
C(Conf(ci)) be the set of CSTS Cci , which represent ci ∈ Conf(ci) according to ent(Conf(ci)) for
all ci ∈ Assocs(Cstruc). Then:

∀Cstruc, depth(Cstruc) > 0 : ∃Cbeh : depth(Cbeh) = 0 :

∀ts ∈ TComps

(

||
ci∈Assocs(Cstruc))

C(Conf(ci))

)

⇔ ts ∈ TComps(C(Cbeh))

�

We have to take fact 5.3 as given without further proof for the context of this work. We refer the
reader to [Bro99] for the foundation of this fact.

As an example we consider the top-level activity of the radio-based signaling system as shown in
figure 3.2 .

Example

Activity chart SYSTEM communicates with its environment via sensors and actuators both repre-
sented by external activities (dashed boxes in figure 3.2). Flowlines denote which data-items are
communicated from the sensors to SYSTEM and which data-items and events are communicated from

80

5.4 System Representation for Formal Verification

SYSTEM to the actuators. From the flowlines and the usage of events, conditions and data-items in-
side SYSTEM an entity declaration is derived which captures the communication interface of SYSTEM.
In addition, all scheduling primitives required according to the compositional semantics are added
to the interface. The resulting entity declaration is depicted as triangle in figure 5.2.

An architecture (represented by the filled rectangle in 5.2) is created as container for the behavior
description of the entire model, i.e. SMI code and symbol table describing the behavior of activity
chart SYSTEM. This behavior description instantiated by the architecture refers to the observable
interface as defined by the entity. A configuration (depicted as circle) binds the architecture to the
entity. Hence, configuration SYSTEM_SMI_CONFIG uniquely denotes this pair of entity SYS_ENT and
architecture SYS_BB.

SYSTEM_SMI_CONFIG

SYS_BBSYS_ENT

Figure 5.2: Basic SSL description

Activity chart SYSTEM consists of three sub-activities , TRAIN , CROSSING , and COMMUNICATION.
Like SYSTEM, triples of entity, architecture and configuration represent interfaces and associated
behavior for the sub-activities.

As discussed above, an entity can be associated with different views. A structural view of activity
chart SYSTEM is represented by binding a structural architecture SYS_SB (depicted by the empty
rectangle in figure 5.3) to entity SYS_ENT.
SYS_SB provides declarations of interfaces for sub-components together with mappings between

these interfaces using local inter-connection channels. The sub-component interfaces fit to the
entities TRAIN_ENT, CROSS_ENT and COMM_ENT - modulo renaming - of the interface objects.

SYSTEM_STRUC_CONFIGSYSTEM_SMI_CONFIG

SYS_BB

TRAIN_SMI_CONFIG COMM_SMI_CONFIG CROSS_SMI_CONFIG

COMM_ENT CROSS_ENTTRAIN_BB COMM_BB CROSS_BBTRAIN_ENTSYS_ENT

SYS_SB

Figure 5.3: SSL Hierarchy

Figure 5.3 shows configuration SYSTEM_STRUC_CONFIG binding the structural architecture SYS_SB

to entity SYS_ENT and also binding the configurations TRAIN_SMI_CONFIG as well as COMM_SMI_CONFIG
and CROSS_SMI_CONFIG to component declarations of the structural architecture SYS_SB.

81

5 System Representation for Formal Verification

Fine Grained View

Besides defining coarse grained associations of which entity-activity pair is instantiated at which
component instance, SSL also defines the concrete mapping of interfaces to interfaces in a fine
grained manner.

Since interfaces and interface-mappings have to strictly conform to type compatibility rules,
entities as well as architectures and configurations have to refer to type declarations - as they
are provided in packages. Therefore, each design unit of SSL - package, entity, architecture or
configuration - has its own so-called scope. The scope of a design unit consists of all declarations
visible to the particular design unit. The contents of a package can be made visible to a design unit
by a so-called use-clause.

Definition 5.15 (Scope)

• The scope of an entity contains all contents of used packages as well as the interface objects
declared by the entity.

• The scope of an architecture is inherited from the entity to which the architecture refers.
Within the scope of an architecture are also all additionally used packages as well as the
signal declarations contained in the architecture.

• The scope of a configuration is inherited from the configured architecture. In case of a struc-
tural configuration, the scope is extended also with the scopes of the configurations associated
with the component instances.

�

For a structural architectureA and one of its component instances comp_inst, let CIntf(comp_inst, A)
denote the interface defined by comp_inst w.r.t. A. The only difference between this definition and
definition 5.10 is that an entity has its own scope, while a component instance is defined only in the
scope of structural architecture A. Thus Cintf(comp_inst, A) explicitely refers to A in order to
take the scope of A into account, while for Intf(E) for an entity E the scope is already determined
by E. Note, that although ports of different component instance interfaces may have the same
name, they are uniquely identified in the scope of the instantiating structural architecture by their
access path.

The interface objects of component instances are mapped to either signals declared by the struc-
tural architecture or to interface objects of the entity to which the structural architecture refers.
A direct mapping of a interface objects of one component instance to interface objects of another
component instance is not permitted. Thus, for all inter-connections between component instances,
appropriate signal declarations have to provide communication channels to connect the interfaces
of the components.

Definition 5.16 (Signals of an Architecture)
The local signals LocSig declared in a structural architecture A form a set, for whose elements

sig ∈ LocSig the following attributes are defined:

• name(sig) is a unique identifier with respect to LocSig and Intf(ent(A)).

• mode(sig) = local specifies that the signal is local to architecture A

82

5.4 System Representation for Formal Verification

• type(sig) defines the data domain of the signal by referring to a type declaration in the scope
of A.

The signals in the scope of A are then given by

Sig(A) = LocSig(A) ∪ Intf(ent(A)).

�

SSL requires type consistency for the mappings. Only ports and signals with compatible types
can be mapped to each other.

Each communication channel must have a unique driver. One output of a component can be
connected to one or more inputs of other components via signals, s.t. broadcasting can be realized
through this concept. In particular, it is not permitted to connect different outputs of component
declarations to one input of a component declaration via a signal - since this would induce write
conflicts which need resolution. Especially, there is no direct mapping of shared-variable parallelism
which is quite often used in Statemate models. Such access resolution problems have to be provided
explicitly within a SSL structure, for instance by providing appropriate additional components,
resolving write/write and read/write conflicts.

The inter-connections between component instances and the connections to the interface of the
actual decomposition level are described by a mapping.

Definition 5.17 (Mapping of Structural Architecture)
The mapping of component instance interfaces to the scope of a structural architecture A is given

by the mapping

mapa :

⋃

comp_inst ∈ comps(A)
CIntf(comp_inst, A) → Sig(A), s.t.

• type(mapa(i)) = type(i) , i.e. the mapping is type conform.

• mode(i) = out⇒ mode(mapa(i)) 6= in , i.e. outputs of a component interface can be mapped
to local signals of A, or to outputs of the entity ent(A) , to which A refers.

• mode(i) = in ⇒ mode(mapa(i)) 6= out , i.e. inputs of a component interface can be mapped
to local signals of A, or to inputs of the entity ent(A), to which A refers.

• ∀sig ∈ Sig(A) :






mode(sig) = in∧ 6 ∃i ∈ mapa−1(sig) : mode(i) = out
mode(sig) = out ∧](mapa−1(sig)) = 1 ∧ ∃i ∈ mapa−1(sig) : mode(i) = out
mode(sig) = local ∧ ∃i ∈ mapa−1(sig) : mode(i) = out ∧ ∀j ∈ mapa−1(sig) :

j 6= i⇒ mode(j) = in

If sig is an input of ent(A), then arbitrary many inputs of component interfaces can be mapped
to sig.

If sig is an output of ent(A), then exactly one output of one component interface must be mapped
to sig.

If sig is a local signal of A, then there must be exactly one output from component interface be
mapped to sig, while other component interface ports mapped to sig can only be inputs.

�

83

5 System Representation for Formal Verification

Definition 5.18 (Compatible Interfaces)
Two interfaces IDecl1and IDecl2 are called compatible, if for all interface objects of IDecl1 there

exists a interface object in IDecl2 with same mode and same type, and vice versa.
�

Definition 5.19 (Wellformedness of Configurations)
A configuration C of a design is wellformed if the following conditions are fulfilled:

completeness ∀comp_inst ∈ comps(arch(C)) : ∃ci ∈ Assocs(C), s.t. Inst(ci) = comp_inst, i.e.
all component instances are associated with a configuration.

consistency ∀ci ∈ Assocs(C) : Intf(ent(Conf(ci))) is compatible with CIntf(Inst(ci), arch(C)),
i.e. for all associations of component instances with configurations, the interface of the entity
bound to the component instance is compatible with the interface of the component instance.

pureness Ckind(C) 6= mixed, i.e. all component instances are associated with configurations of
either kind behavior of of kind specification.

�

Definition 5.20 (Scope of a Structural Configuration)
The scope of a wellformed configuration configuring a structural architecture is given by:

• SigCompConf : Configurations → 2Configurations×SigNames, where SigCompConf(C) de-
notes the set:

⋃

ci ∈ Assocs(C)
{(config, sig)| config = Conf(ci)∧

sig ∈ Intf(ent(Conf(ci)))}

• SigConf(C) = SigCompConf(C) ∪ {(C, sig)| sig ∈ Sig(arch(C))}

�

A structural configuration maps every port of an entity associated with a component instance to
a port or signal in the scope of the structural architecture.

Definition 5.21 (Mapping of a Structural Configuration)
A wellformed configuration C configuring a structural architecture defines a mapping

mapc : SigCompConf(C) →

⋃

comp_inst ∈ comps(arch(C))
CIntf(comp_inst, arch(C)).

Hence, in combination with the mapping of the configured structural architecture (cf. definition
5.17)

mapa :

⋃

comp_inst ∈ comps(arch(C))
CIntf(comp_inst, arch(C)) → Sig(arch(C)),

84

5.4 System Representation for Formal Verification

the mapping of interfaces - of entities bound to the component instances - to the scope of the
structural architecture is defined by:

mapa ◦mapc : SigCompConf(C) → Sig(arch(C))

�

85

5 System Representation for Formal Verification

86

6 Requirement Capturing for Open

Embedded System

In section 2.2, the different roles in the V-Model development process have been discussed. In each
phase of the development process an incremental sub-process is performed (cf. figure 2.1). Within
these sub-processes the particular product is developed by iterative refinements. The iterations
start with the product developed in the previous phase plus the requirements to be met in the
current phase. After completion of the refinement iterations, the product is submitted to quality
assessment. Then, either quality assessment accepts the product or rejects its acceptance. In the
latter case the incremental sub-process is re-iterated until the product is submitted to assessment
again.

In the model based development process described in this work, products of the earlier phases are
conceptual Statemate models. Formal verification can be applied not only in the assessment of
submitted models, but can also support modeling activities during the refinement iterations of the
development itself. Various quality criteria can formally be established already during the iteration
cycle, thus increasing not only the quality of intermediate products but also the traceability of the
development process itself. Since conceptual models produced in the early phases are aimed at
being reference models for later phases of the development, clearness and accuracy of these models
is a major concern of model based development processes. Dedicated formal analysis techniques
support the developer in detecting and avoiding ambiguities and modeling flaws. Basic robustness
criteria are, for example, absence of graphical transition non-determinism or absence of hazardous
accesses to variables of the model. Also range violations in assignments to model variables are severe
modeling flaws, which have to be detected and eliminated as early as possible in the development.

Another issue of interest already during the development is reachability of particular states or
transitions. Formal proofs of reachability or unreachability of specific state configurations or variable
valuations provide important hints regarding correctness of a model. Reachability checks can be
applied in order to detect dead code as well as to produce specific simulation stimuli sequences.

Since model checkers can generate witness traces showing how a particular specification can be
violated by a model, model checking can be utilized to systematically generate witnesses document-
ing computations of interest. This can be achieved by claiming a particular configuration of the
model to be unreachable, and then using a model checker to falsify this claim. The resulting witness
traces can be translated into simulation control programs, driving simulations of the model using
the Statemate simulation tool. This way, model checking can be applied as a valuable and formal
debugging aid.

Application of model checking for robustness analyses and reachability checking during the devel-
opment needs to be integrated seamlessly with the development tools employed in the refinement
iterations of the development. Since model analysis and formal debugging are to be applied by
developers as part of their development activities, application of these techniques must not require
too much expert knowledge. Checks to be performed can be defined by e.g. selection of graph-

87

6 Requirement Capturing for Open Embedded System

ical states or transitions. From this selection a specification is generated, which claims that the
selected transition respectively the selected combination of states is never reachable in the model.
If this claim is violated, i.e. the situation specified this way is reachable in the model under con-
struction, the developer is provided with a trace showing a computation which finally reaches the
specified situation. Not only graphical states and transitions can be selected, but also arbitrary
boolean expressions ranging over the variables and events of the model can be entered in order to
define reachability analyses. Hence, model checking provides constructive - and definite - answers
to questions a developer wants to ask about the model.

Proving functional and safety requirements is necessarily more complicated and requires higher
effort than robustness checking and formal debugging. Requirements such as e.g. “a train must never
pass an unsecured crossing” or “whenever a crossing is unable to report its status, the train will
stop in a secure distance before the crossing” have to be formalized using an adequate specification
formalism.

In order to ease the formalization of requirements and to require as little expert knowledge as
possible, predefined temporal schemes - so-called pattern - are offered to the user of the STVE.
Pattern are observer automata-templates encoding temporal relations between formal parameters.
A concrete specification for verification can then be obtained by instantiating an appropriate pattern,
with its formal parameters mapped to expressions referring to particular variables and states of the
model.

Fortunately, many important requirements are of rather simple temporal nature - quite often
referring to sequentiality or causality of not more than three observations1.

For example, the requirement “a train must never pass an unsecured crossing” can be formalized
using an instance of a Q_only_after_P-Pattern, where the formal parameter P is mapped to an
expression indicating a secured crossing and Q mapped to an expression indicating a train passing
the crossing.

Often assumptions about the environment need to be used in order to focus on specific situations in
which requirements must be fulfilled. Therefore, all pattern offered by the STVE can be instantiated
in assumption place as well as in commitment place, i.e. for formalization of system requirements.

It depends on the criticality of the requirement, whether conformance to particular temporal
specifications needs to be repeatedly verified during the development iteration (after application of
changes to the model). Alternatively, it may suffice to prove adherence to the requirement only
at the final assessment at the end of the iteration. Definition of a proof-obligation once with the
STVE, produces a proof script which can be re-executed whenever changes applied to the model
make this desirable. Thus, requirement formalizations and generated proof scripts can be reused
throughout the entire development phase.

Obviously, the usage of predefined pattern has its limits. In general, predefined pattern can not
capture every requirement of interest. Although new custom-specific pattern can be provided by
experts on demand - and have been added also during writing of this thesis, complicated user-
defined specifications can better be formalized using the graphical specification formalism Symbolic
Timing Diagrams (STDx), which is also integrated with the STVE. Symbolic Timing Diagrams
provide an intuitive and easy comprehensible way of graphically specifying requirements in terms

1In section 2.2, we already cited [ESt97, 4-18], elaborating on the desired locality of important functionality. In
particular, the more safety critical an embedded system is, the more clearly it should be structured. Safety critical
functionality must not rely or depend on too much prerequisites and must not involve dependences on unreliable
parts of the model. Following this guideline, the degree of inter-dependences is a quality measure for safety critical
systems.

88

6.1 Robustness Analysis and Formal Debugging

of interface observations of a model. Although their formally defined semantics aims at being
intuitively understandable, some expert knowledge is required to capture requirements using STDx.

This chapter is organized as follows: In section 6.1, robustness analysis and formal debugging
techniques - as offered by the STVE - are explained. Section 6.2 gives a comparative overview of the
approaches to capturing user-defined requirements, as supported by the STVE through pattern and
STDx. Pattern and STDx share the common semantical basis of Timed Symbolic Automata (TSA):
Pattern are basically hand written instances of TSA observer modules , while STDx diagrams are
unwound by an algorithm into TSA. From these TSA, synchronous observers are generated for
application in verification.

The formalism and semantics of TSA is presented in section 6.3. Pattern are briefly presented
in section 6.4. Section 6.5 concludes this chapter with the presentation of the graphical formalism
STDx and the definition of a formal semantics semantics for STDx specifications that is based on
an unwinding algorithm.

6.1 Robustness Analysis and Formal Debugging

As presented in section 3.1 Statemate offers powerful facilities for (graphical) development of
models. A key issue of modeling using the Statemate tool set is executability of models in every
state of concretization, in early phases of a development as well as for more matured models of later
phases. Since models of earlier phases may be built in a possibly very abstract manner, Statemate

permits non-determinism in various ways.
The Statemate simulator follows different resolution strategies in order to deal with such non-

deterministic situations. A key feature of Statemate’s simulation semantics is the parallel exe-
cution of independent parts of models. All activities are executed in parallel. Consequently, write
accesses to data-items shared among activities may lead to multiple writer hazards, which are re-
solved by the simulator automatically by randomly choosing one of the possible results. Conflicts
are only reported during simulation without prompting for user interaction.

In case of transition non-determinism the simulator follows a different strategy. For each sim-
ulation step the simulator determines which transitions are enabled, i.e. these transitions whose
trigger expressions evaluate to true in the actual system state. From these transitions the simulator
computes the maximal sets of non-conflicting transitions (cf. Basic Step Algorithm, section 3.2) .
When the simulator detects more than one of such sets the user is prompted for interactive selection.

When using Statemate models as conceptual reference models for subsequent development
phases, non-determinism contradicts the desired intuitiveness and unambiguouity. A model should
be as unambiguous and robust as possible, in order to serve as reference model; non-determinism
and hazards are sources of ambiguities and need to be detected and eliminated.

While the simulator detects and resolves non-deterministic situations when they occur during sim-
ulation, there exists no analysis within the Statemate tool-set detecting possible non-determinism
or hazards in advance. In general, dynamical occurrence of non-determinism depends on certain
valuations of variables or state configurations. For example, two transitions with triggers ’[i>=4]’
and ’[i<=4]’ for an integer variable i conflict only if the value of i is 4. For all other values of i,
the triggers are mutually exclusive and the simulation behaves deterministically.

Another source of problems is specific to Statemate’s asynchronous simulation semantics. As
described in section 3.2, asynchronous stabilization is a dynamic property established upon syn-
chronous execution of a series of steps. An asynchronous model becomes stable only if no internally

89

6 Requirement Capturing for Open Embedded System

generated events or changes of data are to be processed any more. In general, there exists no upper
bound to the length of step sequences to be performed unless becoming stable, but a model that
does not stabilize under all circumstances must be treated as divergent. Unfortunately, the State-

mate tool set itself offers no analysis for divergence detection, and also the simulator can not detect
divergence.

Since time advances only in stable states of asynchronous models, sequences of steps collapse
to a single point in time from the perspective of the asynchronous execution semantics. Thus, a
class of possible hazards is related to asynchronous models: sequential data hazards. Read/Write
or Write/Write accesses to data-items sequentially taking place within the same super-step of an
execution must be treated as hazards from the perspective of time, although they are separated
by delta delays. Again, Statemate’s simulator reports such hazards when they occur during
simulation, but like synchronous hazards, Statemate offers no analysis for detection of sequential
hazards in advance.

Computing values and assigning them to data-items always may lead to range violation errors. A
computed value may not fit into the range of a data-item, it might be less or greater than the lower
or upper bound of the data-item’s domain. Such range violations may lead to severe errors. Again,
Statemate’s simulator issues a warning only when a range violation occurs during simulation.

Analyses

Beyond syntactic checks, Statemate offers no systematic analyses for detecting possible modeling
problems or errors in advance. Range violations, non determinism, data hazards and diverging
super steps are detected only when they take place during simulation, otherwise they remain unde-
tected. Hence, exhaustive simulation is the only strategy supported by Statemate to discover such
erroneous situations. How many errors can be discovered by simulation depends on the coverage of
the state space of a model. Systematic interactive simulation is time consuming, while there exists
no warranty of detecting all errors in a model.

Formal verification can be used for a more sophisticated error detection. Because of the ability of a
model checker to explore the entire state space of a model at once, model checking can systematically
be utilized to analyze all possible runs of a model for erroneous situations.

The STVE offers specific and systematic analysis for particular modeling problems.:

• Stabilization Bound Check. From a technical point of view the bounded stabilization check
differs from all other error analysis checks. This check aims at establishing a definite upper
bound for the amount of steps an asynchronous model maximally performs until reaching a
stable status. Hence, it must be verified that for all possible computations no sequence of
steps is longer than an user defined upper bound without reaching a stable status. Informally,
this can be achieved by extending the model with a counter, which is reset in stable states and
incremented by one in each unstable step of the model. If the counter exceeds the upper bound
for some computation, a witness showing this particular computation prefix is generated2. If
otherwise the counter can never exceed the upper bound, freedom of super-step divergence
under all circumstances has been formally proven for the model. As described in section
15, becoming stable is indicated by an asynchronous model through issuing a designated
SUPER_SYNC event.

2This witness is translated into a Statemate simulation control program, which can be loaded and executed with
Statemate’s simulator.

90

6.1 Robustness Analysis and Formal Debugging

Technically, stabilization bound analysis is a specialized application of pattern verification:
the model is verified for a pattern instance of inv_finally_P_B with formal parameter P

mapped to SUPER_SYNC and the bound-parameter B mapped to the user defined upper bound.
Pattern verification will be discussed in section 6.4.

• Robustness Analyses. In contrast to stabilization bound checking, robustness checks are per-
formed in two phases. In a static analysis phase, the model is inspected w.r.t. the chosen kind
of possible error or non-determinism and annotated with dedicated additional outputs first,
which indicate occurrence of the conflict under consideration. In the second phase reachability
of conflict indication by these newly introduced outputs is examined.
After model preparation it suffices to check for reachability of a truth valuation for the dedi-
cated output obs in order to obtain the desired result. If the prepared model satisfies AG¬obs,
the potential conflict for which obs has been introduced does not occur for any computation
of the model. If, on the other hand, the prepared model violates AG¬obs, then there exists a
computation along which the conflict arises. In case of reaching such a situation, the model
checker produces a witness path which is translated into a simulation control program that
can be animated using the Statemate simulator.
In contrast to the stabilization bound check, robustness checks focus on rather local properties
of the model, for which a Cone of Influence computation (cf. section 7.2) often yields a drastic
reduction of the state space.

– Write/Write and Read/Write Hazards: A Write/Write hazard can affect a data-item only
if the control structure of the model representation permits more than one assignment
to this data-item in the same step of the model. If there exists only one assignment to
a particular variable or if the control structure of the model statically inhibits conflict-
ing assignments to this variable, it can be excluded from further analysis. Otherwise,
all assignments to the same variable which are not mutual exclusive due to the control
structure must be treated as potentially conflicting. Each of these potential non-exclusive
assignments is annotated with a newly introduced fresh auxiliary variable which is set
to ’1’ when the assignment is executed. After annotation, each of the model variables
which is potentially affected by multiple write accesses, is associated with a set of these
auxiliary variables. Since auxiliary variables keep their value only within one step and
are reset at the beginning of each step, their sum always represents the number of as-
signments to the associated model variable in the actual step. A new dedicated output is
introduced which is set to ’true’ if the sum of such a set of auxiliary variables is greater
than ’1’.
At the end of the static analysis phase each potentially affected data-item is associated
with a newly introduced output and the model is fully prepared for reachability analysis
in order check for dynamic occurrence of conflicting write accesses.
The user is offered a list of all data-items which are potentially affected by multiple
assignments. For each user selection, reachability of a truth valuation of the associated
new outputs obsi is checked by claiming AG¬obsi.
A similar analysis and annotation strategy is applied for detection of Read/Write Haz-
ards: for Read/Write Hazard the preparation is implemented in a way that the introduced
outputs associated with a particular data-item is set to true if at least one read and one
write access take place within one step.

91

6 Requirement Capturing for Open Embedded System

Recall, that conflicting data access hazards are captured by the simulation semantics of
Statemate:

∗ Read/Write hazards are no real hazards in terms of the model, since Statemate’s
basic step algorithm guarantees a δ-delay for all assignments: read accesses always
refer to the value of data-items at the beginning of a step, while write accesses do
not change their values instantaneously. Write accesses to data-items only produce a
projected new value, which will become visible first at the beginning of the following
step. Although Read/Write hazards are no problem with respect to the simulation of
a Statemate model, they can lead to misunderstandings or interpretation problems
in later phases of the development process and hence, should be at least handled with
care. Especially, when parts of a model - executed in parallel - trigger each other via
producing and consuming data values, Read/Write hazards are often unavoidable.
It depends on the subsequent development phases and the further use of the model,
how these hazards have to be treated.

∗ Also Write/Write hazards are automatically resolved by the Statemate simulator.
For conflicting assignments, the simulator chooses - using internal rules - an order
of execution, s.t. the written value seems to be chosen non-deterministically to the
developer. Since the result of conflicting write accesses depends on internal rules of
the simulator, Write/Write hazards are undesirable even in terms of the model itself.
From the perspective of a reference model, they must be treated as modeling flaws.

– Write/Write Hazards with different values: Write/Write hazards are reported by the
Statemate simulator without regard of the written values. Designers often consider
Write/Write hazards with equal values not to be harmful. But, even in these cases it
is useful to establish evidence that the conflicting write accesses never assign different
values to a data-item. In addition to Write/Write hazard detection as described above, all
possible orders of execution of conflicting assignments must be checked and the assigned
values have to be compared for this analysis.

– Transition Non-Determinism : multiple transitions starting in the same graphical state
might be enabled if their triggers are non-exclusive according to the priority rules of
Statemate3. In case of exclusive triggers, such as ’[not(cond)]’ and ’[cond]’ for
a condition cond the affected transitions can be excluded from dynamic reachability
analysis. For non-exclusive triggers, such as for example ’[i<3]’ and ’[j>2]’ only a
dynamic reachability analysis can determine whether both expressions can evaluate to
’true’ at the same step or not. The static analysis phase considers each scope of the
model - i.e. each hierarchical state - and annotates all non-exclusive transition triggers
of this scope with newly introduced outputs. The user is offered the list of scopes for
which such outputs have been introduced. According to the user selection of scopes,
again reachability analyses for the associated new outputs can be performed.

– Range Violations : The intermediate values of arithmetic expression are compared to
the defined lower and upper bounds of the target domain before assigning the value to a
variable and the comparison results are assigned to fresh auxiliary variables. Auxiliary
variables indicating range violations for a particular data-item are collected in a disjunc-
tion. If any term of this disjunction becomes true,the domain definition of a data-item

3If transitions of different levels can be taken, Statemate priorizes the highest level transition (cf. section 3.1)

92

6.1 Robustness Analysis and Formal Debugging

has been violated by an under- or overflow and a dedicated newly introduced output is
set to true. For each of the variables guarded by such bound comparisons, a dynamic
reachability analysis.r.t. the associated output can be performed. The model preparation
needs to be performed only for variables which are assigned computed values or which
are assigned values from variables with domains different from the target domain.

– Sequential Hazards: In contrast to hazards occurring within a single step, sequential
hazard analysis has to memorize all accesses to variables between two successive stable
states. Thus, it is unavoidable to introduce variables which memorize data accesses for a
series of steps and which are reset in stable states. Except for this difference, the strategy
is quite similar to the step hazard analysis.

– Analysis for sequential Write/Write hazards with different values is not offered at the
moment of writing.

Often, application of analyses to the entire system model suffers from the complexity of the model.
Thus, it is important to understand, that it is often sufficient to apply analyses only to sub-activities
of the system model. Due to the compositional semantics [DJHP97], each sub-activity representation
provides inputs for all variables and events which can be influenced from outside the sub-activity
under consideration. All inputs from the surrounding model are unrestricted when considering an
activity in isolation. Hence, analysis of an activity in isolation uses a strict over-approximation of
the real interaction with the sibling activities, whereat over-approximation preserves unreachability
results. E.g. if a potential transition non-determinism turns out to be unreachable already in an
isolated component, it can in no case be reachable in the entire system model. The same counts
also for data hazards: If a variable is not dynamically affected by e.g. a write/write hazard within
the minimal subsystem, which contains all write-accesses to the particular variable, this result holds
in the scope of the entire system model. Thus, identification of the minimal subsystem to which
a particular analysis needs to be applied, often drastically reduces the required verification effort.
Only if the particular analysis reveals a reachable conflict-situation for the selected scope, it might
be necessary to apply the analysis to a larger part of the model. As a recommended methodology
for analyses according to the compositional semantics, the developer should :

1. Identify potential problems by applying the static phase of the respective analysis to the
top-level.

2. If the static phase of an analysis offers potential conflicts for selection, the developer should
identify the minimal scope, i.e. the lowest hierarchy level, which contains the potential con-
flict and apply first the analysis to this scope. Either the model checker finds a witness for
reachability of the potential conflict or the conflict is unreachable for all larger scopes in the
system.

3. Only if a potential conflict turns out to be dynamically reachable for a particular scope, it
might be necessary to apply the analysis also to the enclosing scope - if it is not desired or
possible to eliminate the conflict already in the considered sub-system.

This methodology is applicable to all analyses except for stabilization bound checks. Unfortunately,
always all parts of a model contribute to super-step stabilization. Hence, stabilization checks must
be applied to the entire model and can not be established using simple compositional conclusions.

93

6 Requirement Capturing for Open Embedded System

Formal Debugging Techniques

Beyond predefined analyses that are aimed at detection of conflicts in the model, the STVE offers
also checks for reachability of states, transitions and particular valuations of variables. Reachability
analysis for user defined model configurations can be used for dedicated generation of specific
simulations. Witnesses obtained from these checks can be used to drive simulations into particular
model configurations of specific interest. These simulations can for example be used as simulation
prefixes to explore model behavior by starting interactive simulation with the reached configurations.

Robustness analyses are applied within an iterative cycle of finding a bug, fixing this bug and
re-application of the analyses until hopefully no conflict remains in the model. Hence, the final
goal of robustness analyses is to yield ’true’ - results for all proof-obligations generated in the static
analysis phases. Of course, reachability checks for user defined configurations can also be used for
verification that e.g. an undesired combination of states can never be reached or that a variable can
not be assigned an undesired value. But, in general, the ’simulation generation’ use-case is to utilize
the model checker for generating witness traces of reachability for particular user defined situations.
Hence - with few exceptions - the expectation is to obtain a ’false’-result and a simulation driving
the model into the specified configuration.

In particular, the STVE supports the following formal debugging applications:

• Drive to property (white box view): A list containing all basic states, all variables, events,
and conditions known to the user, plus the scheduling primitives (cf. section 15) is offered to
the user. Using objects of this list, the user can enter an arbitrary Statemate-like expression
that defines the goal for reachability analysis. Since this expression is entered in a State-

mate-like syntax, it needs to be converted into an adequate SMI-expression first. Second,
the resulting SMI expression is negated for formulation of an invariant. Verifying the formula
”AG(¬<user-defined-expression>), then yields the desired result: if the configuration specified
by the expression is reachable by some computation prefix of the model, the model checker
provides a witness leading to the user-defined configuration.
The expression language supported for user defined expressions is oriented towards the ex-
pression language supported by Statemate for transition triggers, except for the separation
of events on the one-hand, and data-items on the other hand. Statemate only permits tran-
sition triggers of the form ’e[c] ’ , where e may be an expression referring to events only and
c is an arbitrary boolean expression which must not refer to events. For definition of a ’drive
to property’ goal, events can be used like boolean variables in the user-defined expression.
Written and changed events (wr(), ch()) for data-items as well as true and false events for
conditions are supported (’becoming true’ is denoted by tr(), ’becoming false’ is denoted by
fs()). Regarding states, entering, exiting and being in a state can be specified by en(), ex()

and in() , respectively. In addition to the expression language supported by Statemate, the
STVE also supports references to values of events, variables and states of the previous step.
Using last() in an expression of a drive-to-property check (as well as in expressions mapped
to pattern-parameters), causes the STVE to introduce an additional variable. This variable
memorizes in every step the ’last-step’-valuation of the affected expression4. In order to refer
to a newly computed value of a data-item, an event to be emitted or a state to be entered in
the next step, primed() can be used when defining a drive-to-property check. In contrast to
last() , primed() can not be nested.

4last() can arbitrarily be nested in expressions.

94

6.1 Robustness Analysis and Formal Debugging

• Drive to transition : A flattened view of transitions is offered to the user for selection. While in
Statemate graphical transitions can start and end in arbitrary AND-states of the state hier-
archy, the SMI representation differs a bit. Hierarchical states are not explicitly represented in
the SMI representation. Each AND state can be characterized by an expression ranging over
basic states. Consider for example the simple statechart shown in figure 6.1. The AND state
A consists of the or states C and B. A is active if C as well as B are active. In contrast, ST_TOP is
an OR states. States A and C are never active at the same instance of time. Since e.g. C1 and
C2 (B1 and B2, respectively) are active exclusively, A being active can be characterized by ’(C1

or C2) and (B1 or B2)’. Hence, in the flattened view, transition A →D is represented by the
flat transitions C1 →D, C2 →D, B1 →D , and B2 →D. Note that since the default transitions
of C (B) enters C1 (B1), in the flattened view the transition D →A is split into only the two
transitions D → C1 and D → B1. While in Statemate a so-called compound transitions may

ST_TOP

C1 C2

B1 B2

C

B

A

D

Figure 6.1: Simple Statechart

consist of transition fragments connected via condition connectors, in the flattened view all
possible transitions (resulting from the possible decisions along a compound transition) start
and end in basic states.
Part of the compilation of Statemate models into their SMI/SSL representation is the an-
notation of each flattened transition with a dedicated output, which is set to ’1’ whenever the
transition is taken. Hence, ”drive to transition” can be performed by searching a computation
prefix for which the associated output finally becomes true. As for a ”drive to property”, this
is realized with an invariant specification ”AG(¬<transition-output>= false).

• Drive to state : ”drive to state” is a specialization of ”drive to property”, where only basic states
can be selected by the user. For multiple selection, multiple proof-obligations are generated.
Each of the proof-obligations defines a reachability analysis task for one of the selected basic
states.

• Drive to configuration : ”drive to configuration” is like ”drive to state” a specialization of
”drive to property”, where only basic states can be selected. In contrast to ”drive to state”, a
multi-selection defines only one proof-obligation for a conjunctive combination of all selected
basic states.

Due to the parallelism of Statemate models, it is sometimes very difficult to manually drive

95

6 Requirement Capturing for Open Embedded System

simulations into a model configuration of specific interest. The situation of interest may be reachable
only if a large set of internal triggers is provided, each at the exact timing. To drive simulations
manually is time consuming and requires knowledge about internal communications of the model.
Debugging aid by formal verification provides specific simulations on demand: if there exists any
computation driving the model to a desired internal configuration, ”drive to ...” techniques will
discover the shortest prefix. Unreachability of internal configurations is revealed and can be further
analyzed using the debugging techniques offered by the verification framework.

Like in the analysis use-case, all proof-obligations for debugging checks define invariant specifi-
cations. Hence, analysis and debugging checks can be realized by invariance checking (cf. section
4.7). Since in the context of debugging, reachability of the specified configuration is expected, also
bounded model checking can be applied for debugging purposes. If there exists a run of the model
finally reaching the specified configuration, bounded model checking will find this path often faster
than invariance checking. On the other hand, if bounded model checking does not find a path
violating the invariant within a user-defined upper bound, either the configuration is unreachable
in principle or the user-defined bound has been chosen too small. In order to obtain a definite
answer to this question, the formal debugging check can be re-executed with a larger bound or
using invariance checking.

6.2 Certification Techniques

In a model based development process, models are refined in numerous iterations. Modeling starts
with an abstract functional decomposition of a system’s specification. With progressing develop-
ment, the functional parts become more and more detailed and concrete. As the model’s granularity
and detailing increases, its overall functionality may become more and more subtle. Besides iter-
ated application of robustness analyses and formal debugging checks in order to detect model flaws,
it is therefore important to ensure that a refined model conforms to behavioral and functional
requirements.

For example - in the Radio-based Signaling System - a functional requirement is: ”A train passes
a crossing only after it has been secured ”. In particular, the train may pass the crossing only after
the crossing has reported itself safe or has been released manually.

It is a severe error, if the model does not fulfill this requirement under all circumstances. In
contrast to robustness properties, model-specific properties can not be examined using predefined
fully automatic analyses. Also, such a temporal relation between observations can, in general,
neither be captured using a ’drive to property’ definition nor can be expressed in terms of reachability
of particular transitions and/or states.

Functional requirements must be formalized as (temporal) specifications in terms of observable
behavior. Demand for sequentiality, causality or exclusiveness of observations has to be specified
using adequate formalisms. In contrast to formal debugging which aims at witness generation,
the goal of requirement verification is to verify that a model meets its requirements. Therefore,
it is not sufficient to generate a witness of how the model can engage in a particular computation
which is consistent with the requirement under consideration. In fact, the goal is to prove that the
model can never engage in any computation violating the requirement. Hence, verifying a universal
specification for all possible behaviors of a mode is oriented towards a ”true” result. In particular,
formal verification is used for model certification.

Late detection of design errors or flaws may become very expensive. Requirement verification of

96

6.2 Certification Techniques

the product under development only after completion of an entire development phase can enforce
re-iteration of development steps. In order to avoid deep iterations in the development of safety
critical systems, evidence for compliance with requirement specifications is of key importance and
should be established even during development iteration, if possible whenever changes to the model
have been applied. On the other hand, when completing a development phase and submitting the
model to quality assurance, verification can be applied in order to assess the model. If problems or
errors are discovered in the assessment phase, acceptance is rejected and the model is handed back
to development. The effort spent for validation and verification in the product assessment phase
can be reduced by antedating parts of the verification activities to the development phase itself.

Robustness analysis and formal debugging accompany the engineer during development and help
to avoid incorrect modeling. How about verification of important requirements? In order to facili-
tate engineers work in practice, verification application must not require too much expert knowledge.
Establishing evidence for meeting the requirement specifications must be as easy as possible. Thus,
an easy-to-use specification formalism to capture requirements is needed. Having captured a re-
quirement once, verification for subsequent development steps should best be applicable using a
push-button technique.

Fortunately, many important safety critical requirements that an embedded control system must
satisfy, are of rather simple temporal nature. For example, the requirement “A train passes a
crossing only after it has been secured ”, simply relates two observations.

In a model based development process, the model should be built in a way that indicators that
are needed for the assessment of critical behavior are easy to observe. This can be achieved by
introducing particular error-states or outputs indicating designated valuations of data-items. Since
the goal of the model based development is to capture critical functionality, it is a measure for the
quality of the model, how clear and definite correctness of behavior can be specified and decided5.

As a rule of thumb, it can be stated: the more important a requirement is, the less subtle details
should contribute to its validity. Hence, it should be necessary to only take few details into account
in order to formalize the requirement specification. If some property is required to hold under all
circumstances, it should not be necessary to specify detailed sequences of particular observations,
in order to capture the requirement.

The verification framework copes with the specification problem with different strategies. Ex-
perience has shown that many specifications can be reduced to a relatively small set of temporal
schemes [Bit00, Bit01, DAC98a, DAC98b, Hol05]. Typical informal requirements consist of for-
mulations like ”observation a should be possible only after observation b” or ”observation a causes
observation b”. For this purpose, the verification framework offers a library of predefined temporal
schemes - so-called pattern - as building blocks for requirement specification. In order to formalize
a requirement, only appropriate pattern need to be instantiated and their formal parameters be
mapped to expressions ranging over the observables of the model. Pattern are dedicated to on-the-
fly verification during development. In order to be used in the most flexible way and to keep the

5Recall from chapter 2 the regulation of requirement allocation to components of a design according to the V-model:

• “Every requirement must be allocated to at least one element of the technical architecture, ideally exactly to
one element

•

• The allocation must be realized in such a manner that it will be possible to prove the fulfillment of the
requirement by checking the corresponding architecture element.”

97

6 Requirement Capturing for Open Embedded System

learning effort for their usage as low as possible, pattern can be used in a white box view of the
model, i.e. there is no restriction w.r.t. visibility of (local) data-items, internal scheduling primitives
or basic states. When mapping the formal parameters of a pattern to Statemate-like expressions,
all user-defined interna of a component can be referred to. Pattern can be instantiated for use in
commitment as well as in assumption place.

Due to the support of a white-box view, only component verification is supported for pattern
specifications. In particular, no compositional techniques or hierarchical reasoning are supported.
Furthermore, counters in pattern refer to either simulation time or to steps. The treatment of time
depends on the chosen semantics. For asynchronous models time is uniquely measured by counting
super-steps, for synchronous models time corresponds to steps.

While pattern are easy to use and are reasonable expressive for on-the-fly verification of many
important requirements, capturing more sophisticated requirement specifications requires a more
flexible formalism. Of course, the most flexible way of specifying requirements would be to enter
specifications manually as temporal logic formulae. Besides requiring much expert knowledge about
the model representation and semantical subtleties of temporal logics, a drawback of formulae is
their lack of intuitiveness. Being more intuitive than temporal logic formulas, graphical specification
formalisms have shown to be useful for the formalization of requirements.

For this purpose, the graphical formalism of Symbolic Timing Diagrams (STDx) has been in-
tegrated with the verification framework. Requirements in terms of model observables and their
value changes over time can be expressed graphically and be intuitively understood from their vi-
sualizations. The temporal relationship of observations can be specified by graphical constraints in
a variety of different, but well defined meanings. Thereby, constraints can specify pure qualitative
as well as quantitative temporal relations between observations.

In contrast to patterns, STDx-specifications adopt a black-box view of the system or its compo-
nents. STDx-specifications refer to behavior of a (sub-)component as observable at the interface,
without referring to internals of the (sub-)component. Due to the representation of Statemate

models according to the compositional semantics, even sub-component interfaces for internal activ-
ities of an asynchronous system in general contain both slow and fast inputs (cf. section 5.4). Since
the asynchronous semantics is defined on the basis of synchronous execution, quantitative timing
constraints must be capable of both referring to steps and to super-steps.

Commitments as well as assumptions can be specified using the same graphical formalism. As-
sumption and commitment diagrams are grouped in STDx-specifications. A formal semantics of
STDx is defined by unwinding the diagrams into timed symbolic automata (TSA). From TSAs,
observer modules are generated which are then combined with the model for verification.

Since also pattern are basically a special tailorization of timed symbolic automata observers, we
will introduce TSA formally in the following section. In section 6.4 we will give a brief overview of
the patterns offered by the verification environment. STDx-specifications and their formal semantics
through unwinding into TSA representations will be presented in section 6.5.

6.3 Timed Symbolic Automata (TSA)

In a discrete time domain computations of a system can be described by sequences of consecutive
valuations of the system’s variables, where each of the valuations in such a sequence is a unique
characterization of the system’s status at a particular instance of time. Moreover, for finite state
systems - i.e. systems whose variables all have finite domains -, every status can be described by a

98

6.3 Timed Symbolic Automata (TSA)

finite set of atomic propositions. This way, computations can be treated as infinite words over the
alphabet of truth assignments to these atomic propositions.

A well studied tool for reasoning about such words, i.e deciding whether a particular word belongs
to a designated subset of words - a language - over an alphabet, are finite automata. Informally,
finite automata are state-transition machines with designated sets of initial and accepting states.
The transitions of such an automaton are triggered by symbols of the alphabet. This way, a finite
automaton processes a word by reading it symbol after symbol. Starting in an initial state the
automaton reads a symbol and takes a suiting transition - if there exists at least one - from its
currently active state to a successor state. A word is accepted by the automaton if by reading the
entire word at least one of the accepting states is reachable. The language accepted by the automaton
is exactly the set of words for which the automaton can finally terminate in an accepting state.

Since the definition of acceptance is based on finiteness of computations, conventional finite
automata are applicable only to finite words. Systems considered in the context of this work are
reactive, i.e. non-terminating, their computations can not be captured by finite but only by infinite
sequences of valuations. Obviously, when considering infinite words, termination can no longer be
an adequate acceptance criterion.

Therefore, finite automata have been adapted to be capable of reasoning also about infinite
words, where the major change applied to finite automata is the definition of a different acceptance
criterion. Even though termination in a final state is no longer an adequate acceptance criterion,
acceptance can nonetheless be defined in terms of a subset or subsets of automata states:

Obviously, when processing infinite words with finite-state automata, some of their states must
be active infinitely often - otherwise processing infinite words would require infinitely many states.

Various different acceptance criteria for automata on infinite words in terms of - sets of - states
being active infinitely often can be found in the literature. An excellent overview of the theory of
automata on infinite objects can be found e.g. in [Tho90].

The most basic definition of automata on infinite words is the definition of Büchi-automata,
whose acceptance criterion is defined using a subset of the state set, the so-called fair states set. An
infinite word is accepted by a Büchi automaton if at least one of the fair states is active infinitely
often when processing the word.

A common notation for sets of infinite words over a fixed alphabet extends the well known regular
languages with the concept of countable but infinite repetition. Similar to the Kleene star ’?’, which
denotes finite repetition of a regular pattern in a word, ’ω’ is used to denote countable - but also
infinite - repetition of such pattern. Like the relation between regular languages and finite automata,
the definition of ω-regular languages is given by their relation to Büchi automata: A set of infinite
words is called a ω-regular language iff there exists a Büchi automaton, which accepts all words
belonging to that set.

Definition 6.1 (Büchi Automaton)
Formally, a Büchi automaton is a tuple B := (X,S, S0,→, F), where

• X is an alphabet,

• S is a finite set of states of B,

• S0 ⊆ S is a set of initial states,

99

6 Requirement Capturing for Open Embedded System

• →⊆ S×X×S is a transition relation, where (s, c, s′) represents a transition from state s ∈ S
to state s′ ∈ S which is triggered by c ∈ X. The transition can be taken if s is the currently
active state of B and the actually read symbol is c.

• F ⊆ S is a set of fair states.

Let w := c0c1c2... be an infinite word over X. A run of B over w is an infinite sequence Π := s0s1s2...
of states, s.t.

s0
c0→ s1

c1→ s2
c2→ ... where s0 ∈ S0 and ∀i ≥ 0 : (si, ci, si+1) ∈→ .

Let runB(w) denote the set of possible runs of B for the infinite word w. Let furthermore inf(Π) ⊆ S
denote the set of states which occur at infinitely many positions in Π. Then, the language L(B)
accepted by B, is defined by

L(B):=

{

w = c0c1c2... ∈ Xω |

∃Π = s0
c0→ s1

c1→ s2
c2→ ... ∈ runB(w) : inf(Π) ∩ F 6= ∅

}

�

L(B) can alternatively be defined using a characterization in temporal logic :

L(B):=







w = c0c1c2... ∈ Xω |

∃Π = s0
c0→ s1

c1→ s2
c2→ ... ∈ runB(w) : B,Π |= GF

(

∨
s∈F

s

)






(6.1)

The definition given in 6.1 is that of a non-deterministic Büchi Automaton. The automaton B is
deterministic if S0 is a singleton and if → is a (partial) function, i.e. if for each state s ∈ S and for
all symbols c ∈ X, there exists at most one successor state s′ ∈ S of s, s.t. (s, c, s′) ∈→.
B is called complete if for all states s ∈ S and for all symbols c ∈ X, there exists at least one

state s′ ∈ S , s.t. (s, c, s′) ∈→.
In contrast to its counterpart on finite words - regular finite automata - , the class of determin-

istic Büchi automata is strictly less expressive than the class of non-deterministic automata (e.g.
there exists no deterministic but only a non-deterministic Büchi automaton accepting the language
(ab)∗aω for alphabet X = {a, b}). The class of deterministic Büchi automata is closed under union
and intersection, but in contrast to regular finite automata is not closed under complementation. Al-
though the class of non-deterministic Büchi automata is also closed under complementation, there
exist no convenient way to construct the Büchi automaton complement of a Büchi automaton.
Nonetheless, there exists a convenient complementation for arbitrary Büchi automata. Using the
linear temporal logic characterization of acceptance as in equation (6.1), a complement automaton
can be constructed by complementing the acceptance criterion. The resulting automaton is not a
Büchi automaton:

L̃(B):=







w = c0c1c2... ∈ Xω |

∀Π = s0
c0→ s1

c1→ s2
c2→ ... ∈ runB(w) : B,Π |= FG

(

¬ ∨
s∈F

s

)







Usually, Büchi-automata are defined w.r.t. a fixed alphabet X as in the definition above. Since
they allow one element of the alphabet per transition, they operate on single input symbols only.

100

6.3 Timed Symbolic Automata (TSA)

In order to be able to capture the communication behavior of a reactive system, it is necessary to
permit more than one observation per transition. This could be obtained by defining the automaton
w.r.t. a sufficiently large alphabet, s.t. all combinations of observations are captured by symbols of
the alphabet.

As an alternative approach relaxing the restriction of transitions triggered by single symbols,
Schlör introduced symbolic automata [Sch00], which extend classical Büchi automata by admit-
ting expressions as transition labels. In symbolic automata, transitions are labeled with boolean
predicates ranging over the set of atomic propositions w.r.t. a set of variables. Correspondingly,
the semantics definition of symbolic automata has to take satisfaction of predicates triggering the
transitions into account.

Definition 6.2 (Predicates over a Set of Variables)
Let V be a set of variables V. Then, predicates β ∈ PredV ranging over V are built according to :

β := α | true | ¬β | (β) |β1 ∧ β2 , where

α is an atomic proposition w.r.t. V.
Let ΣV denote the possible valuations of the variables V (cf. definition 4.1).
With the usual abbreviations

• false:=¬true

• β1 ∨ β2 :⇔ ¬(¬β1 ∧ ¬β2)

• β1 ⇒ β2 :⇔ ¬β1 ∨ β2

satisfaction of β w.r.t. σ ∈ ΣV is defined by:

∀σ ∈ ΣV : σ |= true

σ |= α :⇔ σ(α) = true

σ |= ¬β :⇔ ¬(σ |= β)

σ 6|= β :⇔ σ |= ¬β

σ |= (β) :⇔ σ |= β

σ |= β1 ∧ β2 :⇔ σ |= β1 ∧ σ |= β2

We refer to the truth value of predicate β by writing [[β]](σ):⇔σ |= β.
�

Symbolic automata permit a more flexible treatment of transition labels than conventional Büchi-
automata. They are well suited for algorithmic transformations: For example, transition labels of
newly introduced transitions can be constructed from boolean combinations of already existing
transition labels. We will make use of this facility in the algorithm for unwinding timing diagrams
(cf. section 6.5.4).

In [Sch00] symbolic automata are formally defined with a rigorous semantics, and a correspon-
dence relation between symbolic automata and propositional linear temporal logic is established.

Time is treated only in a qualitative way throughout [Sch00], without referring to concrete quanti-
tative measures of model time, such as intervals or specific temporal distances between observations.

101

6 Requirement Capturing for Open Embedded System

In order to refer to time also in a quantitative way, we need to extend symbolic automata with
a more concrete notion of time. For this purpose, we borrow the concept of specification clocks
and clock constraints from Timed Automata [AD91, Alu98]: While the behavior of a symbolic
automaton only depends on readings of input valuations, a symbolic automaton aimed at reasoning
quantitatively about timed observations has somehow to count time, since enabledness of transitions
depends also on the (relative) occurrence time of observations. This is realized by specification
clocks, which can be set to zero at the transitions of an automaton and count the time since their last
reset. Basically, specification clocks are variables capturing non-negative integer values, representing
instances of time. As a discrete time model is assumed, clocks are increased by discrete portions
according to the advancing time. Specification clocks are interpreted w.r.t. clock environments,
which will be formally introduced in definition 6.5.

Thus, quantitative reference to time is introduced into symbolic automata by augmenting tran-
sitions by clock resets and clock constraints formulated over the set of clocks.

In Statemate’s synchronous execution semantics, there exists a direct association between time
units and steps of the execution. In contrast, Statemate’s asynchronous execution semantics
imposes a more complicated treatment of time, because the execution semantics is built upon
synchronous execution (cf. section 3.2). On the one hand, synchronous steps are executed strictly
sequentially with a so-called delta-delay. On the other hand, simulation time passes only between
stable states of the asynchronous model. Several steps take place sequentially at the same instant
of simulation time, whereas in the context of compositional verification the sequentiality of step
execution can not be disregarded. Interfaces of sub-components in asynchronous models are in
general comprised of slow inputs that can change only in stable states as well as of fast inputs that
can change every step (cf. section 5.4) . For example, even becoming stable depends on step based
interaction between the components of a system, which entirely takes place at the same instant of
time.

As we have hence to regard both delta delays and simulation time for compositional verification
of asynchronous Statemate models, we have to distinguish between two sorts of clocks: one sort
referring to simulation time and another sort counting δ-delays.

Before we give the formal definition of Timed Symbolic Automata we first have to define legal
expressions for clock constraints.

Definition 6.3 (Clock Constraints)
Let C be a set of specification clocks. Let C be partitioned into two (possibly empty) subsets:

• Cstep is a set of clocks referring to steps of the model, and

• Cτ is a set of clocks referring to the time sequence portion τ of a timed observation sequence

Specification clocks may be compared only to non-negative integer constants and not to each other.
Hence, legal clock constraints γ ∈ Γ(C) are of the form:

γ := c ∼ m , where c ∈ C,m ∈ N0 , and ∼∈ {≤, <,=, >,≥}

Let Γ(Cstep) ⊆ Γ(C) denote the set of clock constraints referring to clocks c ∈ Cstep and let
Γ(Cτ) ⊆ Γ(C) denote the set of clock constraints referring to clocks c ∈ Cτ .

From C = Cτ∪
· Cstep follows Γ(C) = Γ(Cτ)∪

· Γ(Cstep).
�

102

6.3 Timed Symbolic Automata (TSA)

In the context of this work it is sufficient to permit comparison of clocks to constants in order to
refer to the actual value of a particular clock.

Based upon these basic clock constraints, predicates referring to clocks are built using boolean
connectives. Notice that definition 6.4 preserves the restriction that clocks may only be compared
to constants but not to other clocks. Although different clocks can be compared to constants within
the same timing predicate, they may never be compared with each other.

Definition 6.4 (Timing Constraint Predicates)
Let ψ be a predicate ranging over clock constrains γ ∈ Γ(C):

ψ:=γ | true |ψ1 ∧ ψ2 | ¬ψ | (ψ) , with

γ ∈ Γ(C). We use the abbreviations:

• false:=¬true

• ψ1 ∨ ψ2 :⇔ ¬(¬ψ1 ∧ ¬ψ2)

• ψ1 ⇒ ψ2 :⇔ ¬ψ1 ∨ ψ2

Let Ψ(C) denote the set of timing-predicates ψ ∈ Ψ(C) built from clock constraints Γ(C) according
to the above syntax.

�

Specification clocks c ∈ C are interpreted w.r.t clock environments, which are formally defined
by the following definition:

Definition 6.5 (Clock Environments)
A clock environment ξ is an interpretation

ξ : Cτ ∪ Cstep → N0,

which assigns each clock c ∈ Cτ ∪ Cstep a value of the time domain N0.
Let ξ be the combination of the two functions

ξstep : Cstep → N0 , ξτ : Cτ → N0.

The set of all clock environments regarding C is defined by ΞC .
The valuation of a timing constraint ψ ranging over clock constraints γ ∈ Γ(C) w.r.t. a clock

environment ξ ∈ ΞC is defined by :

[[.]](.) : Ψ(C) × ΞC → B, s.t.

• ∀ξ ∈ ΞC : [[true]](ξ):=true

• [[¬ψ]](ξ):=¬[[ψ]](ξ)

• [[γ]](ξ):=

{

[[γ]](ξτ) γ ∈ Γ(Cτ)

[[γ]](ξstep) γ ∈ Γ(Cstep)

103

6 Requirement Capturing for Open Embedded System

• [[γ]](ξτ):=







ξτ (c) = m if γ = (c = m)

ξτ (c) ≤ m if γ = (c ≤ m)

ξτ (c) ≥ m if γ = (c ≥ m)

ξτ (c) < m if γ = (c < m)

ξτ (c) > m if γ = (c > m)

, for some c ∈ Cτ , m ∈ N0

• [[γ]](ξstep):=







ξstep(c) = m if γ = (c = m)

ξstep(c) ≤ m if γ = (c ≤ m)

ξstep(c) ≥ m if γ = (c ≥ m)

ξstep(c) < m if γ = (c < m)

ξstep(c) > m if γ = (c > m)

, for some c ∈ Cstep, m ∈ N0

• [[ψ1 ∧ ψ2]](ξ):=[[ψ1]](ξ) ∧ [[ψ2]](ξ)

Elapsing time increases all clocks of one sort (interpreted w.r.t. ξstep and ξτ respectively) by the
same amount of time, denoted by ((ξ) ⊕ (tτ , tstep)) : Cτ ∪ Cstep → N0 for (tτ , tstep) ∈ N2

0:

(ξ ⊕ (tτ , tstep))(c) :=

{

ξτ (c) + tτ if c ∈ Cτ

ξstep(c) + tstep if c ∈ Cstep
(6.2)

Let ξ[c:=t] denote the clock environment that agrees with clock environment ξ on all clocks except
for c; c is set to t ∈ N0.

�

6.3.1 Timed Symbolic Automata

Using the above definitions, we now formally define Timed Symbolic Automata6:

Definition 6.6 (Timed Symbolic Automaton (TSA))
A Timed Symbolic Automaton is a tuple
A := (V, S, s0, C, T, F), where

• V is a set of variables.

• S is a finite set of states,

• s0 ∈ S is the initial state,

• C = Cτ∪· Cstep is a set of clocks. The sets Cτ and Cstep are disjoint. All clocks c ∈ C have
the the domain N0.

6A similar definition - ad hoc, without the formal basis of symbolic automata - was given in [Fey96] in order to
define the semantics of an earlier Real-Time version of Symbolic Timing Diagrams. In [Klo03], Klose uses a
similar definition as basis of the semantics definition of Live Sequence Charts. Both definitions use only one sort
of clocks.

104

6.3 Timed Symbolic Automata (TSA)

• T ⊆ S × PredV × S × 2C × Ψ(C) is a transition relation.
A transition t = (s, enable, s′, clocks, timing) represents a state-change of A from state s to s′

for an observation satisfying predicate enable and consistent with timing constraint timing,
where

– enable ∈ PredV is a predicate ranging over the atomic propositions AP w.r.t. V.

– timing ∈ Ψ(C) is a predicate ranging over clock constraints Γ(C).

– clocks ⊆ C specifies the set of clocks to be reset when taking the transition.

• F ⊆ S is a set of Büchi accepting states.

�

The semantics of TSA is defined over timed observation sequences ts = (π, τ) (c.f. definition 5.6),
where π = σ0σ1... is a sequence of valuations of the variables V and τ = τ1τ2... is a time sequence.

Specification clocks either count units of model time or steps of a model. They can be reset when
taking transitions of a symbolic automaton, and can be referred to at transitions using clock con-
straints. A transition annotated with a clock constraint is enabled only if both its enable-predicate
is satisfied for the current valuation of model variables, and the timing-predicate is satisfied in the
actual clock environment. Hence, acceptance of a timed observation sequence by a TSA depends
on the observation sequence σ of a timed observation sequence, as well as on the relation between
the clock environment ξ and the time sequence τ of ts. We write (si, ξi)

σi→
τi

(sj , ξj) to describe the

correspondence of timed observation sequence ts = (π, τ) and the reaction of TSA A: for the i-th
valuation σi with i-th time stamp τi, A takes a transition from state si and clock environment ξi
to state sj and ξj . Sometimes it might also be useful, to annotate the index i of σi and τi to this
notation, because clocks of Cstep refer to the position of valuation σi in the observation sequence
portion π of ts. In order to explicitly refer to the position of σi in π, we write (si, ξi)

σi→
(τi,i)

(sj , ξj).

Definition 6.7 (Semantics of TSA)
Let be given a TSA A = (V, S, s0, Cstep∪

· Cτ , T, F)

A timed observation sequence ts is accepted by A if at least one state s ∈ F is active infinitely
often when processing ts:

• Let runA(ts) be the set of recorded sequences (timed runs) of pairs (si, ξi) , i ≥ 0, where
si ∈ S is the i-the state and ξi is the i-th clock environment of the run for processing timed
observation sequence ts (if such sequence exists).
For timed run r ∈ runA(ts),

r = (s0, ξ0)
σ0→

(τ0,0)
(s1, ξ1)

σ1→
(τ1,1)

(s2, ξ2)
σ2→

(τ2,2)
...

• The following holds:

– ∀c ∈ C : ξ0(c) = 0 (initially the clock environment is 0 for all clocks)

– ∀i ≥ 0 : ∃(si, enable, si+1, clocks, timing) ∈ T , s.t.

105

6 Requirement Capturing for Open Embedded System

∗ (σi |= enable) ∧ [[timing]](ξi) = true
(a transition can be taken only if both its enable-predicate and its timing-predicate
evaluate to true)

∗ ∀c ∈ clocks : ξi+1(c) = 0
(the clock environment is set to 0 for all clocks reset at a transition)

∗ ∀c 6∈ clocks : ξi+1(c) = ξi(c) ⊕ ((τi+1 − τi), 1)
(the clock environment is updated for all other clocks, which are not reset at the
actual transition. Clocks c ∈ Cτ are updated according to time sequence τ , whereas
clocks c ∈ Cstep are updated according to the position of the actual observation in
π.)

• For r ∈ runA(ts) let inf(r) ⊆ S denote set of states which are visited infinitely often along r.
Then, the language accepted by TSA A is defined by :

L(A) = {ts | ∃r ∈ runA(ts) : inf(r) ∩ F 6= ∅}. (6.3)

• Let runs(A) denote the set of of accepting timed runs of A:

runs(A):= {r| ∃ts ∈ L(A) : r ∈ runA(ts) ∧ inf(r) ∩ F 6= ∅}

Let stateseq : runs(A) → Sω be a projection of the timed runs to only the state sequence
portion of timed runs.
Let further Runs(A) denote the projection of runs(A) to only the respective state sequence
portions of the timed runs r ∈ runs(A) :

Runs(A):={seq | ∃r ∈ runs(A) ∧ seq = stateseq(r)}.

• Using the definition of stateseq, the definition of L(A) (equation 6.3) can be rephrased by:

L(A) =

{

ts | ∃r ∈ runA(ts) : stateseq(r) |= GF

(

∨
s∈F

s

)}

. (6.4)

�

According to definition 6.7, a timed observation sequence ts is not accepted by A - ts 6∈ L(A) -
iff 6 ∃r ∈ runA(ts) : inf(r) ∩ F 6= ∅. Hence ts is not accepted iff either:

• runA(ts) = ∅ (for some i in ts = ...(σi, τi)(σj , τj)... no transition of A is enabled - this case
is considered explicitly because A is by definition 6.6 not required to be complete)

• or ∀r ∈ runA(ts) : inf(r) ∩ F = ∅ (none of the possible sequences of states and clock
environments for processing ts visits infinitely often a fair state).

Definition 6.8 (Congruence of Clock Environments)
Let

≡m⊆ ΞC × ΞC

106

6.3 Timed Symbolic Automata (TSA)

be a congruence relation, with ξ ≡m ξ′ if for all clocks c ∈ C either ξ(c) = ξ′(c) or ξ(c) ≥ m ≤ ξ′(c),
where m is the largest constant appearing in all clock constraints of A regarding c. Note, that there
either exists such a constant m for each clock c ∈ C, or c is not referred to by any clock constraint
in A.

Let mc : C → N0 assign each clock c ∈ C with the maximal constant, to which c is compared at
any transition of A. Let mc(c):=0, if c is not referred to in any clock constraint.

We then can redefine the clock environment update according to equation 6.2 of definition 6.5
by:

(ξ ⊕ (tτ , tstep))(c):=







ξτ (c) + tτ if c ∈ Cτ ∧ (ξτ (c) < mc(c) + 1)

ξτ (c) if c ∈ Cτ ∧ (ξτ (c) ≥ mc(c) + 1)

ξstep(c) + tstep if c ∈ Cstep ∧ (ξstep(c) < mc(c) + 1)

ξstep(c) if c ∈ Cstep ∧ (ξstep(c) ≥ mc(c) + 1)

(6.5)

�

Lemma 6.1 (Finiteness of Clocks)
The language L(A) accepted by A (cf. definition 6.7) is not affected if clock environment update

(ξ⊕ (tτ , tstep))(c) according to equation 6.5 is applied instead of the update defined in definition 6.5.

�

Proof 6.1
Trivial. Since no clock constraints in A compare any clock c ∈ C to a constant larger than mc(c),

the interpretation of no timing constraint predicate timing ∈ Ψ(C) in A can be affected.
�

By introducing ≡m w.r.t. the largest constant m to which a particular clock is compared in
A, we avoid dealing with infinite clock domains, since it is not necessary to distinguish two clock
environments which only differ in valuations of clocks irrelevant to any clock constraint.

Definition 6.9 (TSA Wellformedness)
A TSA A = (V, S, s0, C, T, F) is said to be well-formed if the following requirement is satisfied7:
(no parallel transitions) For all states s, s′ ∈ S, s 6= s′ there exists at most one transition from s

to s′:
∀s, s′ ∈ S :]

{
t ∈ T | t = (s,−, s′,−,−)

}
≤ 1

�

Lemma 6.2 (TSA Wellformedness)
For a TSA with parallel transitions, there exists a well-formed TSA A′ accepting the same lan-

guage.

�

7We use ’-’ as a don’t care for each part of a transition tuple, if we are not interested in the concrete appearance
of the respective part. Let ’-’ denote an arbitrary choice of the respective part of the tuple. In particular, we
will use ’-’ for parts of a transition tuple in order to focus on the - remaining - relevant parts of the tuple for the
actual context.

107

6 Requirement Capturing for Open Embedded System

Proof 6.2 W.l.o.g. let s ∈ S be the source state of two transitions t1, t2 ∈ T : t1 = (ss, enable1, st, clocks1, timing1),
t2 = (ss, enable2, st, clocks2, timing2), with target state st ∈ S, s.t. :

(enable1 6= enable2) ∨ (clocks1 6= clocks2) ∨ (timing1 6= timing2)

Construct A′:=(V, S′, s0, C, T
′, F ′) from A, with

1. S′:=S ∪ {snew} for some new state snew 6∈ S,

2. F ′:=F ∪ {snew} iff st ∈ F,

3. T ′ is build from T by modification of t2. Transition t1 remains unmodified in T ′.
Instead of entering st as with transition t1, the modified transition

t′2:=(ss, enable2, snew, clocks2, timing2)

enters the newly added state snew. Accordingly, for all outgoing transitions of st, equivalent
transitions starting in snew are added:

T ′:= (T\{t2}) ∪ {(ss, enable2, snew, clocks2, timing2)}
∪ {(snew, enablex, sx, clocksx, timingx) |

∃t = (st, enablex, sx, clocksx, timingx) ∈ T}

The above construction preserves L(A):

L(A) = L(A′)

Proof:

• If A enters st by taking either transition t1 or t2, A′ enters either st or snew by either taking
t1 or t′2:=(ss, enable2, snew, clocks2, timing2).

• For all outgoing transition of state st an equivalent transition can be taken also from snew in
A′.

• The newly added state snew in A′ is fair iff st is fair. Hence acceptance is not affected. If for
some timed observation sequence ts:∃r ∈ runA(ts):st ∈ inf(r), then ∃r′ ∈ runA′(ts) : st ∈
inf(r′) ∨ snew ∈ inf(r′) holds.

This construction can iteratively be applied to each pair of parallel transitions occurring anywhere
in A, until no pair of parallel transitions remains in A.

�

In the following we will only consider well-formed TSA according to lemma 6.2.

Definition 6.10 (Completeness and Determinism of TSA)
Let TSA A = (V, S, s0, C, T, F) be given.
(Let ΣV denote the possible valuations of the variables V, and ΞC denote the set of all clock

environments regarding C.)
For a state s ∈ S the set of outgoing transitions is given by:

108

6.3 Timed Symbolic Automata (TSA)

out(s):=
{t | ∃s′ ∈ S, ∃enable ∈ PredV , ∃timing ∈ Ψ(C) : t = (s, enable, s′,−, timing) ∈ T}

Then, A is called deterministic at s, if at most one outgoing transition - for all valuations and
for all clock environments - can be enabled at a time:

∀t1, t2 ∈ out(s), t1 6= t2 : ∀σ ∈ ΣV , ∀ξ ∈ ΞC :
((σ |= enablet1) ∧ [[timingt1]](ξ)) ⇒ ¬((σ |= enablet2) ∧ [[timingt2]](ξ))

(for all transitions the conjunctions of trigger predicate and timing constraint are mutual exclusive.)
A is called complete at s, iff always - for all valuations and for all clock environments - at least

one outgoing transition is enabled, s.t.

∀σ ∈ ΣV , ∀ξ ∈ ΞC :

(∨

t ∈ out(s)
σ |= (enablet) ∧ [[timingt]](ξ)

)

A is called deterministic if A is deterministic at all states s ∈ S , and A is called complete if A
is complete at all states s ∈ S.

�

Unfortunately, since determinization is already infeasible for Büchi automata due to their accep-
tance criterion, determinization is also infeasible for symbolic automata.

The definition of TSA and their semantics (cf. definition 6.7) explicitly deals with incompleteness:
the transition relation does not guarantee, that for all states always an outgoing transition is enabled.
Thus, a timed observation sequence ts can be refused by A for two reasons: (1) there are runs of
A for ts, but ∀r ∈ runA(ts) : inf(r) ∩ F = ∅ , or (2) there are no runs of A for ts, i.e. A reaches a
state s for a finite prefix of ts, from which no transition can be taken to further process ts.

Completion of a TSA requires an absorbing sink-state - i.e. an unfair state, which can never be
left again once it has been entered. For each state s, at which A is incomplete, a transition has to
be added entering the sink-state. This newly added transition then has to be taken if none of the
other outgoing transition of s is enabled, i.e. if for the actual valuation σ of V and the actual clock
environment ξ holds in s:

¬

(∨

t ∈ out(s)
(σ |= enablet) ∧ [[timingt]](ξ)

)

According to the definition of TSA, a transition is enabled if both its enable-predicate and its
timing-constraint evaluate to true. In contrast, enabledness of required transition from state s to the
sink-state would depend on negation of the disjunction of both the enable-predicate and the timing-
constraint of all other outgoing transitions of s. Hence a formal completion on the level of TSA
violates definition 6.6, since the completing transitions have to be triggered by expressions ranging
over a combination of the variables and the specification clocks, which is not expressible transition
triggers according to definition 6.6. An enhanced syntax definition - permitting the definition of more
intricate transition triggers - would complicate all other definitions and conclusions of this section.
Moreover, an enhanced definition would complicate the algorithms presented in the remainder of
this section.

Therefore, we prefer to formalize the technical realization of TSA completion as provided by
the STVE. It will become apparent on the following pages that the required information about

109

6 Requirement Capturing for Open Embedded System

enabledness of transitions w.r.t. all outgoing of a particular state can efficiently be obtained in the
observer encoding of TSA . The realization allows a simple implementation of TSA with default-
transitions.

Informally, an incomplete TSA A can be completed using default-transitions, which enter a newly
added sink-state whenever none of the transitions in the automaton’s original transition relation is
enabled.

Definition 6.11 (TSA with Default Transitions (TSAdef))
A TSA with default transitions is a tuple A = (V, S, s0, C, T,D, F) , where V, S, s0, C, T, and F

are defined as for TSA and D ⊆ S × S is a default-transition relation. Let TSAdef

denote the set of TSA with default transitions.
�

Definition 6.12 (Semantics of TSAdef)
The semantics of TSAdef is defined similarly to the semantics of TSA with the only modification

of the additional default-transition relation.
Let TSAdef A = (V, S, s0, C, T,D, F) be given. Let

©⊥(.)(., .) : S × ΣV × ΞC → B

be a function which determines for a state s ∈ S, whether any of its outgoing transitions t ∈ out(S)
is enabled for a given valuation σ ∈ ΣV and a clock environment ξ ∈ ΞC . Let

©⊥(s)(σ, ξ) := ¬

(∨

t ∈ out(s)
(σ |= enablet) ∧ [[timingt]](ξ)

)

.

A default transition d = (s, s′) ∈ D is enabled if ©⊥(s)(σ, ξ) = true
�

Using the definition of TSAdef , we now can establish completion of TSA by construction of a
adequate TSA with default-transitions:

Lemma 6.3 (Completion-TSAdef)
Completion of a given TSA A = (V, S, s0, C, T, F) can be realized by a TSAdef :

AC :=(V, S′, s′0, C
′, T ′, D, F ′), where

S′:=S ∪ {ssink} (an additional unfair sink-state is added to the set of states)
s′0:=s0 (the initial state is the same for both automata)
T ′:= TA ∪ {(ssink, true, ssink, ∅, true)} (a self-loop for the sink-state is added to the transition

relation, allowing the sink-state to be re-entered infinitely often once it has become the activate state)
D = {(s, ssink)|s ∈ S} (D consists of default-transitions entering the sink-state for each state

except for the sink-state itself)
C ′:=C (the clocks are the same for both automata)
F ′:=F (the set of fair-states is the same for both automata)
In AC always some transition is enabled ∀σ ∈ ΣV and ∀ξ ∈ ΞC . Hence, AC does not reject a

timed observation sequence due to non-enabledness of all transitions. AC is complete by means of
always being able to take some transition.

�

110

6.3 Timed Symbolic Automata (TSA)

Proof 6.3

Follows immediately from the definition of ©⊥. Either a transition t ∈ T ′ is enabled for some
σ ∈ ΣV and ξ ∈ ΞC in state s or ©⊥(s)(σ, ξ) enables the default-transition (s, ssink) ∈ D. �

Lemma 6.4 (Language Preservation of Completion)

Ac and A accept the same language : L(Ac) = L(A)

�

Proof 6.4

1. L(Ac) ⊆ L(A) . Obvious, since F ′:=F , and only default-transitions are added to Ac leading
into an unfair state, from which no fair states are reachable. Hence ACdoes not accept more
timed observation sequences than A.

2. L(Ac) ⊇ L(A). The sink-state ssink can only be entered by a default-transition, i.e. when no
transition t ∈ T of Ac is enabled. ssink is entered in Ac , iff A rejects a timed observation
sequence ts because no transition is enabled. Hence Ac does not accept less timed observation
sequences than A.

�

6.3.2 Verification using Fair Synchronous TSA-Observers

For their application as specification observers in verification, TSAs are translated into SMI modules,
which are then combined in parallel with the model to be verified. Part of this translation is the
TSA completion according to definition 6.3:

In the code representing a TSA, default transitions are realized by introducing an additional
sink-state which is entered if for the currently active state no outgoing transition is enabled. By
setting a flag when taking one of the ordinary transitions of the TSA, it can be determined at the
end of a step whether one of the original transitions has been taken or if the sink-state has to be
entered by a default-transition.

111

6 Requirement Capturing for Open Embedded System

0

{z1}

x=0
[z1<2]

1

x=1
[z1<4]

2

x=2
[z1<5]

x>0

3

x=0

x<3

x=3

true

(a) Simple TSA A

0

{z1}

x=0
[z1<2]

1

x=1
[z1<4]

2

x=2
[z1<5]

4

not(x=0/\[z1<2]
\/ x=1/\[z1<4]
\/ x=2/\[z1<5])

x>0

3

x=0

not(x>0 \/ x=0)

x<3

x=3

not(x<3 \/ x=3)true

not(true)

true

(b) Completed automaton for A

Figure 6.2: A simple TSA and its Completion TSA. Dashed lines denote default transitions. The
labels at the default transitions are added only for illustration purposes.

As example for the completion of a TSA by default transitions consider the TSA of figure 6.2(a).
Let z1∈ Cstep be a step clock, which is initially set to 0. Fair states of the TSA are denoted by
double-circles, while single circles denote unfair states. The automaton can re-enter its initial state
0 by taking the self-loop as long as x=0 and z1<2 hold. If the self-loop is no longer enabled due to
increase of z1, but the value of x remains 0, then neither the self loop of state 0 nor the transitions
to state 1 or state 2 are enabled.

In figure 6.2(b), an additional unfair state has been added for completion, denoted by the polygon
shaped state 4. The dashed lines denote transitions which would have to be added in order to
complete the simple TSA, but are not compliant with definition 6.6, because their triggers are not
separated into conjunctive enable and timing portion. By the encoding of TSA in SMI, these
transitions are realized using default-transitions (without triggers) instead of the depicted ones.

Listing 6.1 illustrates, how the encoding of completion-TSA Ac for TSA A of figure 6.2 in principle
looks like.

Recall from section 5.4 that in SMI primed and unprimed versions of variables are distinguished.
In general, all variables except for inputs exist in a primed and in an unprimed version. In the
description of one step of a model, the unprimed versions of variables refer to their values at the
beginning of the step, whereas the primed versions represent the values computed in the actual
step. At the beginning of a step the values of the primed versions of all variables is set to the
value of their unprimed value8. Consequently, assignments are permitted only to primed versions

8Of course, this does not hold for auxiliary and observer variables, of which only primed versions exist. These are
undefined at the beginning of a step and have to be set to a defined value before reading them anywhere in the

112

6.3 Timed Symbolic Automata (TSA)

do step
begin

DCASE
[] (z1’< (mc(z1)+1)) :

−−increment step−clock z1
z1’:=z1’+1

DESAC
stuck’:=true – guess : none of the outgoing transitions is enabled
NDCASE

– for state0: consider outgoing transitions
[] (state0 ’==true) and (x==0) and (z1’<2) :

state0 ’:=false – guess : state0 will be left

state0 ’:=true – reenter state0 via selfloop
stuck’:=false – revise previous guess

[] (state0 ’==true) and (x==1) and (z1’<4) :
state0 ’:=false – guess : state0 will be left
state1 ’:=true – enter state1 via transition
stuck’:=false – revise guess

[] (state0 ’==true) and (x==2) and (z1’<5) :
state0 ’:=false – guess : state0 will be left
state2 ’:=true
stuck’:=false

– for state1: consider outgoing transitions, etc.
[] (state1 ’==true) and (x==0) :

...
– encoding for state1, state2, state3 and their transitions
– is similar to the encoding of state0
...

[] (sink_state’==true) and (true) : – if sink-state is active
SKIP – do nothing

NDESAC
DCASE

[] (stuck’==true) : – if the guess of ’no tranistion can be taken’
– has not been revised by any transition

sink_state’:=true – then enter the sink-state
DESAC
fair_cond’:= ((state1 ’==true) or (state3’==true))

– indicate whether the model is in a
– fair state or not

end

Listing 6.1: Example TSA encoding

113

6 Requirement Capturing for Open Embedded System

of variables, whereas read accesses are permitted to both versions of variables.
Clocks are represented by counter-variables which are reset (set to 0) when a transition is taken,

whose reset specification clocks contains the respective clocks. These counter-variables are incre-
mented by the program according to the perception of time, which will be discussed later in this
section. Since only comparisons of a clock with constants form legal clock-constraints by definition,
for each clock c a largest constant mc to which the clock is compared throughout the entire TSA can
be determined by inspection of all clock-constraints. According to lemma 6.1, each clock can be rep-
resented in a finite integer domain 0, ...,mc+1. In the clock updates part of the SMI representation,
the clock is increased only until it exceeds its respective maximal constant mc = mc(c).

The states of TSA Ac are represented using a one-hot encoding, such that each state is represented
by a boolean variable:

Let state0, state1, state2, state3 as well as the added sink-state sink_state in listing 6.1
encode the automata states. A non-deterministic choice is used for the representation of the tran-
sition relation: the conjunction of enable-predicate and timing-constraint of a transition forms the
guard of the code block implementing the respective state change when taking the transition9. In
order to react to expiration of time limits within the same step the clock-variables are referred to
by their primed version in all conditions encoding timing constraints. Note, that also the states are
referred to using the primed versions of their encoding variables10. Later in this section, TSA will
be extended with an additional activation control. This activation control will activate the initial
state conditionally, which requires an instantaneous interpretation of actually being in a particular
state. For the example, assume that state0 is initialized to true, while all other state-variables
are initially false. Furthermore, let z1 - being the only clock in the example of figure 6.2 - be
initialized to 0.

Default-transitions according to definition 6.3 are implemented using a local boolean variable
stuck, which is set to true at the beginning of each step. In each code block encoding the effect
of taking some transition, stuck is set to false again. If at the end of a step the primed version of
stuck remains true - after having considered all choices regarding the outgoing transitions of the
active state, then stuck==true indicates that no transition could be taken in the actual step, and
hence the sink-state has to be entered.

In order to adhere to a clearly defined interface, a dedicated output fair_cond is introduced in
the SMI code, indicating for each step, whether one of the fair states is active or none of them. This
additional output permits a compact specification of acceptance instead of building an expression
ranging over the local state variables of the SMI representation. Moreover, referring to this step
oriented ’fairness condition’, the formal treatment of acceptance can be kept independent from
choosing a one hot or an integer based state encoding.

code.
9By definition, the outgoing transitions of a state need not to be mutual exclusive. In order to avoid inputs which

later have to be introduced for the resolution of non-determinism, a tool which analyses non-deterministic choices
for statically decidable determinism can be applied before applying verification. If possible, this tool splits the
non-deterministic choice in a deterministic and a non-deterministic part, this way reducing non-determinism to
the unavoidable minimum.

10Since at most one case can be chosen within a non-deterministic choice, guards referring to the primed version of
a state variable disregard changes applied before to this particular variable within the same choice.

114

6.3 Timed Symbolic Automata (TSA)

2 < ASMI >:=create_SMI_program(<>)

4 /∗ create assignments increasing each individual clock according to advancing time ∗/
create_clocks_update(< ASMI >)

6

/∗ create guess , that no transition will be enabled in the actual step ∗/
8 create_assignment(< ASMI > ,stuck′, true)

10 /∗ here begins the encoding of original transition relation ∗/
< ndcase >:=create_nondeterministic_choice(< ASMI >)

12 foreach (s ∈ S) { /∗ forall states ∗/

foreach (t ∈ out(s)) { /∗ forall outgoing transitions of state s ∗/

14 < transition >:=create_case_in_choice(< ndcase >,
(primed_ref (encS (s)) == true) and

16 encpred (t.enable) and primed_ref (encΨ (t.timing))

/∗ guess : active state will be left ∗/
18 create_assignment(< transition > , primed_ref (encS (s)), false)

/∗ encode state change by original transition ∗/

20 create_assignment(< transition > , primed_ref (encS (t.target)), true)

/∗ create revision of guess , that no transition wil be enabled ∗/
22 create_assignment(< transition > , stuck′, false)

}
24 }

/∗ add sink−state with self−loop ∗/
26 < case >:=create_case_in_choice(< ndcase > , sink_state′ == true)

< ndcase >:=create_SKIP_statement(< case >)
28

/∗ default−transition : if stuck−guess has not been revised, then enter sink−state ∗/
30 < dcase >:=create_deterministic_choice(< ASMI >)

< case >:=create_case_in_choice(< dcase >,stuck′ == true)
32 create_assignment(< case > , sink_state′, true)

34 /∗ indicate ” being in a fair state ” by fairness observer fair_cond′∗/

create_assignment(< ASMI > , fair_cond′ , generate_primed_disjunction ({s ∈ F}))

Listing 6.2: SMI-Generation Algorithm for TSA

Listing 6.2 illustrates how TSA can be encoded algorithmically in SMI . Each creation-procedure
in the algorithm is called with a creation-context as its first argument. Creation contexts reflect the
nesting of program control structures; for example first a non-deterministic choice is created, then
a new guard is added to this choice. Afterwards, successively the assignments are added within the
code block associated with the particular guard, which are to be executed if the guard evaluates to
true. In the listing, creation contexts are marked by surrounding <>.

In the context of this work, we bind the interpretation of clocks c ∈ Cτ to the asynchronous
time model of Statemate, i.e. while clocks c ∈ Cstep are updated in every step, clocks c ∈ Cτ are
updated only if the model to be verified indicates a stable-status by issuing SUPER_SYNC (cf. section
5.3, definition 5.7). Note that this interpretation only tailors the formalism of TSA to the STVE.
Clocks c ∈ Cτ could be interpreted w.r.t. arbitrary other discrete time models in other contexts.

115

6 Requirement Capturing for Open Embedded System

We have extracted the generation of the clock updates in a separate procedure, which can be
found in listing 6.3.

2 /∗ the domain of a clock is calculated , according
the definition of mc : C → N0 in lemma 6.1 ∗/

4

procedure create_clocks_update(context scope) {
6 < τ_clocks > :=create_deterministic_choice(< scope >)

< stable_status >:=create_case_in_choice(< τ_clocks >,"SUPER_SYNC == true")
8 foreach (c ∈ Cτ) {

/∗ update c (unless c = mc(c) + 1) only if the observed model
10 indicates being in a stable status ∗/

< consider_c > :=create_deterministic_choice(< stable_status >)
12 < upd_c >:=create_case_in_choice(< consider_c >,

primed_ref (encC (c)) < mc(c) + 1)
14 create_assignment(< upd_c > , primed_ref (encC(c)),primed_ref (encC(c)) + 1)

}
16 foreach (c ∈ Cstep) {

/∗ update step clock c in every step , unless c = mc(c) + 1 ∗/
18 < consider_c > :=create_deterministic_choice(< scope >)

< upd_c >:=create_case_in_choice(< consider_c >,
20 primed_ref (encC (c))< mc(c) + 1)

create_assignment(< upd_c > , primed_ref (encC(c)),primed_ref (encC(c)) + 1)
22 }

}

Listing 6.3: procedure create_clock_updates

We assume, that the set C of clocks of Ac consists of only relevant clocks, i.e. all clocks c ∈ C
are referred to at some transition of Ac.

In order to treat expressions regarding the states of Ac as well as timing constraints formally
correct in the algorithm, we need to introduce the mappings encs : S → SMIV ARS and encC :
C → SMIV ARS, which respectively map the states of an automaton and its clocks to SMI vari-
able representations (plus provision of adequate declarations). Moreover, let encΨ : Ψ(C) →
SMIEXPR be a mapping which maps timing constraints to their encoding in SMI-expressions,
by applying encC to each occurrence of a clock name in a timing constraint ψ. Similarly, let
encpred : PredV → SMIEXPR encode predicates by corresponding SMI expressions. Further-
more, let primed_ ref : SMIEXPR → SMIEXPR be a mapping, which replaces each occur-
rence of a local or output variable in a SMI expression by its primed versions. Finally, for a set of
states, let generate_primed_disjunction : 2S → SMIEXPR yield a disjunction of the primed
versions of the SMI variables encoding the states in the set.

The semantics of the SMI program obtained from applying algorithm 6.2 to A is given by a CSTS
Ω(A) = (VΩ,ΘΩ, ρΩ, EΩ) with :

• VΩ:= V
∪{encS(s) : boolean|s ∈ S} ∪ {sink_state : boolean}
∪{encC(c) : integer(0..(mc(c) + 1))|c ∈ C}
∪{stuck : boolean} ∪ {fair_cond : boolean}

116

6.3 Timed Symbolic Automata (TSA)

• ΘΩ:= (encS(s0) = true)

∧

(

∧

s∈S,s6=s0

encS(s) = false

)

∧ (sink_state = false)

∧

(
∧

c∈C

encC(c) = 0

)

∧(fair_cond = false)

• EΩ:=V ∪ {fair_cond}, and

• ρΩ as described by the SMI program.

Definition 6.13 (Fair Synchronous TSA-Observer)
Let Ω(A) denote the CSTS representing a given TSA A, which is obtained by adding default

transitions and encoding A according to algorithm 6.2.
Let further Ω(A)◦ff denote the CSTS representing TSA A with designated output f which

indicates whether Ω(A) is in one of its fair states.
�

In order to verify, whether all runs of a model C are accepted by A, Ω(A)◦ff is combined in
parallel with C. In the parallel composition, Ω(A)◦ff serves as observer of the timed observation
sequences ts ∈ TComps(C) of C.

Ω(A)◦ff only reads the externally observable variables of the model without ever modifying them.
Since Ω(A)◦ff is complete, there always exists a transition in Ω(A)◦ff for consecutive valuations of
the observed variables. Thus, in contrast to the parallel composition of compositional synchronous
transition systems in general, the parallel composition of a model with observer Ω(A)◦ff preserves
the possible runs of the model without restricting them. In order to distinguish parallel composition
in general from the parallel composition with observers, we will write || for the normal parallel
composition in contrast to ||Ω which denotes the parallel composition with observers.

Definition 6.14 (Parallel Composition of CSTS with Synchronous Observers)
Let CSTS C = (V,Θ, ρ, E) and observer Ω(A)◦ff = (VΩ,ΘΩ, ρΩ, EΩ) obtained from translation

of a TSA A be given, s.t.

• (V \E) ∩ VΩ = ∅ and (VΩ\EΩ) ∩ V = ∅
(the sets of local variables of C and Ω(A)◦ff are disjoint. Informally VΩ\EΩ consists of only
clock variables and variables encoding basic states of A, while V consists of all local model
variables of C from which only subset E is observable outside of C)

• EΩ ⊆ (E ∪ {f}), moreover EinΩ ⊆ E and EoutΩ = {f},
(Ω(A) has only inputs from the externally observable variables E of C and Ω(A)◦ff has only
one single output f which indicates for each step whether one of the fair states of Ω(A) is
active - in listing 6.1 f is named fair_cond).

The parallel composition Cpar := C||ΩΩ(A)◦ff is defined by :
Cpar = (Vpar,Θpar, ρpar, Epar) , with:

• Vpar:=V ∪ VΩ

117

6 Requirement Capturing for Open Embedded System

• Θpar:=Θ ∧ ΘΩ

• Epar:=E ∪ {f}

• ρpar ⊆ ΣV(Vpar) × ΣV(Vpar) is given by

(σ, σ′) ∈ ρpar iff (σ ↓V , σ
′ ↓V) ∈ ρ ∧ (σ ↓VΩ

, σ′ ↓VΩ
) ∈ ρΩ

Note, that ρΩ imposes no restriction on ρpar w.r.t. variables of V . Since Ω(A)◦ff is complete,
∀σ, σ′ ∈ ΣV(Vpar): ∃(σ ↓EinΩ

, σ′ ↓EinΩ
) ∈ ρΩ (there always exists a transition in ρΩ for all

possible valuations of the observed variables EinΩ).
Also ΘΩ imposes no restriction on the initial valuation of V (ΘΩ only determines the initial
state of Ω(A)).

Since Ω(A)◦ff does not restrict the externally observable variables E, ||Ω is associative and com-
mutative.

�

Figure 6.3 illustrates definition 6.14 informally.

Ein

Eout

fΩΩC
Ωin
E

Figure 6.3: Parallel Composition with Observer

Theorem 6.1 (CTL-Verification using fair Synchronous Observers)
Given a model C and an observer Ω(A)◦ff obtained from TSA A. In general, for the parallel

composition Cpar := C||ΩΩ(A)◦ff holds11:

K(Cpar) |= AGAF(f) ⇒ ∀ts ∈ TComps(C) : ts ↓EΩin
∈ L(A), (6.6)

where TComps(C) is the set of all timed observation sequences of C.

Moreover, iff A is deterministic, then the following holds:

K(Cpar) |= AGAF(f) iff ∀ts ∈ TComps(C) : ts ↓EΩin
∈ L(A) (6.7)

11Let K(C) denote the Kripke structure for CSTS C according to definition 5.5.

118

6.3 Timed Symbolic Automata (TSA)

In a similar way, observers can be used as assumptions: Let a deterministic TSA Aass with output
fass be given, which accepts a subset of Σω

V ↓Ein
(infinite sequences of valuations of the inputs Ein

of C) and a deterministic TSA A as for equation 6.7. Then we can check whether all runs of the
model, which conform to assumption Aass are accepted by A:

K(C||ΩΩ(A)◦ffc||ΩΩ(Aass)◦ffass) |= AGAF(fc) (6.8)

with fairness constraint fass iff

∀ts ∈ TComps(C) :
(

ts ↓EΩ(Aass)◦f fass
∈ L(Aass)

)

⇒
(

ts ↓EΩ(A)◦f fc
∈ L(A)

)

(6.9)

�

Proof of Theorem 6.1

1. Proof of (6.6):
By construction of Cpar, Ω(A) only observes computations of C without restricting the transi-
tion relation ρpar of the parallel composition Cpar regarding computations of C. If the fairness
condition f is true always for all computations of Cpar , then obviously C can not engage in
any timed observation sequence, which is not accepted by A:
Using the definitions of 4.3
K(C||ΩΩ(A)◦ff) |= AGAF(f) is equivalent to :
K(C||ΩΩ(A)◦ff) |= ¬EF(¬AF(f))
⇔ K(C||ΩΩ(A)◦ff) |= ¬EF(EG(¬f))
⇔ K(C||ΩΩ(A)◦ff) |= ¬E(true U (EG(¬f))
⇔ ¬(∃Π = (σ0, σ1, ...) : ∃k ≥ 0 : (K(C||ΩΩ(A)◦ff)), σk |= EG(¬f) ∧ ∀0 ≤ j ≤ k :
(K(C||ΩΩ(A)◦ff)), σj |= true)

2. Hence, if Cpar satisfies AGAF(f), then there definitely exists no run of Cpar violating A′s ac-
ceptance criterion.

The other way round, if A is a non-deterministic TSA ,

(K(C||ΩΩ(A)◦ff) 6|= AGAF(f))

does not imply that ts ↓EΩin
6∈ L(A), because the definition of

L(A) =

{

ts ↓EΩin
| ∃r ∈ runA(ts ↓EΩin

) : A, stateseq(r) |= GF

(

∨
s∈F

s

)}

is only based on the existence of an accepting run for ts ↓EΩin
. If A non-determistically accepts

ts ↓EΩin
, this does not need to hold always for all computations of the parallel composition

Cpar. Hence, there may exist computations of Cparwhich do not fulfill AGAF(f), even though
ts ↓EΩin

∈ L(A).

119

6 Requirement Capturing for Open Embedded System

3. Proof of (6.7):
It suffices to show that

(

∀ts ∈ TComps(C) : ts ↓EΩin
∈ L(A)

)

⇒ (K(C||ΩΩ(A)◦ff) |= AGAF(f)) .

This follows immediately from the deterministic acceptance of TSA A and the fact that the
possible computations of C are not restricted by composition with Ω(A)◦ff .

4. Proof of (6.8):
Follows from validity of (6.7) and the algorithm of fair-CTL model checking according to
section 4.3.

�

Lemma 6.5 (LTL-Verification using fair Synchronous Observers)
For deterministic TSA holds :

K(C||ΩΩ(A)◦ff) |=LTL GF(f) iff ∀ts ∈ TComps(C) : ts ↓EΩin
∈ L(A) (6.10)

If also Aass is deterministic, then instead of checking 6.8 of theorem 6.1 the LTL implication :

K(C||ΩΩ(A)◦ffc||ΩΩ(Aass)◦ffass) |=LTL GF(fass) ⇒ GF(fc)

can be checked in order to establish (6.9) of theorem 6.1 .
�

Proof 6.5
Follows directly from the acceptance criterion as defined in definition 6.7 and from the determinism

of Aass and A.
�

By theorem 6.1 TSA can be used to capture requirement specifications for verification purposes.
TSA can be represented efficiently in SMI and this way be used as formal specification with a model
checker in commitment place as well as for assumptions about the environment of the model. By
distinguishing two different classes of specification clocks, real-time specifications in terms of simu-
lation time can be expressed. Quantitative constraints in terms of δ-delays permit specifications of
inter-activity protocols as required for the compositional verification of Statemate’s asynchronous
execution semantics.

6.3.3 Partially Ordered TSA

It will become apparent in section 6.5, that unwinding of Symbolic Timing Diagrams yields TSA of
only a restricted subclass. Since Symbolic Timing Diagrams specify legal sequences of events, they
induce a partial order on the states of the resulting TSA. In particular, the graphical waveforms
are unwound from left to right with respect to the constraints. Consequently, the resulting TSA is
a directed automaton, without cycles but containing only self-loops and branching transitions. In
the remainder of this section, the partial order of TSA obtained from unwinding Symbolic Timing
Diagrams will be exploited to establish an alternative acceptance criterion for a relevant subset of
TSA.

120

6.3 Timed Symbolic Automata (TSA)

Definition 6.15 (Partially Ordered TSA(POTSA))
Let TSA A = (V, S, s0, C, T, F) be given :
Define a binary relation → on the set of states S:

s→ s′ iff ∃t = (s,−, s′,−,−) ∈ T

Let →∗ be the reflexive and transitive closure of →.
The TSA A is called a partially ordered TSA (POTSA) , iff the relation →∗is a partial order. In

particular, A is partially ordered if →∗ is anti-symmetric, i.e.:

(s1 →∗ s2) ∧ (s2 →∗ s1) ⇒ s1 = s2

�

Lemma 6.6 (Acyclicity of POTSA)
Let A be a POTSA. Then each projection of a run π ∈ runs(A) to the states portion Π ∈ Runs(A)

has the form: Π = s0....sksk+1.... , such that s0 is the initial state of A, and

∀i, j : 0 ≤ i ≤ j : si →
∗ sj (6.11)

∃k ≥ 0 : ∀i ≥ k : si = sk (6.12)

.
�

Proof 6.6
6.11 follows from the definition of the transition relation T and anti-symmetry of →∗.
6.12 follows from the finiteness of the set of states S and the partial order of A.

�

6.12 combined with the fact that clocks can not be reset at self-loop transitions, permits some
conclusion about the clock-environment portion of recorded runs. Since legal clock-constraints are
restricted to comparisons of clocks with constants, of which let be m ∈ N the largest , we have :

(∃k ≥ 0 : ∀i ≥ k : si = sk) ⇒ ∃n ∈ N : ∀l ≥ n : ξl ≡m ξl+1.

6.3.4 Global Constrainedness

The TSA acceptance criterion demands for application of either CTL-model checking with fairness
constraints or LTL-model checking to the parallel composition of a model with fair synchronous
observers.

According to the definition of acceptance, a TSA A accepts a timed observation sequence ts, if
some of its fair states is active infinitely often, while each of its unfair states must eventually be left
- otherwise ts is not accepted. Hence, rejection of ts due to violation of fairness is a property of the
entire run of the automaton; there is in general no determined point in time at which ts is rejected.
The situation is different, if all outgoing transitions of an unfair state are explicitly constrained. If
for an unfair state s none of the outgoing transitions can be enabled due to expiration of time, then
rejection of ts can be decided locally in s.

121

6 Requirement Capturing for Open Embedded System

Though in general, the proof-obligations of theorem 6.1 or lemma 6.5, respectively, have to be
checked with their inherent complexity, explicitly constrained POTSA form a relevant subclass of
TSA for which the acceptance criterion can be reduced to a simple invariant: If all unfair states of
POTSA A are explicitly constrained by upper bounded clock constraints at all outgoing transitions
(including their self-loops), they all must be left within determined finite time bounds, since after
all clocks constraining a state have exceeded their upper bound constraints, none of the outgoing
transitions can be enabled anymore. In such a case, the completion-POTSA of A will enter its
sink-state via a default-transition. Hence, if all unfair states of a POTSA are explicitly constrained
by upper bounds, the acceptance criterion can be rephrased by a Non-Failure Acceptance criterion:

An explicitly constrained completion-POTSA accepts a timed observation sequence iff
it never enters its sink-state.

As discussed above, a completion-TSA can refuse a timed observation sequence for two possible
reasons:

1. the unfair sink-state is entered via default-transition because none of the ordinary transitions
is enabled at a particular position in the timed observation sequence, or

2. the completion-TSA engages forever in an unfair loop.

Since the only unfair loop in the completion-TSA of an explicitly constrained POTSA is the self-
loop of the sink-state, a timed observation sequence is accepted if the automaton never enters its
sink-state.

Also if not all outgoing transitions of an unfair state s of POTSA A are explicitly constrained by
upper bounds, the state may nonetheless be transitively constrained: If all paths to fair states in
the automata starting in s are constrained by upper bounds regarding clocks which are not reset
reset on the path to s, then obviously these upper bounds transitively constrain also s. If in a run
entering s, the regarded clocks exceed these upper bound constraints before leaving s, then no fair
state will be reached from s ever more. Hence, the run can not be extended into an accepting run
of A. Consequently, transitive constraints can be made explicit by adding them to the transitions
along the affected paths. We will show below, that propagation of transitive constraints does not
affect the accepted language of the automaton.

If along every possible path through a POTSA all unfair states are transitively constrained by
upper bound clock constraints, then propagation of these constraints will yield an explicitly con-
strained POTSA, for which Non-Failure Acceptance is a suitable acceptance criterion. POTSA
which are explicitly constrainable by propagation of transitive constraints will be called globally
constrained. A formal definition of global constrainedness will be given on page 126.

In order to examine POTSA A for transitive upper bound constraints, it is sufficient to only
inspect paths in which each self-loop transition is taken at most once.

Definition 6.16 (Progress-Closure of POTSA)
Let A be a given POTSA.
Let paths(A) be the set of all legal (finite and infinite) sequences of states according to → .
Let progress_closure(A) be the set of all progress-paths which are obtained from paths(A) by

eliminating all occurrences of each state s but its first and second in all Π ∈ paths(A).
For a progress-path Πp we write si →∗

Πp
sj if sj occurs sometimes after si in progress-path Πp.

�

122

6.3 Timed Symbolic Automata (TSA)

According to lemma 6.2, there always exists at most one transition from any state si to any
successor state sj . Lemma 6.6 established that for a POTSA A, for each run Π = s0s1...sm there
exists a k > 0, s.t. ∀i ≥ k : si = sk. Obviously, this argument applies also to paths. Hence,
Π uniquely determines a sequence of transitions. Consequently, each progress path Πp is of finite
length. Furthermore, due to finiteness of S and T , progress_closure(A) is a finite set. In contrast
to Runs(A), paths(A) also captures non-accepting runs of A, and hence progress_closure(A)
covers A entirely, regardless of finally reaching a fair state or not.

In order to examine POTSA for transitive constraints, we have to apply a normalization to the
timing constraints. Since timing constraints (definition 6.4) are build from clock constraints using
boolean connectives, they may contain negated clock constraints or disjunctions of clock constraints
and also redundant, i.e. logically superfluous clock constraints. For examining transitive constraints
affecting a particular state only unique clock constraints are of interest, i.e. non-negated clock
constraints, which must necessarily hold for all accepting runs entering this state.

Definition 6.17 (Unique Clock Terms in Timing-Constraints)
Given set of timing-constraints Ψ(C), w.r.t. the set C of clocks belonging to TSA A.
We call a clock constraint γ ∈ Γ(C) absolute w.r.t. a timing constraint ψ ∈ Ψ(C), iff ∀ξ ∈ ΞC :

[[ψ]](ξ) ⇒ [[γ]](ξ). (if satisfaction of γ is a necessary condition for satisfaction of ψ)
Let

uniqct : Ψ(C) → 2Γ(C)

be a mapping which determines the set of absolute clock constraints of a timing constraint in a
unique, non-negated form.

• uniqct(true):=∅, uniqct(¬true):=∅

• uniqct(γ):={γ},

• uniqct((γ)):=uniqct(γ)

• uniqct(¬γ):=







uniqct((c < n) ∨ (c > n)) if γ = (c = n)

{(c < n)} if γ = (c ≥ n)

{(c > n)} if γ = (c ≤ n)

{(c ≤ n)} if γ = (c > n)

{(c ≥ n)} if γ = (c < n)

• uniqct(¬ψ):=







uniqct(¬ψ1 ∨ ¬ψ2) if ψ = (ψ1 ∧ ψ2)

uniqct(¬ψ1 ∧ ¬ψ2) if ψ = (ψ1 ∨ ψ2)

uniqct(ψ1) if ψ = ¬¬ψ1

uniqct(¬γ) if ψ = γ

• uniqct(ψ1 ∨ ψ2):=

{γ1 ∈ uniqct(ψ1) | ∃γ2 ∈ uniqct(ψ2) : γ2 ⇒ γ1}
∪ {γ2 ∈ uniqct(ψ2) | ∃γ1 ∈ uniqct(ψ1) : γ1 ⇒ γ2}

• uniqct(ψ1 ∧ ψ2):=uniqct(ψ1) ∪ uniqct(ψ2)

123

6 Requirement Capturing for Open Embedded System

Let furthermore

reduce : 2Γ(C) → 2Γ(C)

be a reduction of a set of clock constraints s.t.

• reduce(∅):=∅

• reduce({γ}):={γ}

• reduce({γ1, γ2}):=







{γ1} if γ1 ⇒ γ2

{γ2} if γ2 ⇒ γ1

{γ1, γ2} otherwise}

• for a subset G ⊆ Γ(C), which contains at least three clock constraints, let reduce(G) be the
recursive application of reduce to each pair of clock constraints γ1, γ2 ∈ G and hence yield
the set : reduce(G):={γ | ∀γ1, γ2 ∈ G : γ ∈ reduce({γ1, γ2})}.

Let ubc : Γ(C)×C ×N0 → B, be a function which decides whether a given clock constraint γ is an
upper bound constraint of c w.r.t. m ∈ N0:

ubc(γ, c,m) := true iff γ =







c < m+ 1

c = m

c ≤ m

�

The following lemma establishes a normal form for POTSA, which guarantees that clocks are used
in a unique way, i.e. they are neither “reused” along a path, nor referred to with different upper
bounds. This normal form will be required for the formal definition of global constrainedness.

In order to establish this normal form, we need a few more definitions:

• let constraints : C → 2Γ(C) denote for each clock c ∈ C the set of all (non-negated) constraints
referring to clock c occurring in A, i.e.

constraints(c):=

{
γ | ∃t = (s, enable, s′, clocks, timing) ∈ T :
γ ∈ reduce(uniqct(timing)) ∧ γ = c ∼ m

}

,

where m ∈ N0 and ∼ is ≤, <,>≥ or = .

• let upper_bounds(c) be the set of constants occurring as upper bounds of c in A, i.e.

upper_bounds(c):= {m ∈ N0 | ∃γ ∈ constraints(c) : ubc(γ, c,m) = true}

Lemma 6.7 (Normalform of POTSA - Unique Clocks)
For a partially ordered POTSA A = (V, S, s0, C, TA, F), there exists a partially ordered POTSA

A′ = (V, S′, s0, C
′, TA′ , F ′), which is language-equivalent to A, i.e. L(A) = L(A′), and along every

path Π through A′ holds :

124

6.3 Timed Symbolic Automata (TSA)

1. each clock c ∈ C’ is reset exactly once, and

2. each clock c ∈ C ′ has either no upper bound, or the upper bound is uniform in all timing
constraints referring to c, i.e.

∀c ∈ C ′ :] {γ ∈ constraints(c) | ∃m ∈ N0 : ubc(γ, c,m) = true} ≤ 1

Thus,

upper_bounds(c) =

{

{m} if ∃1γ ∈ constraints(c) : ∃m ∈ N0 : ubc(γ, c,m) = true

∅ otherwise

�

Proof 6.7
A′ can be constructively obtained from A through replacing non unique clock names by fresh

clock names. By definition, A has no cycles except for self-loops (lemma 6.6). By lemma 6.2, clocks
are not reset at self-loops.

Initially let A′:=A. For each progress-path P = s0...si1si2...sj1sj2...sk1sk2... through A, we have
to consider two possible cases:

1. ∃c1 ∈ C, s.t. c1 is

• referred to in the timing constraint timingt1 of transition
t1 = (si1, enablet1 , si2, clockst1 , timingt1),

• reset in clockst2 at transition
t2 = (sj1, enablet2 , sj2, clockst2 , timingt2), and

• again referred to in the timing constraint timingt3 of transition
t3 = (sk1, enablet3 , sk2, clockst3 , timingt3).

Then the reference to c1 at transition t3 is independent from the reference to c1 at t1. Unique-
ness of clocks can be established by introducing a fresh clock cnew and replacing c1 in the set
of clocks to be reset at transition t2 as well as in the timing constraint of t3:

a) add cnew to C ′,

b) eliminate t2 from TA′

c) add t2′ to TA′ , s.t. TA′ 3 t′2 = (sj1, enablet2 , sj2, clockst2\{c1} ∪ {cnew}, timingt2)

d) eliminate t3 from TA′

e) add t3′ to TA′ , s.t. TA′ 3 t′3 = (sk1, enablet3 , sk2, clockst3 , timingt3 [cnew/c1])

2. ∃c1 ∈ C , s.t. c1 is

• reset at transition
t1 = (si1, enablet1 , si2, clockst1 , timingt1),

• first referenced in a timing constraint at transition
t2 = (sj1, enablet2 , sj2, clockst2 , timingt2), and

125

6 Requirement Capturing for Open Embedded System

• again referenced in a timing constraint of
t3 = (sk1, enablet3 , sk2, clockst3 , timingt3).

Then the reference to c1 at transition t3 can be replaced by a reference to a fresh clock which
is added to the reset list of t1:

a) add cnew to C ′

b) eliminate t1 from TA′

c) add t1′ to TA′ , s.t. TA′ 3 t′1 = (sj1, enablet2 , sj2, clockst2 ∪ {cnew}, timingt2)

d) TA′ 3 t′2 = t2 ∈ TA

e) eliminate t3 from TA′

f) add t3′ to TA′ , s.t. TA′ 3 t′3 = (sk1, enablet3 , sk2, clockst3 , timingt3 [cnew/c1])

Since A is partially ordered, there exist only finitely many such progress-paths through A.
�

It will become apparent in section 6.5 that unwinding of Symbolic Timing Diagrams yields POTSA
adhering to this normal form.

Deciding Global Constrainedness

If for POTSA A all paths from state s to fair states are constrained by upper bounds regarding
clocks which were reset before entering s, then these upper bounds transitively constrain also s.

Informally, we call state s globally constrained, if either s is itself a fair state or if s has to be left
always within a finite time interval - determined by explicit or transitive upper bound constraints.
If A is in normal form, then no clock is referred to more than (at most) once in upper bound clock
constraints along any path of A. Hence, for deciding global constrainedness of s, only running
clocks have to be regarded, i.e. clocks which were reset but have not been referred to in a clock
constraint before entering s.

Definition 6.18 (Global Constrainedness of POTSA)
Let A = (V, S, s0, C, TA, F

′) be a POTSA in normal form. For a state s ∈ S and a progress-path
Πp ∈ progress_closure(A), let

1. running_clocks(s0, s) be the clocks ci ∈ C which have not been referred to in an upper bound
clock constraint along progress-path Πp between s0 and s, and let

2. ub_regarded_clocks(s, s2) be the clocks cj ∈ C which are referred to in upper bound clock
constraints along progress-path Πp between s and s2.

3. final(Πp) denote the right most state occurring in Πp

A state s ∈ S of A is globally constrained , if :

• s ∈ F , or

126

6.3 Timed Symbolic Automata (TSA)

• s 6∈ F ∧ ∀Πp ∈ progress_closure(A) in which s occurs :

∀sj ∈ F : (s→∗
Πp

sj ⇒ (running_clocks(s0, s) ∩ ub_regarded_clocks(s, sj) 6= ∅))

∧running_clocks(s0, s) ∩ ub_regarded_clocks(s, final(Πp)) 6= ∅

A is globally constrained, if every state s ∈ S is globally constrained.
�

In the sequel we will present an clock-algorithm, which decides global constrainedness for a
POTSA by constructively propagating the discovered upper bound constraints of each globally
constrained state to its incoming transitions.

Clock-Algorithm

In order to present the algorithm, we need a few more definitions (recall the definition of out(s)
from definition 6.10) :

Let in : S → T denote the incoming transitions of state s:

in(s) :=
{
t ∈ T | ∃s′ ∈ S : t = (s′,−, s,−,−)

}

Let upclocks : S → 2C denote the set of clocks, for which an upper bound constraint exists at all
outgoing transitions of a state s,

upclocks(s) :=

{
c ∈ C | ∀t = (s,−, s′,−, timing) ∈ out(s), s 6= s′ if s 6∈ F :
∃γ ∈ reduce(uniqct(timing)), ∃m ∈ N0 : ubc(γ, c,m) = true

}

In the definition of upclocks, fair states and unfair states are treated differently w.r.t. self-loops.
Since out(s) contains also the self-loop of state s, upclocks(s) explicitly does not consider self-loops
of unfair states, because the automaton can only accept a timed observation sequence if every unfair
state is eventually left by taking a (series of) transition(s) entering a fair state. Hence we are only
interested in satisfiability of upper bound constraints at transitions leaving unfair states. For fair
states, the situation is different. Since POTSA only accept a timed observation sequence iff some
fair state is re-entered forever by its self-loop, a fair state is constrained by an upper bound w.r.t.
clock c only if also the self-loop is restricted by this upper bound.

Let upbound : C ×S → N0 be a partial function, which is defined only for c ∈ upclocks(s), s ∈ S:

upbound(c, s) := max






m ∈ N0 | ∃γ ∈




⋃

t∈out(s)

uniqct(t.timing)



 : ubc(γ, c,m) = true







In the definition of upbound the maximum of the upper-bounds is chosen, because the algorithm
will strengthen the upper bounds of step-clocks before propagating them to the incoming transitions
of a constrained state. Such backward-strengthening makes use of the fact, that if a state has to be
left before the value of some step clock exceeds an upper bound n ∈ N, then this state must have
been entered before the value of this step clock has exceeded n− 1.

Therefore, the upper bound constraints of the outgoing transitions w.r.t. a step-clock c ∈ Cstep
may differ. Backward-strengthening can only be applied for step clocks: For clocks c ∈ Cτno such
decrementation can be applied, since several steps of the automaton can take place between two

127

6 Requirement Capturing for Open Embedded System

consecutive updates of the clock. Hence, for clocks c ∈ Cτ the upper bound has to be propagated
without decrementation.

By taking the maximum of differing upper bound constants instead of requiring uniformness, we
can refrain from requiring uniform upper bound constraints in all timing constraints referring to a
particular clock. The price to be paid is possibly weakening the strength of the propagated bound,
which is irrelevant w.r.t. overall acceptance criterion of the automaton12.

Taking the maximum of the upper bound constraints w.r.t. a particular clock for propagation
is compensated by application of csimplify to the resulting timing constraint, since csimplify
eliminates logically superfluous terms in a timing constraint. For example, csimplify((c ≤ m)∧(c ≤
m+ 1)) = (c ≤ m) for any clock c ∈ C and m ∈ N0:

Definition 6.19 (Simplification of Timing Constraints)
Let C be a given set of clocks. Let

csimplify : Ψ(C) → Ψ(C)

be a simplification and normalization of timing constraints, s.t. for ψ ∈ Ψ(C), csimplify(ψ) is
negation-free and minimal w.r.t. conjunctive terms. In particular, let

• csimplify(γ):=γ

• csimplify((γ)):=γ

• csimplify(¬γ):=







((c < n) ∨ (c > n)) γ = (c = n)

(c < n) γ = (c ≥ n)

(c > n) γ = (c ≤ n)

(c ≤ n) γ = (c > n)

(c ≥ n) γ = (c < n)

• csimplify(ψ):=







∧

γ∈reduce(uniqct(ψ))

γ iff ∃i ≥ 2 : ψ =
∧

i

γi

ψ otherwise

• csimplify

(

¬

(

∨

i≥2
ψi

))

:=
∧

i

¬ψi

• csimplify

(

¬

(

∧

i≥2
ψi

))

:=

(
∨

i

¬ψi

)

• csimplify

(

∨

i≥2
ψi

)

:=







ψj iff ∃j : ψj ⇒

(

∨

j 6=i

ψi

)

∨

i

csimplify(ψi) otherwise

12The weaker the propagated upper bounds are, the later the automaton detects a violation of a clock constraint by
a timed observation sequence.

128

6.3 Timed Symbolic Automata (TSA)

• csimplify

(

∧

i≥2
ψi

)

:=
∧

i

csimplify(ψi)

�

Because POTSA contain no loops except for self-loops, there exists a natural measure of the
distance of a state from the initial state. Due to the partial order of the states, for two states s 6= s′

with s →∗ s′, the outgoing transitions of s can obviously not constrain s′. The other way round,
upper bound constraints of out(s′) may transitively constrain also s. Hence, in order to consider
each state of a POTSA only once, the clock-algorithm starts with the most distant states according
to →∗ and successively constrains the less distant states if this is feasible. Since different paths with
different lengths may lead to the same state in the automaton, the distance of a state from s0 has
to be computed as maximum of the lengths of the possible paths.

Let distance be an array whose indices are the states s ∈ S. Algorithm 6.4 calculates - using a
breadth-first search - for each state s ∈ S the minimal length of the maximal path Π : s0...s from
the initial state s0, s.t. no self-loops are taken along Π.

foreach (s ∈ S) distance := 0

depth := 0
mark := {s0}
nextmark := ∅
while (mark 6= ∅) {

foreach (s ∈ mark) {
if (depth > distance(s)) distance(s) := depth
foreach (t ∈ out(s)) {

if (t.source 6= t.target)
nextmark := nextmark ∪ {t.target} } }

depth := depth+ 1
mark := nextmark
nextmark := ∅

}

Listing 6.4: Calculating the Distances of States to the Initial State

The clock-algorithm starts with (one of) the most distant states and determines whether this
state is constrained by upper bounds at all outgoing transitions. If this is the case, the upper bound
constraint is added to the timing constraint of all incoming transitions except for the transition at
which the respective clocks are reset (to which the upper bound refers). If the self-loop of a fair
state s has already been restricted, this is taken into account by upclocks(s). Otherwise s must
not be restricted, because this would essentially modify the acceptance of the automaton. Since
the self-loops of unfair states are explicitly excluded when determining upclocks(s), they have to
be restricted if there exist upper bound constraints for all transitions to successor states. For clocks
c ∈ Cstep referring to steps, the upper bound constraints added to the incoming transitions can
safely be strengthened. The upper bound constraint of an transition can only be met, if the source
state was entered within an upper bound of 1 step less or the respective clock was reset at the
transition entering the state.

129

6 Requirement Capturing for Open Embedded System

Consequently, if for some state an upper bound constraint w.r.t. a step clock has to be propagated
which already requires the absolute minimum, the algorithm reveals that an entire path of the
automaton is logically cut off due to an unsatisfiable constraint. This is not an error w.r.t. the
semantics of TSA, but in practice it is an indication that the constraint might have been chosen
too small. Hence, the algorithm indicates this case, by setting satisfiable_constraints to false.

For clocks c ∈ Cτ referring to the time portion of the timed observation sequence, in general no
such knowledge about the relationship between clock environments for consecutive transitions can
be applied. Since several observations can have the same time stamp, several steps of the automaton
can take place without incrementing the respective clocks. Hence, upper bound clock constraints
referring to clocks c ∈ Cτ have to be propagated as such, without decrease.

The considered state is added to the set of already regarded states after propagation of all relevant
upper bound constraints to its incoming transitions. The algorithm terminates after either all states
have been regarded, or an unfair state has been detected which is not constrained by any upper
bound constraint. The algorithm iterates its outermost while-loop as many times as states have to
be regarded. Hence,]S iterations have to be performed when the algorithm is applied to a globally
constrained POTSA, while un-constrainedness can be detected earlier.

2 Regarded := ∅
failure := false

4 satisfiable_constraints := true

6 while ((Regarded 6= S) ∧ (failure = false)) {
choose s ∈ S\Regarded with maximal distance from s0

8 /∗ if an unconstrained unfair state is detected, the
automaton is not constrainable ∗/

10 if (s 6∈ F ∧ upclocks(s) = ∅) failure := true
foreach (t ∈ in(s)) { /∗ t=(source,enable,target , clocks ,timing) ∗/

12 /∗ a selfloop of a fair state must not be restricted ∗/
if (¬((s ∈ F) ∧ (t.source = t.target)))

14 foreach (c ∈ upclocks(s)) {
if (c 6∈ t.clocks)

16 if (c ∈ Cstep)
if (upbound(c, s) = 0) {

18 satisfiable_constraints := false
t.timing := csimplify(t.timing ∧ (c ≤ 0))

20 } else
t.timing := csimplify(t.timing ∧ (c ≤ upbound(c, s) − 1))

22 if (c ∈ Cτ)
t.timing := csimplify(t.timing ∧ (c ≤ upbound(c, s)))

24 }
}

26 Regarded := Regarded ∪ {s}
}

Listing 6.5: Clock Algorithm for POTSA

130

6.3 Timed Symbolic Automata (TSA)

Upon successful termination of the algorithm we have Regarded = S ∧ failure = false. It
depends on the use case of the algorithm whether the side condition satisfiable_constraints =
false is interpreted as an error or just as a hint that some upper bound w.r.t. a step clock has been
chosen too small.

Notice that algorithm 6.5 is not applicable to completion-TSA, since the sink-state of a completion-
TSA is an unconstrained unfair state from which no fair state can ever be reached.

Lemma 6.8 (Language Preservation of Explicit Constraining)
Let A be a globally constrained POTSA, and let A] be the explicitly constrained POTSA which is

obtained from A by successfully applying the clock algorithm algorithm. Then L(A) = L(A]) holds.
�

Proof 6.8

1. Self-loops of fair states are explicitly not targeted by upper bound propagation. Hence, once
a fair state is entered, its self-loop can be taken without being additionally constrained in A]

compared to A.

2. The enable predicates of all transitions are not affected by the algorithm

3. clocks resets are not affected by the algorithm

4. Regarding the modified timing constraints, it suffices to show that propagation of clocks does
not affect the acceptance of the automaton.
The algorithm starts with the most distant states and works backward until all states have
been considered. Therefore, the iterations of the algorithm can be characterized by a finite
series of automata, each of which is the result of applying one iteration of the algorithm, where
A0:=A.
Consider a transition t = (s, enable, s′, clocks, timing) of Ai which has been modified into
t′ = (s, enable, s′, clocks, timing]) of Ai+1 by the algorithm:
s′ is globally constrained, because the algorithm in each iteration only modifies the incoming
transitions of already explicitly constraint states.
Regarding the set of clocks upclocks(s′) ⊆ C constraining state s′ with upper bounds at all
outgoing transitions, timing] has been obtained by conjunction of timing with

γ =

{

(c ≤ upbound(c, s′) − 1) if c ∈ Cstep

(c ≤ upbound(c, s′) if c ∈ Cτ
, where

upbound(c, s′) is the maximal upper bound w.r.t. c at all outgoing transitions of s′. Hence,
timing] disables t] to be taken in Ai+1 only for these clock environments, for which entering
s′ can in no case be continued with an accepting run of Ai.
If t is enabled in Ai for some clock environment ξ with [[c > mc(c)]](ξ), because timing does
not contain an upper bound constraint regarding c ∈ upclocks(s′), then Ai will refuse the
currently processed timed observation sequence ts in s′ because no outgoing transition of s′ is
enabled in Ai. For the same clock interpretation ξ, Ai+1 will refuse ts already in s, because
t] is not enabled.
The other way round, if [[c ≤ m]](ξ) for clock environment ξ when taking t in Ai, and hence

131

6 Requirement Capturing for Open Embedded System

at least one of the outgoing transitions of s′in Ai can be enabled, then also timing] will allow
Ai+1 to enter s′.

�

6.3.5 Non-Failure Acceptance

Definition 6.20 (Language Accepted by Non-Failure Acceptance)
Let A be a globally constrained POTSA. Let Ac be its completion-TSA according to definition

6.3 with dedicated sink-state sink_state. Since, by construction, the sink-state is only entered in
Ac when A can take none of its transitions, we also refer to this state as failure-state.
The set of timed observation sequences for which Ac does not enter its sink-state is given by:

Lnon−failure(Ac):={ts = (π, τ) | inf(runA]
(ts)) ∩ {sink_state} = ∅}

And since sink_state can never be left once it has been entered, we can rephrase this by:

Lnon−failure(Ac):= {ts | ∃r ∈ runA(ts) : Ac, stateseq(r) |= G (¬sink_state)}

We call Lnon−failure(Ac) the non-failure accepted language of Ac.
�

Theorem 6.2 (Equivalence of Non-Failure and Büchi Acceptance)
For the explicitly constrained completion-TSA Ac of an globally constrained POTSA A holds :

Lnon−failure(Ac) = L(Ac)

�

Proof of Theorem 6.2

1. L(Ac) ⊆ Lnon−failure(Ac):
Suppose there is a timed observation sequence ts ∈ L(Ac), for which ts 6∈ Lnon−failure(Ac)
holds. This implies, that Acenters its sink_state for some position in ts instead of taking an
enabled transition. By construction of Ac the sink_state is only entered when none of the
other transitions is enabled. Hence, L(Ac) ⊆ Lnon−failure(Ac)

2. Lnon−failure(Ac) ⊆ L(Ac):
Suppose there exists a timed observation sequence ts ∈ Lnon−failure(Ac), for which ts 6∈ L(Ac)
holds. This implies that Ac for some position in ts does not enter its sink_state , although
no transition is enabled. By construction of Ac, this is impossible.

�

By theorem 6.2, for globally constrained POTSA A only an invariant has to be checked in order
to verify whether all runs of a model are accepted by A .

132

6.3 Timed Symbolic Automata (TSA)

Definition 6.21 (Observer with Non-Failure Acceptance)
Let A be an explicitly constrained POTSA. Let Ω(A) be the observer obtained from algorithm

6.2, to which a dedicated output is added, which indicates in every step that sink_state is not the
currently active state. In particular, let output o:=(¬sink_state).

Let Ω(A]) . o denote this modified observer module (representing A with Non-Failure acceptance
observer o).

�

Lemma 6.9 (Verification using Non-Failure Acceptance)
For an explicitly constrained POTSA A and a model C, instead of verifying, whether

C||ΩΩ(A)◦ff
?

|= GF(f)

holds, it can be checked :

K(C||ΩΩ(A]) . o)
?

|= G(o) (6.13)

�

Proof 6.9
Follows immediately from theorem 6.2.

�

Proof obligation 6.13 can be checked using invariance checking with worst case complexity of a
reachability computation for C||ΩΩ(A]) . o (cf. section 4.7).

6.3.6 POTSA with Activation Control (POTSAAC)

POTSA as introduced so far always consider entire timed observation sequences. They start pro-
cessing a timed observation sequence with the initial position. Due to the partial order of their
states POTSA can process repetitions of subsequences of observations in a timed observation se-
quence in only a very restricted way. For example a language (abc)ω can not be recognized by a
partially ordered automaton - disregarding the time sequence for the moment, since the partial or-
der of the states does not permit cycles other than self-loops. Hence, only finitely many repetitions
of sequence abc are recognizable by a partially ordered automaton through providing appropriately
many states and transitions.

Even such iterative repetitions of sub-sequences of observations are of particular interest in the
verification of embedded systems. Basically, all protocols consist of series of actions in reaction to
a series of triggering events. Hence, often a triggered activation of observers is desired, such that
processing of a timed observation sequence is started with the first position for which a particu-
lar activation condition holds instead always beginning with the initial observation. Therefore, a
mechanism has to be provided which permits iterated activation of POTSA.

In general, the acceptance criterion of TSA and also of POTSA does not provide a notion of
finite acceptance, and hence a POTSA A is started only once without permitting re-activation,
since a finite acceptance can not take place. Contrariwise, there exists definitely no way to reject
any continuation of a timed observation sequence if once a fair state has been entered from which
no other state can be reached and whose only outgoing transition is an always enabled self-loop.

133

6 Requirement Capturing for Open Embedded System

Lemma 6.6 has shown that for POTSA A holds:
∀ts ∈ L(A) : ∃k ≥ 0 : ∀i ≥ k : ∃m ∈ N0 : (s0, ξ0)...(si, ξi)(si+1, ξi+1)... = runA(ts) :

si = si+1 : ξ ≡m ξi+1

If sk has been reached for prefix −→p :=(σ0, τ0)...(σk, τk) of a timed observation sequence, then this
prefix can not be continued by any suffix −→q :=(σk+1, τk+1)... , such that ts = −→p −→q and ts 6∈ L(A),
iff sk is a definitely accepting state according to the following definition:

Definition 6.22 (Definitely Accepting State)
Let POTSA A = (V, S, s0, C, T, F) be given. A state s ∈ S is called a definitely accepting state,

iff the following conditions hold:

1. s ∈ F (s is a fair state)

2.]out(s) = 1 ∧ t = (s, true, s, ∅, true) ∈ out(s) .
(s has only one outgoing transition t, which is a self-loop. Both the enable-predicate of t and
the timing-predicate are true, and no clocks are reset)

Let finA ⊆ F (⊆ S) denote the set of definitely accepting states of A.
�

If POTSA A enters a state s ∈ finA for some timed observation sequence ts, then ts is accepted
by this ’logical instance’ of A regardless of any possible extension of ts. Hence, adding transitions
from s ∈ finA back to the initial state which are triggered with some reactivation condition, does
not affect the acceptance of the first logical instance of A but logically starts a new instance of A.
This motivates the following definition:

Definition 6.23 (Non-Overlapping Reactivation of POTSA)
Let

react : POTSA× PredV → TSA

be a transformation of POTSA which modifies the self-loops of the states in finA.
For POTSA A = (V, S, s0, C, T, F), let A� :=react(A, α) be a TSA A� :=(V, S, s0, C, T

�, F),
where

T �:= T\{(s, true, s, ∅, true) | s ∈ finA}
∪{(s,¬(α), s, ∅, true) | s ∈ finA}
∪{(s, α, s0, C, true) | s ∈ finA}

�

react preserves determinism: if A is deterministic, then so is react(A, α). The proof is trivial,
because react only ’splits’ the self-loops of the states in finA into a mutual exclusive reactivation-
transition and a restricted self-loop.

The order of applying of react and the clock algorithm is not exchangeable, because react yields
a cyclic TSA to which the clock algorithm is not applicable, because its states are not partially
ordered. react preserves global constrainedness: by definition of finA the states of finA are (i)
fair states which are not constrained at their self-loop and (ii) have no successor in A. Adding
reactivation transitions introduces no unfairness. Hence, if all unfair states in A are explicitly
constrained, then they are in react(A, α).

We now can formally define a activation control for POTSA:

134

6.3 Timed Symbolic Automata (TSA)

Activated

Initial Activation

Activation−Point

Activated

Activation−Points

Invariant Activation

Activated

Activation−Points

Iterative Activation

Activation−Point

First Activation

Activated

Figure 6.4: Activation Modes of POTSAAC

Definition 6.24 (POTSA with Activation Control (POTSAAC))
A POTSA with activation control (POTSAAC) is a tuple
A:=(actmode, eac, eae,A) , where

• A = (V, S, s0, C, T, F) is a POTSA

• actmode ∈ {initial, first, invariant, iterative} is the activation mode for A

• eac ∈ PredV is the activation condition, for which A is activated

• eae ∈ PredV is an activation exception, for which activation of A is canceled. Activation
exceptions are only relevant for POTSAAC with initial activation. For activation modes first,
iterative and invariant an activation exception is not regarded.

Using the definition of react, activation mode iterative is defined by:

(iterative, eac, eae,A):=(first, eac, eae, react(A, eac))

�

Figure 6.4 illustrates the different activation modes.
A POTSAAC A = (initial, eac, eaeA) restricts the normal initial activation of its instantiated

POTSA A by the additional activation condition eac and activation exception eae. A activates A
only for timed observation sequences ts for which which σ0 |= eac holds. All timed observation
sequences ts, for which σ0 |= (eae ∧ ¬eac) holds are accepted by A without activation of A.

In particular for A:=(initial, true, false,A), we have L(A) = L(A).

135

6 Requirement Capturing for Open Embedded System

A POTSAAC with invariant activation A = (invariant, eaceae,A) activates a new instance of
POTSA A whenever eac evaluates to true for some σi along timed observation sequence ts13 . Since
A is activated whenever eac evaluates to true regardless of which is the currently active state, more
than one instance of A can be active at a time. In general, such overlapping instantiations of POTSA
A will not accept a timed observation sequence. In particular, overlapping instances of an invariantly
activated POTSA A in assumption place will in general contradict each other and thus not accept
any timed observation sequence - whenever instantiation can overlap. Hence, at least for the usage as
assumption POTSAAC with iterative activation are preferable over invariant activation. Moreover,
generation of an observer for an invariantly activatable POTSA A in assumption-place would require
building the product automaton of A with itself to be capable of all possible overlapping activations.
In general, the resulting product automaton can not be encoded as POTSA, but requires back-
leading transition for every state. W.r.t. complexity for application in verification imposed by
such a product automaton and the limited use of invariant assumptions, we restrict the usage of
invariant POTSAAC to the commitment place only. For usage of POTSAAC A as commitment, a
non-deterministic activation of A is an adequate realization of invariant activation. Since model
checkers are aimed at detecting violations of a specification, a model checker will activate A only
if the commitment specification expressed by A can be violated for this particular activation. In
particular, if A can reject a timed observation sequence ts when activated for some observation σi in
ts, then the model checker will activate A at σi. If otherwise, all possible activations for all possible
timed observation sequences lead to accepting runs of A, then the model checker will refrain from
activating A.

This argument does not apply to the assumption place. Informally, the role of assumptions
is constructive by means of filtering possible behaviors of the environment, i.e. selection of timed
observation sequences for which the commitment specification has to be checked. Non-deterministic
activation is too weak for assumptions, because the assumption is satisfied if it is never activated.
Because a commitment can only be violated if all considered observation sequences satisfy the
assumptions a model checker will never activate a non-deterministically activatable assumption.

Definition 6.25 (Language of POTSA with Activation Control (POTSAAC))
The language accepted by a POTSAAC A = (actmode, eac, eae,A) is defined over timed observa-

tion sequences.
Let ts = (π, τ) be a timed observation sequence, where π = σ0σ1σ2... is a sequence of valuations

of V. Let
−→
tsi denote the suffix of ts starting with the i-th position. Then :

ts ∈ L(A):=







(σ0 |= eae ∧ σ0 6|= eac)

∨(σ0 |= eac ∧ ts ∈ L(A))
iff actmode = initial

(∃i ≥ 0 : σi |= eac ∧ ∀k < i : σk 6|= eac

∧
−→
tsi ∈ L(A))

∨(6 ∃i ≥ 0 : σi |= eac)

iff actmode = first

(∃i ≥ 0 : σi |= eac ∧ ∀k < i : σk 6|= eac

∧
−→
tsi ∈ L(react(A))

∨(6 ∃i ≥ 0 : σi |= eac)

iff actmode = iterative

∀i ≥ 0 : σi |= eac ⇒
−→
tsi ∈ L(A) iff actmode = invariant

�

13As stated in definition 6.24, eae is ignored for the invariant activation mode as well as for iterative activation.

136

6.3 Timed Symbolic Automata (TSA)

Although, the language of invariantly activated POTSA is formally defined in the above definition,
the implementation of the observer generation for POTSAAC restricts the use of invariantly activated
POTSA to the commitment place.

Lemma 6.10 (Preservation of Determinism)
Let POTSAAC A = (actmode, eac, eae,A) with actmode 6= invariant be given. If POTSA A is

deterministic, then so is A.
�

Proof 6.10
Follows from definition 6.25:
initial activation activates A deterministically for the first valuation in ts iff σ0 |= eac. Activation

exception is mutual exclusive:(σ0 |= eae ∧ σ0 6|= eac) ⇒ ¬(σ0 |= eac) and (σ0 |= eac) ⇒ ¬(σ0 |=
eae ∧ σ0 6|= eac).
first activation activates A deterministically for the first position i in ts , s.t. (σi |= eac ∧ ∀k <

i : σk 6|= eac).
iterative activation is based on activation mode first and definition of react. It has been shown,

that react preserves determinism.
�

6.3.7 Observer Generation for POTSAAC

do step
begin

Clock Update Part

Transitions

Acceptance−Criteria

TSA activation−code

<CORE Automaton>
if (tsa_activated)

end

end

Figure 6.5: Structure of SMI Observer Encoding of POTSAAC

In figure 6.5 the structure of the SMI representation for POTSAAC A is illustrated schematically.
The representation of the instantiated POTSA A is the same for initial, first and invariant activa-
tion. Only the iterative activation imposes a modification on A: reactivation transitions from the
states in finA to the initial state are added and the enable predicates of the self-loops of the states
in finA are restricted to ¬eac in order to represent react(A) according to definition 6.23.

Listings 6.6 and 6.7 describe algorithmically the generation of a SMI observer representation for
A = (actmode, eac, eae,A). The representation of the instantiated POTSA A is embedded in a CASE

137

6 Requirement Capturing for Open Embedded System

statement which activates the code only for a truth-valuation of tsa_activated which is a boolean
variable that is set to true in the respective activation code blocks in order to activate the code
representing the instantiated POTSA. The representations of the different activations can be found
in listings 6.10, 6.11 and 6.12 respectively. Since the clock update part is created exactly the same
as in listing 6.3 on page 116 we omit this part in listing 6.6 in order to avoid repetitions.

2 < ASMI >:=create_SMI_program(<>)

4 create_activation_code_block(< ASMI > , actmode , eac , eae , s0 , relevant_clocks)

6 < core >:=create_deterministic_choice(< ASMI >)
< ASMI >:=create_case_in_choice(< core >,tsa_activated′ == true)

8

create_clocks_update(< ASMI >)
10

create_assignment(< ASMI > ,stuck′, true)
12

< ndcase >:=create_nondeterministic_choice(< ASMI >)
14 foreach (s ∈ S) {

foreach (t ∈ out(s)) {
16 if ((s ∈ finA) and (act_mode == iterative)) then {

/∗ here react(A, eac) is applied ∗/
18

/∗ stay in s as long as "not(eac)" holds ∗/
20 < modified_selfloop >:=create_case_in_choice(< ndcase >,

(primed_ref (encS (s)) == true) and not (encpred (eac)))
22 create_transition_action_code(< modified_selfloop > , s , s)

/∗ if "eac" holds then re−enter s0 ∗/
24 < reactivation_trans >:=create_case_in_choice(< ndcase >,

(primed_ref (encS (s)) == true) and (encpred (eac)))
26 create_transition_action_code(< reactivation_trans > , s , s0)

} else {
28 /∗ this is the normal transition encoding ∗/

30 < transition >:=create_case_in_choice(< ndcase >,
(primed_ref (encS (s)) == true) and (encpred (t.enable)) and

32 primed_ref(encΨ (t.timing)))
create_transition_action_code(< transition > , s , t.target)

34 }
}

36 }
< case >:=create_case_in_choice(< ndcase > , sink_state′ == true)

38 < ndcase >:=create_SKIP_statement(< case >)

40 < dcase >:=create_deterministic_choice(< ASMI >)
< case >:=create_case_in_choice(< dcase >,stuck′ == true)

42 create_assignment(< case > , sink_state′, true)

Listing 6.6: SMI-Generation Algorithm for A: Main Part

In order to increase the readability of listing 6.6 and due to limited space, generation of the

138

6.3 Timed Symbolic Automata (TSA)

action-part for the representation of transitions has been extracted and can be found as procedure-
declaration in listing 6.8.

44

if (act_mode == initial) then
46 create_assignment(< ASMI > , fair_cond′ ,

not(tsa_activated′ == true) or (initial_accept′ == true) or
48 (generate_primed_disjunction ({s ∈ F}))

else
50 create_assignment(< ASMI > , fair_cond′ ,

not(tsa_activated′ == true) or (generate_primed_disjunction ({s ∈ F}))
52 if (A is explicitly constrained) then

create_assignment(< ASMI > , nfa_cond′ , not(sink_state′ == true))

Listing 6.7: SMI-Generation Algorithm for A: Acceptance Criteria

procedure create_tranition_action_code (context scope, state source, state target) {
create_assignment(< scope > , primed_ref (encS (source)), false)
create_assignment(< scope > , primed_ref (encS (target)), true)
create_assignment(< scope > , stuck′, false)

}

Listing 6.8: Procedure for Action Part Generation of Transition

input boolean encpred(eac)
input boolean encpred(eae)
foreach (t ∈ T) {

input boolean encpred(t.enable)
}
foreach (s ∈ S) {

local boolean encS(s):=false

}
foreach (c ∈ C) {

/∗ encode clocks in integer_domains according to the definition of
mc : C → N0 of lemma 6.1 ∗/

local int_type (0,mc(c) + 1) encC (c):=0

}
local boolean tsa_activated:=false

local boolean initial_step:=true

local boolean initial_accept:=false

local boolean stuck:=true

local boolean sink_state:=false

output boolean fair_cond:=true

output boolean nfa_cond:=false

Listing 6.9: Variables and their Initialization

In listing 6.9, the used variables of the SMI representation as well as their initialization can be
found. Note, that inputs are not initialized, since their values are controlled by the environment.

139

6 Requirement Capturing for Open Embedded System

Initial Activation

Initial activation can only take place for the first observation of a timed observation sequence, i.e.
in the first step performed by the SMI observer encoding A. In order to avoid later activations
a special variable initial_step is introduced, which is initialized to true and set to false after
considering the variable for the first time. Hence, the code block for initial activation is considered
only in the first step. If in the first step eacevaluates to true, the initial state of the A is activated
and tsa_activated is set to true. If eac is false whereas eae is true in the first step, then the
local variable initial_accept is set to true. initial_accept is considered in the definition of
fair_cond according to line 46 of the algorithm. If both eac and eae evaluate to false, then the
sink_state is activated.

DCASE
[] not (tsa_activated) and (initial_step) :

initial_step ’:=false
DCASE

[] encpred(eac) == true :
tsa_activated’ := true
/∗ set initial state to true ∗/
primed_ref (encS(s0)) := true
set all clocks to 0

[] not (encpred(eac) == true) :
DCASE

[] (encpred(eae) == true) :
initial_accept ’ := true

[] not (encpred(eae) == true) :
sink_state’:=true

DESAC
DESAC

DESAC

Listing 6.10: Initial Activation

Invariant Activation

If the core automaton has not already been activated (tsa_activated==false) and if the activation
condition eac is true, the activation code non-deterministically either sets tsa_activated to true

and activates the initial state of the core POTSA A or leaves tsa_activated unchanged.

DCASE
[] not (tsa_activated)

NDCASE
[] encpred(eac) == true :

SKIP
[] encpred(eac) == true :

tsa_activated’ := true
/∗ set initial state to true ∗/
primed_ref (encS(s0)) := true
set all clocks to 0

140

6.3 Timed Symbolic Automata (TSA)

[] not (encpred(eac) == true) :
SKIP

NDESAC
DESAC

Listing 6.11: Invariant Activation

First and Iterative Activation

Finally, first and iterative activation enables execution of the code block encoding A deterministi-
cally by setting tsa_activated to true if eac is true and activation not already took place. Recall,
that iterative reactivation is encoded in the representation of A’s transition relation (cf. lines 16-27
of the algorithm).

DCASE
[] not (tsa_activated)

DCASE
[] encpred(eac) == true :

tsa_activated’ := true
/∗ set initial state to true ∗/
primed_ref (encS(s0)) := true
set all clocks to 0

[] not (encpred(eac)== true) :
SKIP

DESAC
DESAC

Listing 6.12: First and Iterative Activation

Definition 6.26 (SMI Observer-Module of POTSAAC)
Let POTSAAC A = (actmode, eac, eae,A) be given.
Let Ω(A) denote the observer SMI module representing POTSAAC A, which is obtained by

encoding A into SMI together with an activation control according to the definition of activation
mode actmode, activation condition eac and activation exception eac.

Let Ω(A)◦ff denote the observer SMI module representing POTSAAC A with designated fairness
condition output f .

Moreover, if A is an explicitely constrained POTSA, let Ω(A).o denote the observer SMI module
representing A with designated non-failure acceptance condition output o.

�

For Ω(A)◦ff , f is the stepwise indicator of the fairness condition (fair_cond in listing 6.7 and
6.9, respectively), which is true in a step iff :

• A is in one of its fair states,

• (if actmode = initial) A has initially accepted timed observation sequence ts according to the
definition of activation condition eacand activation exception eae.

• (if actmode = iterative or actmode = invariant) A has not been activated yet, according to
the definition of eac.

141

6 Requirement Capturing for Open Embedded System

For Ω(A).o, o is the stepwise indicator of the non failure acceptance condition (nfa_cond in listing
6.7 and 6.9, respectively), which is true in a step iff :

• sink_state is not the active state of the instantiated TSA A (which is also the case, if A has
not been activated yet).

Theorem 6.3 (Verification using POTSAAC)
Let CSTS C = (V,Θ, ρ, E) and POTSA A = (V, S, s0, C, TA, F

′) be given.

1. For the parallel composition Cpar:=C||ΩΩ(A) ◦ f of C with observer Ω(A) ◦ f obtained from
POTSAAC A = (actmode, eac, eae,A) holds :

K(Cpar) |= AGAF(f) ⇒ ∀ts ∈ TComps(C) : ts ↓V∈ L(A), (6.14)

where TComps(C) is the set of all possible timed observation sequences of C.

Moreover, iff A is deterministic and actmode 6= invariant, the following holds:

K(Cpar) |= AGAF(f) iff ∀ts ∈ TComps(C) : ts ↓V∈ L(A). (6.15)

2. If A is deterministic, then for Cpar:=C||ΩΩ(A) ◦ f with observer Ω(A) ◦ f obtained from
POTSAAC A = (actmode, eac, eae,A) with actmode 6= invariant holds:

K(Cpar) |= GF(f) iff ∀ts ∈ TComps(C) : ts ↓V∈ L(A). (6.16)

3. If A is deterministic and explicitely constrained, then for Cpar:=C||ΩΩ(A) . o with observer
Ω(A) . o obtained from POTSAAC A = (actmode, eac, eae,A) with actmode 6= invariant
holds:

K(Cpar) |= G(o) iff ∀ts ∈ TComps(C) : ts ↓V∈ L(A). (6.17)

�

Proof of Theorem
(6.14) follows directly from theorem 6.1 (regarding CTL verification).
(6.15) follows from lemma 6.10 and theorem 6.1 (regarding CTL verification).
(6.16) follows from lemma 6.10 and lemma 6.5 (regarding LTL verification)
(6.17) follows from lemma 6.10 and lemma 6.9 (regarding verification using non-failure acceptance)

�

Conclusion

Timed Symbolic Automata provide a well defined semantical basis for the generation of (fair)
synchronous observers, which are capable of quantitative treatment of time. It has been shown that
for a relevant sub-class of TSA invariance checking instead of LTL model checking with fairness
constraints is applicable.

142

6.3 Timed Symbolic Automata (TSA)

6.3.8 Related Work

Symbolic Automata (SA) and in particular the subclass of partially ordered symbolic automata
(POSA) were - to our knowledge - first presented in the PhD-Thesis of Rainer Schlör [Sch00].
There, POSA serve as semantical basis for the definition of symbolic timing diagrams and linear
symbolic timing diagrams respectively. In particular, the correspondence of deterministic POSA
and LTL is considered and a LTL formula generation for deterministic POSA is presented. This
correspondence forms the basis of the integration of symbolic timing diagrams with verification
techniques, where POSA do not refer to time explicitly, but only the usual temporal operators X,
G, F, and U permit reference to temporal relations of observations in this logical frame-work.

For an earlier RT-version of symbolic timing diagrams (cf. section 6.5) Konrad Feyerabend
[FJ97, Fey96] presented a timed variant of POSA serving as intermediate representation for the
translation of RT-symbolic timing diagrams into TPTLC . The real-time temporal logic TPTLc

presented in [Fey96, FJ97] is a derivative of the freeze quantifier logic TPTL [AH89]. In TPTL
specification clocks are introduced, which are frozen to the actual value of a global clock by so-
called freeze-quantification. Therefore, propositional temporal logic is extended with an infinite
supply C of specification clocks, which can be frozen to the actual global time and referred to
within the formula. Whenever a freeze quantifier z. is encountered in a formula, the actual value of
the global time is stored in a variable z for later reference. Global time is only accessible through
freezing. In contrast to TPTL, TPTLc uses reset quantification instead of freeze quantification.
Whenever a reset quantifier z. is encountered in a formula the clock variable z is set to 0 instead
of setting z to the global time. Hence, as in our approach specification clocks count time units
since their last reset. All clock variables are incremented with the global time according to a timed
observation sequence. The timed variant of symbolic automata as presented in [Fey96, FJ97] only
regards one sort of clocks. Hence, either counting steps can be captured by TPTLc or interpretation
of clocks w.r.t. simulation time, but not a combination of both. Due to unavailability of a Tableau
generation for TPTLc, this interpretation has - to the best of our knowledge - been used in practice
only for counting steps. Based on the hard-coded assumption that ’next time’ is interpreted as
’next step’ , clock environments for step-counters have been unwound into sequences of X operators.
Hence, ordinary LTL formulae have been generated from RTSTD for application of verification.

This pragmatic approach of only referring to steps has been followed also by Jochen Klose in
[Klo03], where timed symbolic automata are chosen as basis for the semantics definition of Live
Sequence Charts (LSC). The TSA definition in [Klo03] is closely related to our approach and has
served as semantical basis for LSC already in an earlier common publication [KW01]. We have
extended the definition of TSA by an enhanced notion of time and continued the formalization
where [Klo03] ends. Consequently, the enhanced treatment of time as well as the results of this
section could easily be transferred to the formalism of Live Sequence Charts.

A first version of an automatic observer generation for POTSAAC for only one sort of clocks was
developed by Bertrand Gregoire in the context of his master thesis [Gre02]. Large parts of the
research and implementation took place in a co-operation with the C.v.O-University of Oldenburg
and OFFIS. This work, which we had the pleasure to advise, forms the basis of this section.

A major motivation for this co-operative research activity has been the identification of a restricted
subclass of POTSA for which non-failure acceptance can be used instead of Büchi acceptance.

Most of the definitions and conclusions presented in [Gre02] are given in a rather informal way.
The requirements regarding POTSA as well as the clock-algorithm and applicability-criteria for Non-
Failure Acceptance, respectively, are rather ad-hoc in [Gre02], which imposed a re-consideration and

143

6 Requirement Capturing for Open Embedded System

formal foundation of the formalism.
Also tableaux techniques for temporal logic formulae as for example explained in [BCM+90,

CGH97, CGP99] represent specifications by automata for the application of verification.
On the one hand, a direct representation of TSA by observers avoids application of complex

algorithms, involving (1) generation of a formula representation for TSA and (2) afterwards gener-
ating automata representations for the obtained formulae. On the other hand, representing TSA
as observers permits application of invariance checking for an important subclass of TSA instead of
applying more complex verification techniques. For all liveness requirements, for which a particular
quantitative bound restricts the required or expected reaction14, invariance checking is applicable,
conserving a linear time interpretation.

Verification of safety (including bounded liveness) requirements using synchronous observers has
been considered by Halbwachs et al. in [HLR93] and for example in [Hol00] but also by many others
in the context of synchronous languages. To the best of our knowledge, the observers applied in the
cited approaches are hand written specifications using the same language as for the model itself,
but are not generated automatically from more abstract formats, such as TSA.

6.4 Observer Pattern

For the formalization of rather standard requirements the verification framework offers a variant
of Timed Symbolic Automata, so-called specification pattern. These pattern are predefined propo-
sitional schemes for capturing basic temporal requirement specifications and are designed to be
applicable in a very flexible way. By analysis of a large set of industrial requirements from avionics,
automotive and rail-system application domains, a set of most frequently applied temporal schemes
has been identified.

For each of these schemes an automaton pattern implementation is provided by a library. Pattern
can be used to specify assumptions about the environment as well as to specify commitments, which
have to be fulfilled by the considered component.

Pattern specify temporal relationships of user-defined events, which have to be specified by the
user. Therefore, transition triggers as well as upper and lower bounds for clocks are implemented
using formal parameters.

A pattern is instantiated by choosing it from the library and by mapping its formal parameters to
actual expressions referring to expressions ranging over model observables as desired for the actual
requirement specification. Two kinds of parameters are distinguished for instantiation of pattern in
specifications:

• proposition-parameters are mapped to user-defined expressions ranging over basic states,
events and data-items of the model.

• bound-parameters are mapped to positive values, in order to form an upper bound to a counter
of the pattern. It depends on the chosen execution semantics of the Statemate model whether
the counter refers to steps or super-steps.

In contrast to TSA as discussed in the previous section, pattern are combined with an additional
”prefix automaton”: All pattern are available for three possible system setup phases of the system.

14aka. bounded liveness requirements.

144

6.4 Observer Pattern

System setup phases permit an initialization phase of the system before first activation of the
pattern, regardless of the particular activation mode of the pattern:

after_reaching_R first activation of the pattern according to its activation condition can take
place only after the system first satisfies condition R, where R is a proposition parameter of
the respective pattern implementation .

after_N_steps first activation of the pattern only takes place N step or super-steps, respectively,
after initialization of the system

immediate no setup phase is regarded; the pattern is first activated according only to its activation
mode and condition.

According to the different setup phases and activation modes, the set of pattern is structured
following the naming scheme:

<activation_ mode>_<kernel_ property>__<startup_ phase>

Initial Activation

Setup Activated

Activation−Point

Setup Activated

Activation−Point

First Activation

Invariant Activation

Iterative Activation

Setup Activated

Activation−Point

Setup Activated

Activation−Point

Figure 6.6: Activation Modes

For example, inv_P__after_reaching_R (with kernel property P; kernel properties will be ex-
plained below) implements a pattern expressing the requirement that proposition P holds invariantly

145

6 Requirement Capturing for Open Embedded System

after the first occurrence of proposition R. In contrast, inv_P__immediate requires that proposition
P holds immediately from system start, while init_P__immediate requires that proposition P holds
at system start, without caring about the subsequent steps. Consequently, init_P__after_N_steps
states that proposition P is true N steps or super-steps respectively after system start. Figure 6.6
illustrates the interplay of startup phases, activation-modes and kernel pattern.

The interpretation of time depends on the chosen execution semantics for the specified component.
Clocks refer to steps if the model refers to the synchronous execution semantics. Otherwise, clocks
refer to stable states of the model.

In the following we list the pattern offered by the verification framework at the moment of writing.
In principle, each of the kernel pattern is defined for at least the activation modes initial, first and
iterative. Table 6.1 lists the supported combinations of kernel pattern with activation modes. Some
of the pattern also provide an invariant activation mode.

Pattern can be instantiated in commitment as well as in assumption place. Thus, whenever we
use the verb ”require” in the explanations below, it can be re-interpreted as ”expect” for the use of
the pattern as assumption:

P Proposition P. Obviously only a combination with activation modes initial or invariant is mean-
ingful. In the special case of kernel pattern P, activation mode invariant has to be understood
in a different way than usual: ”invariantly P” means the same as G(P).

P_implies_finally_Q_B If proposition P is observed then it is required that proposition Q is
observed at most B time units after P.

finally_P_B It is required that proposition P is observed at most B time units after activation of
the pattern.

P_implies_finally_globally_Q_B If proposition P is observed then it is required that proposition
Q is observed at most B time units after observation of P and then holds forever.

finally_globally_P_B Proposition P is required to be observed at most B time units after acti-
vation of the pattern and then to hold forever. The same as for kernel property P, only a
combination with activation modes initial and invariant is meaningful, since the pattern is
activated unconditionally.

P_implies_globally_Q If proposition P is observed then it is required that proposition Q holds
forever from the same instant of time on in which P has been observed.

P_implies_Q_X_steps_later If proposition P is observed then it is required that proposition Q

is observed at exactly B time units after observation of P.

P_implies_Q_during_next_X_steps If proposition P is observed then it is required that propo-
sition Q holds at the same instance of time and since then to remain valid for the next X time
units.

P_implies_Q_atleast_X_steps_after_P If proposition P is observed then it is required that
proposition Q holds not earlier than X time units after observation of proposition P.

P_stable_X_steps_implies_afterwards_Q If proposition P holds for an interval of X time units,
then proposition Q is required to be observed afterwards.

146

6.4 Observer Pattern

P_stable_X_steps_implies_finally_Q_B If proposition P holds for an interval of X time units
then proposition Q is required to be observed at most B time units later (after completing the
minimal interval length - regardless of proposition P in between).

Q_while_P Proposition Q is required to hold as long as proposition P holds.

Q_while_P_B Proposition Q is required to hold as long as proposition P holds, where P has to
hold at least B time units.

Q_only_after_P Proposition Q is required to be observed only after proposition P has been ob-
served.

Q_not_before_P Proposition Q is required to be observed not before proposition P has been
observed.

All pattern specify progress at most in the form of bounded liveness. Thus all properties that can
be specified using pattern are safety properties, for which invariance checking is applicable.

activation mode Initial First Invariant Iterative
kernel property

P x - x -
P_implies_finally_Q_B x x x 2)
finally_P_B x - x -
P_implies_finally_globally_Q_B x x x 2)
finally_globally_P_B x - 1) -
P_implies_globally_Q x x x 2)
P_implies_Q_X_steps_later x x - x
P_implies_Q_during_next_X_steps x x - x
P_implies_Q_atleast_X_steps_after_P x x - x
P_stable_X_steps_implies_afterwards_Q x x - x
P_stable_X_steps_implies_finally_Q_B x x - x
Q_while_P x 1) x 2)
Q_while_P_B x 1) - 2)
Q_only_after_P x 1) - x
Q_not_before_P x 1) - x

Table 6.1: Pattern Overview
x : available
-: not available
1) same as initial
2) same as invariant

Figure 6.7 shows an example pattern implementation.
Pattern P_implies_Q_X_steps_later provides the proposition parameters P and Q, while X is a

bound parameter specifying an upper bound for the amount of steps or super-steps, respectively,
after which Q has to be observed - after observation of P.

147

6 Requirement Capturing for Open Embedded System

s0/cN:=0

cN<N-1
/if (enable)
 cN:=cN+1
fi

s1cN==N-1

not P
sink

P and Q

s2

P and
not Q

/cX:=0

true

cX==X-1
and Q

(cX==X-1 and not Q)
or (cX<X and Q)

cX<X-1
and not Q
/if (enable)
 cX:=cX+1
fi

Figure 6.7: Pattern “iter_P_implies_Q_X_steps_later__after_N_steps”

X and N are bound parameters determining upper bounds for the clocks cX and cN, respectively.
By setting the parameter enable to either “SUPER_SYNC=true” or “true” it can be determined
whether the counters refer to steps or super-steps. Parameter enable is not offered to the user,
but automatically mapped at instantiation time according to the execution semantics to which the
specified model refers.

Clock cN and state s0 are used to implement the setup phase after_N_steps. If cN has reached
its maximal value - bounded by N, the transition (s0 to s1) to the kernel pattern (states s1,s2,
and sink) is taken. The pattern remains in state s2 unless the expression mapped to P evaluates
to true. If at the same step also the expression mapped to Q becomes true, the transition to the
sink-state sink is taken in which the execution remains forever. Otherwise counter cX is reset and
state s2 is entered. If the expression mapped to Q becomes true too early or too late, the sink-state
sink is entered. Only if the expression evaluates to true exactly at the right step, s2 is left and s1

is entered again - the kernel pattern is ready for reactivation. Since the activation mode is encoded
in the pattern, the initial and first variant (figure 6.8) require an additional accepting state s3 ,
which is entered instead of entering s1 again, because if the pattern has been activated once no
further activation is possible. For the initial activation the self-loop at state s1 has to be removed
and instead a transition to the sink_state has to be added which is taken if P is not observed.

s0/cN:=0

cN<N-1
/if (enable)
 cN:=cN+1
fi

s1cN==N-1

not P

sink

P and Q

s2

P and
not Q

/cX:=0

true

(cX==X-1 and not Q)
or (cX<X and Q)cX<X-1

and not Q
/if (enable)
 cX:=cX+1
fi

s3

cX==X-1
and Q

Figure 6.8: Pattern “first_P_implies_Q_X_steps_later__after_N_steps”

148

6.4 Observer Pattern

6.4.1 Related Work

Pattern and templates are well known from many application areas. For example, program libraries
provide standardized functions and procedures for programmers; word processing systems provide
text templates for various use-cases; modern CASE-tools offer libraries of design patterns.

The typical reason to introduce pattern for an application area is that pattern solve a recurrent
problem, for which either the solution is not obvious to every user or for which a particular proven
concept can be offered, which is advanteguous to use.

Specification of requirements for formal verification in terms of temporal logic requires consid-
erable expert knowledge, and thus hinders the use of formal verification techniques by non-expert
engineers.

Several approaches to pattern-based verification exist, which aim at offering simple but formal
specification techniques, in order to enable non-expert users to apply formal verification. A funda-
mental observation regarding formal specification is that often requirements are identical except for
the concrete observables or expressions to which they refer. As an example the basic definition of
liveness and safety specification by Lamport could be cited, which states that safety properties are
of the general form ”Something bad will never happen”, whereas liveness properties are of the form
”Something good will finally happen”. Obviously, many safety specifications are of the form ”event
b must not occur before event a” or ”event b must occur only after event a” or similar formulations,
while many liveness specifications are for example of the form ”event a implies that finally event b
must occur ” .

Analysis of typical requirements thus exposes often recurring specification schemes, which can be
offered as templates for specifications of similar properties. The semantical representation of such
specification schemes has to be realized only once and an adequate mapping mechanism associating
user-defined event- or condition-specifications to the formal parameters of the template has to be
offered.

For example, Dwyer, Avrunin and Corbett [DAC98a, DAC98b] report on an analysis for which
they collected over 500 examples of property specifications, for which they found that 92% could
be covered by instances of their pattern collection. This collection consists of pattern of a number
of formalisms, e.g. CTL, LTL and Quantified Regular Expressions. Pattern are classified according
to the categories (1) occurrence: absence, existence, bounded existence, universality, and (2) order:
precedence, response, chain precedence, and chain response. The advantage of this approach is
a lucid classification and a broad coverage of recurring specification. Obviously, a drawback of
this multi-formalism approach is that the collection is rather a knowledge base than tool support
for users, which offers tight integration with a concrete verification environment. In contrast, the
observer pattern presented in this section are offered and integrated as ready-to-use specification
templates in the STVE.

Bitsch [Bit00, Bit01] presented a pattern collection for the formalisms CTL, LTL and µ-calculus,
which follows the classification : (1) necessary behavior, (2) permitted or forbidden behavior, (3)
necessary behavior which is only permitted, and (4) behavior, which must be guaranteed under
certain conditions. As the approach of Dwyer et al., also this approach offers rather a catalogue as
knowledge base, than tool support for application in verification.

Another interesting approach of pattern-based specification is the specification logic Sugar of the
IBM Haifa Research Laboratory [AFF+02]. Based on the observation, that engineers are rather
familiar with regular expressions than with temporal logic, the specification logic allows the specifi-
cation of repetition, concatenation, disjunction and conjunction of event sequences or single events

149

6 Requirement Capturing for Open Embedded System

specified in a regular language. In Sugar, regular expressions are combined with temporal operators
like always and eventually. For model checking, the Sugar specification can automatically be
translated into one of the standard temporal logics LTL or CTL.

6.5 Symbolic Timing Diagrams (STDx)

The visual formalism STDx (extended Symbolic Timing Diagrams) has been developed for capturing
requirement specifications of reactive systems in a graphical way. While the graphical formalisms
used in the Statemate system are tailored towards an operational description of reactive systems,
STDx takes a complementary role: properties of a system or sub-system are specified in terms of
its input/output behavior. The semantics of STDx is based on a declarative paradigm: a STDx-
specification consists of a set of diagrams (definitions), where each diagram describes one aspect
of the required input/output behavior independently. The diagrams are not referred to directly
by specifications but a declaration layer permits grouping of diagrams and mapping of formal
parameters, which can be used in order to keep the diagrams more general.

STDx-specifications of a (sub-)system A refer to the interface declaration intf(A) as defined in
section 5.4. This way, the system is treated as a black-box, i.e. local variables, states, conditions
and events are hidden to STDx-specifications. The restriction of STDx to interfaces is not strin-
gent from a technological view-point but is of methodological nature: Allowing direct reference to
local variables might seem to be more comfortable at first glance, but has the disadvantage that
specifications depend on particular implementations. For such dependent specifications, it is not
possible to replace the implementation by another implementation with the same interface, but
e.g. different local variables. Keeping specifications independent from implementation details is of
paramount importance for compositional verification. Restriction of specifications to the externally
visible communication behavior of sub-systems permits deduction of system-level properties from
the composition of sub-system specifications instead of considering the composition of the concrete
sub-systems.

A STDx-diagram consists of a set of symbolic waveforms and constraints, where each waveform
represents a totally ordered sequence of symbolic events regarding the interface to which the specifi-
cation refers. No order is defined between events of different waveforms unless a constraint explicitly
requires an order or particular timing between events of the different waveforms.

Informally, a diagram is interpreted by moving a front from left to right through the diagram,
such that the front always crosses each waveform only once. Whenever an observation fits to
the specification of a symbolic event right next to the front, the front moves - now including the
respective symbolic event - and waits for the next observation. Thereby, constraints restrict the
legal moves of the front. The possible shapes of the front are referred to as phases of a diagram. If
an observation forces the front to move but there exists no legal move to a next phase, since this
move would violate the specification of a symbolic event or a constraint, the diagram is violated.
In order to weaken this interpretation, STDx provides also constructs to treat particular violations
only as expected exceptions. In case of such expected exceptions, the diagram is prematurely exited
in a state of acceptance.

Following the intuition of moving a front through a diagram, a TSA is constructed with the
phases as states and transitions capturing the legal ordering of the phases according to the order
of events along the waveforms and the restrictions imposed by constraints. The construction of a
TSA is also referred to as unwinding. We will show in this section that for a well-defined subset

150

6.5 Symbolic Timing Diagrams (STDx)

of Symbolic Timing Diagrams, invariance checking can be applied according to the theorems and
conclusion of section 6.3.

STDx-diagrams are dedicated to be used either as assumptions or commitments, unless they have
the type "general", which allows usage in both assumption- and commitment-declarations. The
individual diagrams are instantiated using declarations, whereat several diagrams can be grouped
by a declaration. The semantics of a STDx-specification is a direct function of the semantics of
the individual diagrams instantiated by the set of declarations the specification refers to. This is
deeply related to a particular methodology of system verification. The construction of a requirement
specification in terms of several (conjunctive) specification clauses leads naturally to a high degree of
modularization. The verification of a STDx-specification consists of the verification of all diagrams
in the set.

The layout of the user interface of the STDx-specification-manager reflects the logical structure
of STDx-specifications.

Diagrams/
Definitions

Declarations

Specifications

Figure 6.9: Timing Diagram Editor

The basic constructs of STDx-diagrams - symbolic events, waveforms, constraints, and activation
concepts - are informally introduced and explained in detail in subsection 6.5.1. In order to formally
define an interpretation according to the intuition of moving a front through the diagrams, sub-
section 6.5.2 provides formal definitions of specifications, declarations, diagrams and their building
constructs. In subsection 6.5.3, preparation of STDx-specifications for the application of diagram
translation into TSA is described. A formal description of this translation (unwinding into TSA)
follows in subsection 6.5.4. The section is concluded with an overview of related work in subsection
6.5.5 .

151

6 Requirement Capturing for Open Embedded System

6.5.1 Diagrams

Figure 6.10 shows an example diagram. The diagram consists of two waveforms, one for the in-
terface object ACTIVATE_CROSSING_SND_F and the other one for ACK_REC_F. The two parallel ver-
tical lines between waveform-names and the waveforms specify initial activation of the diagram,
which will be described in more detail later in this section. If not initially not(ACK_REC_F) and

not(ACTIVATE_CROSSING_SND_F) holds, then the diagram is violated. Otherwise, the diagram is
fulfilled only if either not(ACK_REC_F) and not(ACTIVATE_CROSSING_SND_F) holds forever or if
ACK_REC_F becomes true exactly 3 steps after ACTIVATE_CROSSING_SND_F has become true. Any
other order of observations regarding ACK_REC_F and ACTIVATE_CROSSING_SND_F would violate the
diagram, for example ACK_REC_F becoming true without previous observation of ACTIVATE_CROS-

SING_SND_F etc.

Figure 6.10: Symbolic event labeled with expressions

We will in the remainder of this subsection informally explain the graphical and textual constructs
of which a diagram consists.

Symbolic Events and Waveforms

A symbolic waveform specifies a required (or expected) sequence of symbolic events, each of which
defines a particular change of value of one or more observables to which the diagram refers. A single
event is defined by three expressions: a trigger expression, an optional stable condition and an also
optional exit condition. Their meaning is given by the unwinding interpretation: The interpretation
of a diagram remains in a stable phase as long as all stable conditions of all events belonging to
that phase are satisfied. The interpretation moves the front, if the trigger expression of a symbolic
event right next to the front becomes true, i.e. the TSA constructed by unwinding will provide
transitions for each combination of triggers that can legally become true for a particular phase. If
neither the trigger nor the stable condition of one event are satisfied, the exit condition of the event
determines whether the diagram is violated or canceled. Figure 6.11 shows an example event and
the placement of the expressions.

stable trigger [exit]

Figure 6.11: Symbolic event labeled with expressions

Each waveform is identified by a name, which may be a symbolic name or the name of an interface
object of the model to which the diagram refers. In the latter case, ’incomplete’ assertions of the

152

6.5 Symbolic Timing Diagrams (STDx)

form ’= value’ or ’/= value’ are allowed, which are completed using the name of the interface
object as left-hand-side operand of the comparison operator.

Sometimes a waveform is ended with the trigger ’false’ for the last event. This means, that the
last event can never occur, since no system state satisfies ’false’. The intended meaning is, that
the last phase before the final event is required to last ’forever’.

If stable and trigger condition of one event are non-exclusive, the event is a non-deterministic
event. Nondeterministic events are graphically marked by an underlying grey rectangle.

Constraints

Without explicit constraints, no temporal relationship between events on different waveforms is
specified. Different kinds of constraints can be used to require ordering or timing conditions among
events:

Symmetric Constraints are used for specification of a distance between two events. They can be
used to require simultaneity, to exclude simultaneity or to specify a concrete distance in terms
of steps or super-steps. Only a distance is specified without requiring a particular order of
the events referred to by the constraint.

Asymmetric Constraints : In contrast to symmetric constraints, asymmetric constraints relate a
source-event to a target-event.

Precedence Constraints specify an order of the events they refer to. In general, the order is
of the form ’the target event may not be observed before (only after) the source event ’.

Leadsto Constraints specify a causality relation regarding the referred events. Basically,
leadsto constraints require that ’if the source event is observed, the target event must
be observed eventually after activation of the diagram’. Hence, leadsto constraints in
their pure form express rather a temporal implication than an ordering of the concerned
events.

Combined Constraints are a combination of a precedence constraint portion and a leadsto
constraint portion. They specify a causality relation as well as an ordering of the refer-
enced events.

STDx-constraints are either qualitative or quantitative constraints. Qualitative constraints specify a
principle temporal relation between two symbolic events, without requiring a concrete timing. This
is denoted graphically by symbolic interval annotations of the constraint. In contrast, quantitative
constraints are annotated with concrete time-intervals. For quantitative constraints it has to be
distinguished whether the timing-interval refers to steps or to super-steps of the model. Graphically,
quantitative step constraints are depicted by normal (thin) lines, while super-step constraints are
depicted by bold lines.

Constraints are either mandatory or possible:

• Mandatory constraints express a requirement: it is an error if a run of the system violates a
mandatory constraint. Mandatory constraints are graphically depicted by solid lines.

• In contrast to the mandatory interpretation, possible constraints specify expectations about
the temporal relation of two events. If a possible constraint is violated by a run of the

153

6 Requirement Capturing for Open Embedded System

system, the diagram is canceled, i.e. exited in a state of premature acceptance. For graphical
distinction from mandatory constraints, possible constraints are drawn using dashed lines.

e1

e2

mandatory precedence

[0,]8

constraint

e1

e2

possible precedence

[0,]8

constraint

Figure 6.12: Mandatory and Possible Precedence Constraints

The concrete interpretation of possible and mandatory constraints depends also on the usage of
the diagram:

Mandatory constraints in assumption diagrams are used to express requirements regarding the
environment of the (sub-)system, whereas a possible constraint expresses expectations of the envi-
ronment regarding the (sub-)system.

In contrast, mandatory constraints in commitment diagrams are used to express requirements re-
garding the (sub-)system, whereas possible constraints express expectations w.r.t. the environment.

Consequently, in particular for asymmetric constraints the usage of possible and mandatory
constraints is logically restricted:

In assumptions, mandatory asymmetric constraints shall not refer to target events specifying
output behavior of the (sub-) system, whereas possible asymmetric constraints shall not refer to
target events specifying inputs from the environment.

The contrary should be adhered to by commitment diagrams: mandatory asymmetric constraints
shall not refer to target events specifying inputs form the environment, whereas possible asymmetric
constraints shall not refer to target events specifying output behavior of the (sub-) system.

Symmetric Constraints

Symmetric constraints (Figure 6.13) express a symmetric temporal relation between two events. A
simultaneous constraint (symbolic interval [0, 0]) specifies that whenever event e1 is observed, e2
has to to be observed simultaneously and vice versa. Even though the interval annotation seems
to denote a concrete interval, simultaneous constraints only specify ’real’ simultaneity and thus
belong to the qualitative constraints. Notice that there exists no super-step variant of simultaneous
constraints.

In contrast to simultaneous constraints, conflict constraints (symbolic interval (0,∞]) forbid the
observation of both events at the same point in time. Again, the conflict constraint is a qualitative
one and there exists no super-step variant.

In order to refer to steps or super-steps quantitatively, a distance constraint with a concrete
timing-interval ([n,m]) can be used:

Whenever one of the two constrained events is observed, a distance constraint requires the other
event to be observed within an temporal interval specified by a lower (n ∈ N0) and an upper bound
(m ∈ N) after the observation of the first event. Distance constraints exist in two variants, one
referring to steps and the other one referring to super-steps of the model.

154

6.5 Symbolic Timing Diagrams (STDx)

e1

e2

[0,0]

simultaneous constraint

e1

e2

[n,m]

constraint
step distance

e1

e2

[n,m]

constraint
super−step distance

e1

e2

(0,]8

conflict constraint

Figure 6.13: Symmetric Constraints

Precedence constraints

Precedence constraints are used to define an ordering of events. They do not require the target
event to occur, but if the target event occurs it has to occur - depending on the interval annotation
of the constraint - not before or strictly after the source event of the constraint.

e1

e2

[0,]8

qualitative precedence
constraint including

simultanity

a) e1

e2

e1

e2

e1

e2

(0,]

b)

qualitative precedence
constraint excluding

simultanity

8 [n,]

c)

precedence constraint
specifying lower

step bound

[n,]

precedence constraint
specifying lower

super−step bound

d)
8 8

Figure 6.14: Precedence Constraints

Constraint (a) in figure 6.14 specifies event e2 to be observed - if e2 will be observed at all - not
before observation of e1. Depending on whether the lower bound 0 is (a) included in the symbolic
interval or (b) excluded from the interval, e2 may or may not happen simultaneously with e1.
Precedence constraints can also be used with a non-negative lower bound n ∈ N (as shown in (c)
referring to steps and (d) referring to super-steps). Quantitative constraint (c) specifies that, if e2 is
observed, e1 must have been observed at least n steps before e2, whereas quantitative constraint (d)
requires that e1 must have been observed at least n super-steps before e2 . Thus, the lower bound
specifies a minimal distance of the target event from the source event, whereat the events have to
be observed in the specified order. In order to emphasize the fact that e2 is not required to be
observed at all, other upper bounds than the ∞ symbol as included upper bound are not permitted
for precedence constraints.

Leadsto constraints

Leadsto constraints require the target event to occur if the source event occurs - without restricting
the lower bound of the interval. I.e. the target event may also occur before the source event.

155

6 Requirement Capturing for Open Embedded System

e1

e2

e1

e2

e1

e2

c)b)

8

a)

[− ,)88
leadsto constraint specifyingleadsto constraint specifying

upper step bound upper super−step bound
qualitative leadsto

constraint

8[− ,m] [− ,m]

Figure 6.15: Leadsto Constraints

A quantitative leadsto constraint (figure 6.15 (a)) requires that if event e1 is observed, event
e2 must be observed eventually after activation of the diagram. Leadsto constraints can also be
specified with an quantitative upper bound, as depicted in 6.15 (b) referring to steps and (c) referring
to super-steps. If event e1 occurs, event e2 must occur eventually after activation of the diagram
but at most m ∈ N steps (super-steps) after e1.

Combined constraints

Combined constraints combine the ordering properties of precedence and the causality portion of
leadsto constraints. The precedence portion specifies the ordering of source and target event, while
the leadsto portion requires the target event to occur. Examples of combined constraints are shown
in figure 6.16. Again, combined constraints can be used with qualitative and quantitative interval
annotations.

Qualitative combined constraints ((a) and (b)) : If event e1 is observed, e2 must be observed
eventually not before (after) observation of e1. If the lower bound of the constraint interval is 0, it
can be (a) included in the interval or (b) excluded from the interval in order to accept or permit
simultaneity.

Quantitative combined constraints ((c) and (d)) : combined constraints can also be used with
a concrete quantitative interval [n,m], where n ∈ N0and m ∈ N. (c) specifies that if event e1 is
observed, e2 has to be observed at least n steps but at most m steps after observation of e1. In
contrast, (d) refers to super-steps instead of steps.

e1

e2

[0,)8

a)

qualitative combined
constraint including

simultanity

e1

e2

(0,)8

b)

qualitative combined
constraint excluding

simultanity

e1

e2

[n,m]

c)

combined constraint
specifying step bounds

e1

e2

[n,m]

d)

combined constraint speci−
fying super−step bounds

Figure 6.16: Combined Constraints

156

6.5 Symbolic Timing Diagrams (STDx)

Activation modes

A system has to satisfy a requirement specified by a diagram whenever the diagram is activated.
We distinguish two different activation modes: initial and iterative. An initial diagram is activated
only once at system start. In contrast, iterative diagrams are activated again and again along a
system run, whenever the activation condition evaluates to true and no other incarnation of the same
diagram is already active. Only one instance of an iterative diagram can be activated at any instance
of time (cf. figure 6.4 of section 6.3). The activation condition is built from the trigger expressions
of the first (left most) events of all waveforms. The conjunction of all these expressions forms the
starting state of the diagram. To further restrict the activation, an additional condition can be
specified by an expression, which is then regarded in combination with the activation condition
(explained below).

Regarding older version of Symbolic Timing Diagrams, it has been criticized by users that in-
variant activation in particular of assumption diagrams was counter-intuitive:

This particular problem of invariant activation has been referred to as ’self-activation’, which
means the following: while a diagram with invariant activation mode is activated and being matched
by the behavior following the activation point, further activations (instances) of the same diagram
might occur. These further instances are often violated by the runs satisfying the first instance.
This is unexpected in almost all cases, since the intention of the designer has been to express a
requirement only in the context of a situation where the start pulse has happened just before. The
problem can be remedied using the new concept of iterative activation.

Iteratively activated diagrams first have to be completely worked off before a new instance can be
activated. The variant of Symbolic Timing Diagrams presented in this thesis, hence only provides
initial and iterative activation. Even though, invariant activation could technically be supported
for commitments, we will not consider invariant activation in the context of this work.

Graphically, initial activation is depicted by a double vertical between the waveform names and
the waveforms, while iterative activation is depicted by a single vertical line.

Activation Context and Activation Exception

As stated above, the activation condition of a diagram is build by conjunction of the trigger expres-
sions of the left-most events of all waveforms of a diagram. Sometimes this may be not restrictive
enough. STDx therefore offers the concept off an additional optional activation context. Instead of
adding additional waveform(s) in order to further restrict the activation of a diagram, an arbitrary
expression can be entered as activation context for iterative diagrams. If such an activation context
is specified by the user for an iterative diagram, the diagram is activated only if the conjunction of
activation condition plus the activation context expression evaluates to true (and no earlier instance
of the diagram is currently active).

For initial diagrams instead of an activation context an activation exception can be specified.
If the activation condition of an initial diagram evaluates to false in step 0, but a user defined
activation exception becomes true, the diagram is prematurely satisfied without being activated at
all. Activation exceptions can be used e.g. for initial case distinctions: By specifying assumptions
with mutual exclusive activation exceptions different initializations of a system can be considered;
by specifying commitments with mutual exclusive activation exceptions, alternative reactions de-
pendent on different initial values can be specified.

157

6 Requirement Capturing for Open Embedded System

6.5.2 Building STDx-specifications from Diagrams and Declarations

For the specification of reactive systems it is quite often necessary to assume some behavior of the
environment. A correct behavior of the system or of a sub-system can only be guaranteed provided
that the environment does not violate these assumptions. STDx-diagrams can be used not only to
specify properties of a system but also to specify such assumptions about the environment. For
this purpose, diagrams are determined to be either assumptions, commitments or general diagrams.
The latter can be instantiated by commitment as well as by assumption declarations.

Based upon the basic diagrams, STDx-specifications are derived in two steps. Diagrams are
instantiated in declarations. Commitment declarations can instantiate commitment or general dia-
grams, while assumption declarations can instantiate general or assumption diagrams. Parameters
(see below) of the instantiated diagrams are mapped to concrete expressions by the declaration. A
specification is built by choosing exactly one commitment declaration (instantiating arbitrary many
diagrams) and arbitrary many assumption declarations.

The interpretation of a STDx-specification is that the commitment declaration has to be valid for
the system under consideration provided that the assumptions are guaranteed by the environment.

For example STDx-specification s_all_com in figure 6.9 refers to the commitment declaration
s_all_com and the assumption declaration s_allas. The commitment declaration s_all_com in-
stantiates the commitment diagrams clb_oa_act, insafe_oa_closed and s_allinocomm. Assump-
tion declaration s_allas instantiates the assumption diagrams cl_oa_lower, never_vacated,

not_passed, s_crfree_oa_crsaf, and strq_and_act_init (not visible in figure 6.9). This spec-
ification will be considered is part of an application example for compositional verification and will
be explained in detail in section 8.3.3.

According to the hierarchical organization of STDx-specifications we first formally define STDx-
specifications in definition 6.27, because specifications define the scope of all instantiated diagrams.
In definition 6.29, a formal definition is given for STDx-declarations, which instantiate the individual
diagrams in the scope of STDx-specifications. After some additional formal definitions regarding
waveforms and constraints, STDx-diagrams will be formally defined in definition 6.34.

Specification Variables

Three kinds of specification variables can be used in Symbolic Timing Diagrams: Last, rigid and
flexible specification variables:

• Last variables represent the value of particular observables in the previous step. A last-variable
is introduced for a specification by the declaration:

< new_name > = last(< observable >)

where new_name is the name of the last-variable to be introduced and observable is an interface
object of the interface referred to by the specification.

• Rigid variables can be assigned any value of their domain in step 0, but do not change their
value thereafter. Rigid variables can for example be used as indices for arrays if a specification
captures a property for all elements of an array.
A rigid variable is introduced for a specification using the declaration

< new_name >: − < type >;

158

6.5 Symbolic Timing Diagrams (STDx)

or alternatively
< new_name >: −type_of(< observable >);

where type is a data-type in the scope of the specification,and new_name is the name of the
rigid variable which will be added to the specification. Using the alternative declaration, a
rigid variable new_name of same data-type as observable is declared.

• Flexible variables can take different values of their domain in every step. The declaration
of a flexible variable introduces a fresh input to the system, which can be referred to in the
specification. For each flexible variable also a last variable is introduced, which contains the
value of the variable in the last step. Flexible variables can for example realize counters in a
specification. A flexible variable is introduced by the declaration

< new_name >: ∼ < type >;

or alternatively
< new_name >:∼ type_of(< observable >);

where - again - type is a data-type in the scope of the specification.

We will only make use of last-variables in the application examples of section 8.3. Examples for the
application of rigid and flexible specification variables can be found in [SAC99] and [ABC+99].

Definition 6.27 (STDx-Specification)
A STDx-specification is a tuple spec = (intf(A), name, ass_decls, comm_decl, specvars), where

• intf(A) is the interface declaration of (sub-)system A, to which spec refers (cf. section 5.4)

• name is the name of the specification

• ass_decls is a possibly empty set of assumption declaration names. For each assumption dec-
laration adecl with adecl.name ∈ ass_decls it is required that adecl.context = assumption.
Declarations will formally be defined in definition 6.29.

• comm_decl is a single commitment declaration name. For the referred commitment declara-
tion cdecl with cdecl.name = comm_decl it is required that cdecl.context = commitment.

• specvars is a possibly empty set of specification variables.

If specvars 6= ∅, spec refers to an interface of A which is extended with specvars. This interface
extension of intf(A) has to be provided by spec for the scope of all diagrams referred to by spec.
Let intfs(A):=intf(A) ∪ specvars denote the extension15 of intf(A) with specvars.

�

15Technically, intf(A) is injected with specvars, and the model representation of (sub-)system A is extended with
new variables according to the declarations of specvars. An injector-tool is integrated with the STVE, which

1. for last variables extends the model with a new variable which always keeps the last value of the variable to
which the declaration of the last variable refers

2. for rigid variables extends the model with a fresh input as well as a new variable, which is initialized by the
input in step 0, and keeps this initial value for the remaining computation

3. for flexible variables extends the model with a fresh input, which can change its value at every step plus a last

variable, which keeps the last value of this input in every step

159

6 Requirement Capturing for Open Embedded System

Templates using Formal Parameters

In order to enable reuse of diagrams, parameters can be used instead of concrete expressions.
These parameters are mapped to concrete expressions when instantiating a diagram in declarations,
permitting the usage of one diagram in several contexts. This way, different specifications can be
derived from one diagram. Figure 6.17 shows an example of an initial_Q_onlyafter_P template.

Figure 6.17: An Initial Only-After Diagram Template

In a declaration instantiating the template of figure 6.17 in a concrete context, the formal pa-
rameters P and Q are bound to concrete expressions referring to observables of the interface: For
example, the mapping:
P => ACTIVATE_CROSSING_REC_F ;

Q => ACK_SND_F ;

instantiates the diagram such that initially ACK_SND_F is specified to be observed only after
observation of ACTIVATE_CROSSING_REC_F.

Some temporal schemes are often used for the specification of system properties. By using dia-
grams with parameters instead of concrete expressions, the diagram has to be drawn only once and
can be reused several times. Consequently, a set of often used diagrams can be imported from a
predefined library.

In order to define valid annotations for symbolic events of diagrams formally, we have to extend
the definition of predicates16 to predicates that also permit the usage of formal parameters and
specification variables.

Definition 6.28 (Parametrized Predicates)
Given a set pd of parameter names and a set of variables Vs. Then, predicates β ∈ PPredVs∪pd

ranging over Vs and pd are built according to :

β := α | true | ¬β | (β) |β1 ∧ β2 , where

α is a parameter name or an atomic proposition w.r.t. Vs. Lee false:=¬true and β1∨β2:=¬(¬β1∧
¬β2) be abbreviations as usual. In order to support expressions in a more Statemate-like notation,
instead of ¬ also not, and instead of ∧,and or instead of ∨can be used in event annotations.

�

Definition 6.29 (STDx-Declaration)
A STDx-declaration is a tuple decl:=(name, context, diagrams, pm), where

• name is the name of the declaration
16Recall the definition of PredV from definition 6.2 of section 6.3

160

6.5 Symbolic Timing Diagrams (STDx)

• context ∈ {assumption, commitment} regulates the permitted utilization of Decl in specifi-
cations

• diagrams is a set of Symbolic Timing Diagrams names. If context = assumption then for each
diagram d with d.name ∈ diagrams it is required that d.context ∈ {general, assumption}. If
context = commitment then for each diagram d with d.name ∈ diagrams it is required that
d.context ∈ {general, commitment}. Diagrams will formally be defined in definition 6.34.

• For a set pd of parameter names, pm ⊆ pd×Predintfs(A) is a mapping of the parameters of

the diagrams d ∈ diagrams to expressions ranging over the set of variables Vs in intfs(A).
Let PM denote the set of possible replacement mappings.

�

In order to refer to the assumption and commitment diagrams instantiated by a STDx-specification
via reference to declarations, we introduce for simplicity the following sets:

Definition 6.30 (Diagrams of a STDx-specification)
For a given STDx-specification spec = (intf(A), name, ass_decls, comm_decl, specvars), let

ad(spec) denote the set of diagrams instantiated by the STDx-declarations a with a.name ∈
ass_decls:

ad(spec) := {diagram | ∃a ∈ declarations : a.name ∈ ass_decls

∧diagram.name ∈ a.diagrams}

Accordingly, let cd(spec) denote the set of diagrams instantiated by the STDx-declaration referred
to by comm_decl:

cd(spec) := {diagram | ∃c ∈ declarations : c.name = comm_decl

∧diagram.name ∈ c.diagrams}

�

Before we can define Symbolic Timing Diagrams as the core of the formalism, we first have to
introduce waveforms and constraints formally:

Definition 6.31 (Symbolic Waveform)
A symbolic waveform is a tuple wvf :=(name, SEwvf ,→wvf , stable, trigger, exit, det) w.r.t. in-

terface declaration intfs(A) of system A and a possibly empty set of parameter names pd, where

• Vs is the set of variables in interface intfs(A)

• name is the name of the waveform. name can either be the name of an interface object from
intf(A) or a symbolic name.

• SEwvf is the set of symbolic events of waveform wvf .

161

6 Requirement Capturing for Open Embedded System

• →wvf : SEwvf → SEwvf ∪ {>wvf} is a successor function, which associates each event e ∈
SEwvf of waveform wvf with a successor event e′ ∈ SEwvf ∪ {>wvf}, whereat >wvf (top-
event) is an auxiliary construct for the unwinding algorithm, such that the last event of wvf
has the successor >wvf , while >wvf itself has no successor. →wvf defines a total order on the
events SEwvf ∪ {>wvf}.
Let the reflexive and transitive closure of →wvf be denoted by ≤wvf .

• stable : SEwvf ∪ {>} → (PPredVs∪pd ∪ {ε}),

trigger : SEwvf ∪ {>} → PPredVs∪pd , and

exit : SEwvf ∪ {>} → (PPredVs∪pd ∪ {ε}) are mappings which associate a symbolic event

with a stable condition, a trigger condition and an exit condition, respectively. Since stable
and exit conditions can be left unspecified by the user, both conditions can be mapped to
the empty predicate ε. In this case a meaningful default has to be chosen for the respective
condition before applying the unwinding algorithm (defaults will be defined in definition 6.36)
The associated conditions are predicates ranging over the objects of intfs(A). In particular,
let

– stable(>):=true,

– trigger(>):=false

– exit(>):=false

• det : SEwvf ∪ {>} → {deterministic, non_deterministic} is an attribute, which determines
whether an event will be treated deterministically or non-deterministically by the unwinding
algorithm, i.e. whether stable and trigger conditions are to be treated to be mutually exclusive
or if they can both be true at the same time. Let det(>):=deterministic

Let WaveformsVs
denote the set of waveforms w.r.t intfs(A)

�

In general, a Symbolic Timing Diagram consists of more than only one waveform:

Definition 6.32 (Bundle of waveforms)
A bundle of waveforms BW over a set of variables V is a set of waveforms, such that their sets

of symbolic events are mutually disjoint. Given waveforms wvfi, wvfj :
wvfi, wvfj ∈ BW, i 6= j ⇒ SEwvfi

∩ SEwvfj
= ∅

The set of events SEBW belonging to a bundle of waveforms BW is defined by the union of the
sets of events of the waveforms belonging to bundle BW :

SEBW :=
⋃

wvf∈BW

(SEwvf ∪ {>wvf})

�

While the symbolic events SEwvf along a single waveform wvf are totally ordered according to
→wvf , no order is defined among symbolic events of different waveforms. Constraints can be used,
in order to introduce an ordering:

162

6.5 Symbolic Timing Diagrams (STDx)

Definition 6.33 (Constraints)
For a bundle of waveforms BW , let the set of feasible constraints Constr be defined by:
Constr ⊆ type× class× SEBW × scale× T × SEBW , where

• type ∈ {distance, precedence, leadsto, combined}

• class ∈ {possible,mandatory}
Possible constraints express expectations, while mandatory constraints express requirements
about order or timing of the constrained events.

• scale ∈ {step, superstep}
scale determines to which concept of time the constraint refers. If scale = step, then the
constraint refers to steps - quantitative constraints with scale = step hence refer to series of
δ-delays. If scale = superstep, then the constraint refers to the virtual model-time, which
assumes that steps are performed with δ-delays and time advances only after the model has
reached a stable status.
For qualitative constraints, only scale = step is supported.

• T is an interval, which can either be symbolic or specify concrete lower of upper bounds for
the specified temporal relation of the regarded source and target events. according to the
rules described informally in section 6.5.1. Table 6.2 lists the legal interval annotations of
constraints.
In general, qualitative constraints are supported only in combination with scale = step.

Constraint type Legal Intervals

precedence
qualitative: [0,∞], (0,∞]
quantitative: [n,∞], n ∈ N

combined
qualitative: [0,∞), (0,∞)
quantitative: [n,m], n ∈ N0,m ∈ N, n ≤ m

leadsto
qualitative: [−∞,∞)
quantitative: [−∞, n], n ∈ N

distance

qualitative: [0, 0] ’simultaneous’
qualitative: (0,∞] ’conflict’

quantitative:
[n,m], n ∈ N0,m ∈ N, n ≤ m
[n,∞] n ∈ N

’separation’

Table 6.2: Legal Interval Annotation of Constraints

�

We will use the don’t care symbols ’-’ in the following if the value of an element or part of an
element of the tuple is irrelevant. For example, let (precedence,−, e1, {−,∞], e2) denote a possible
or mandatory precedence constraint with source event e1 and target event e2. Interval {−,∞]
denotes an arbitrary interval [n,∞], with n ∈ N0 or (0,∞].

Notice, that distance constraints are symmetric, no order of source and target event, but only
a temporal distance between them, is specified. Thus, (distance,−, e1,−, e2) is equivalent to
(distance,−, e2,−, e1).

163

6 Requirement Capturing for Open Embedded System

Using the above definitions, Symbolic Timing Diagrams can now formally be defined:

Definition 6.34 (Symbolic Timing Diagrams)
A Symbolic Timing Diagram for the interface intf(A) of system A is a tuple
TD:=(intfs(A), name, context, actmode,BW, eact, eac, eae, constr, pd), where

• intfs(A) is the interface of system A, with which the diagram is associated. Let Vs denote
the variables of intfs(A)

• name is the name of the diagram

• context ∈ {assumption, general, commitment} determines the permitted utilization of TD
in STDx-specifications

• actmode ∈ {initial, iterative} is the activation mode of the diagram,

• BW is a bundle of waveforms over interface intfs(A) ,

• eact ∈ (PPredVs∪pd) is the activation condition of the diagram:

eact:= ∧
wvf∈BW∀e∈SEwvf ,6∃e′:e′→wvf e

trigger(e) (The activation condition of TD is the conjunction

of the triggers of all left-most symbolic events of all waveforms)

• eac ∈ (PPredVs∪pd ∪ {ε}) is the optional activation context of an iterative diagram

• eae ∈ (PPredVs∪pd ∪ {ε}) is the optional activation exception of an initial diagram

• constr is a set of constraints for the bundle of waveforms BW

• pd is a possibly empty set set of parameter names.

�

Since the language STDx has been designed for capturing specification requirements in an in-
tuitive and comfortable manner, there are some constructs aiming at comfort, which have to be
instantiated and normalized before unwinding can be applied. Optional constructs, such as exit
and stable conditions of symbolic events can be left unspecified by the user. Before applying the
unwinding algorithm, a preprocessing has to provide useful defaults for these unspecified constructs.
Furthermore, some high level constructs, such as parameters of diagrams have to be instantiated
according to the parameter mappings provided by the instantiating declarations.

6.5.3 Preparation of STDx-Specifications for Application of Unwinding

As stated above, combined constraints represent combinations of precedence and leadsto constraints.
Thus, in order to keep unwinding as simple as possible, each combined constraint is split up into
a precedence constraint representing the ordering portion and a leadsto constraint representing the
respective timing requirement portion of the combined constraint. Consequently, the unwinding
algorithm only has to regard precedence and leadsto constraints as well as the symmetric constraints.

Preparation substitutes formal parameters of a diagram template by the actual expressions as
provided by the instantiating declaration. Also the usage in assumption or commitment place is

164

6.5 Symbolic Timing Diagrams (STDx)

fixed by instantiation before applying unwinding. Even though a diagram can be defined to be used
’general’ (in assumption-declarations as well as in commitment-declarations) the concrete STDx-
specification hierarchy referring to declarations instead of referring to diagrams directly restricts
the usage of diagrams to either assumption or commitment.

Stable and exit conditions can be left unspecified by the user, in which case defaults have to be
used: If the stable condition of an event is not explicitly specified, the condition is set to the trigger
condition of the previous event of the waveform.

The choice of a default for exit conditions depends on the waveform as well as on the kind of the
diagram. If a waveform of a commitment is associated with an input of the system, exit conditions
default to true. The contrary default is chosen for assumption diagrams: for waveforms associated
with inputs, unspecified exit conditions are set to false by default. If the waveform is associated with
an output of the system or has only a symbolic name17, unspecified exit conditions are set to false for
commitment diagrams and to true for assumption diagrams. These default rules have the effect that
assumptions are treated as restrictive as possible: If an input does not conform to an assumption,
the assumption is violated. Since assumptions must not restrict outputs of the system, an output
not conforming to an assumption diagram prematurely exits the assumption in an accepting state.
On the other hand, if an input does not conform to a commitment, the commitment is prematurely
exited by default. In contrast, an output not conforming to a commitment is treated as a violation.

Activation exceptions of initial diagrams are assigned the default ’false’ if they were left unspec-
ified by the user, whereas by default for the activation context of an iterative diagram always ’true’
is chosen.

We formalize these preparations with the following definitions.

Definition 6.35 (Parameter Substitution)

Given a set of variables V and a possibly empty set of parameter names pd, as well as a parameter
mapping pm ⊆ pd× PredVs

Let psubst : PPredVs∪pd× 2
pm×PredVs → PredVs

denote the substitution of parameter names

in β ∈ PPredVs∪pd by predicates according to pm.

�

Definition 6.36 (Normalization of Waveforms)

For a set of waveforms WaveformsVs
w.r.t. interface intfs(A), and a parameter mapping

pm ∈ PM we define two transformations
norm_ass_wvf : WaveformsVs

× PM →WaveformsVs
and

norm_comm_wvf : WaveformsVs
× PM →WaveformsVs

.

Given a waveform wvf = (name, SEwvf ,→wvf , stable, trigger, exit, det), let

• wvf ′:=norm_ass_wvf(wvf), s.t.
wvf ′:=(name, SEwvf ,→wvf , stable

′, trigger, exit′, det), where
name, SEwvf ,→wvf , trigger, and det are the same as in wvf , and ∀e ∈ SEwvf

17In this case, the waveform is treated like an output waveform.

165

6 Requirement Capturing for Open Embedded System

stable′(e):=







false if stable(e) = ε∧ 6 ∃e′ ∈ SEwvf ′ : e′ →wvf e

stable′(e′) if stable(e) = ε ∧ e′ ∈ SEwvf ′ ∧ e
′ →wvf e

psubst(stable(e), pm) otherwise

, (6.18)

and

exit′(e):=







false if (exit(e) = ε)∧

(∃p ∈ intfs(A) : name = name(p) ∧mode(p) = in)

true if (exit(e) = ε)∧
(

(∃p ∈ intfs(A) : name = name(p) ∧mode(p) = out)

∨(6 ∃p ∈ intfs(A) : name = name(p))
)

psubst(exit(e), pm) otherwise
(6.19)

• wvf ′:=norm_comm_wvf(wvf), s.t.
wvf ′:=(name, SEwvf ,→wvf , stable

′, trigger, exit′, det), where
name, SEwvf ,→wvf , trigger, and det are the same as in wvf , and ∀e ∈ SEwvf stable(e) is
defined as in (6.18), and

exit′(e):=







true if (exit(e) = ε)∧

(∃p ∈ intfs(A) : name = name(p) ∧mode(p) = in)

false if (exit(e) = ε)∧
(

(∃p ∈ intfs(A) : name = name(p) ∧mode(p) = out)

∨(6 ∃p ∈ intfs(A) : name = name(p))
)

psubst(exit(e), pm) otherwise
(6.20)

�

The following definition defines formally the split-up of combined constraints into a precedence
and a leadsto portion. Additionally, for all symmetric constraints also the equivalent constraint is
added to the set of constraints in order emphasize the symmetric nature of these constraints.

Definition 6.37 (Normalization of Constraints)
Given a set of constraints constr ⊆ Constr for a bundle of waveforms BW . Let norm_constr :

2Constr → 2Constr be a mapping of the set of constraints with
constr′:=norm_constr(constr), s.t.

1. Each precedence and leadsto constraint c ∈ constr is also in constr′:(

(c = (precedence,−,−,−,−,−) ∈ constr)

∨(c = (leadsto,−,−,−,−,−) ∈ constr)
)

⇒ (c ∈ constr′)

166

6.5 Symbolic Timing Diagrams (STDx)

2. For symmetric constraints c ∈ constr : c ∈ constr′ as well as the symmetric equivalent
constraint c′ are in constr′:

a) (c = (distance,mp, e1, tm, [n,m], e2) ∈ constr)

⇒
(

(c ∈ constr′) ∧ (c′ = (distance,mp, e2, tm, [n,m], e1) ∈ constr′)
)

,

where n ∈ N0,m ∈ N, mp ∈ {mandatory, possible} and tm ∈ {step, superstep}

b) (c = (distance,mp, e1, step, (0,∞], e2) ∈ constr)

⇒
(

(c ∈ constr′) ∧ (c′ = (distance,mp, e2, step, (0,∞], e1) ∈ constr′)
)

,

where mp ∈ {mandatory, possible}, and

c) (c = (distance,mp, e1, step, [0, 0], e2) ∈ constr)

⇒
(

(c ∈ constr′) ∧ (c′ = (distance,mp, e2, step, [0, 0], e1) ∈ constr′)
)

,

where mp ∈ {mandatory, possible}.

3. Combined constraints are split-up into a precedence and a leadsto portion:
(c = (combined,mp, e1, tm, [n,m], e2) ∈ constr)

⇒
(

(c′ = (precedence,mp, e1, tm, [n,∞], e2) ∈ constr′)

∧(c′′ = (leadsto,mp, e1, tm, [−∞,m], e2) ∈ constr′)
)

,

where n ∈ N0,m ∈ N, mp ∈ {mandatory, possible} and tm ∈ {step, superstep}

�

Now, we can collect the preparations and normalizations applied to diagrams before unwinding
them into TSA in a single definition:

Definition 6.38 (Instantiation of STDx diagrams)
Given a diagram d:=(intfs(A), name, context, actmode,BW, eact, eac, eae, constr, pd) and a pa-

rameter mapping pm. Let inst_ass_td and inst_comm_td be transformations on d, s.t.

• d′ = inst_ass_td(d, pm), with
d′:=(intfs(A), name′, context′, actmode,BW ′, eact, e

′
ac, e

′
ae, constr

′, pd′), where

– name′ is an access-path containing the name of the specification and of the declaration
instantiating d, as well as the name of d.

– intfs(A), actmode, eact are the same as in d

– context′:=assumption

– BW ′:= {wvf ′|∃wvf ∈ BW : wvf ′ = norm_ass_wvf(wvf, pm)}

– e′ac:=

{

psubst(eac, pm) if eac 6= ε

true otherwise

– e′ae:=

{

psubst(eae, pm) if eae 6= ε ∧ (actmode = initial)

false otherwise

– constr′:=norm_constr(constr)

– pd′:=∅ (Parameters have been instantiated according to pm)

167

6 Requirement Capturing for Open Embedded System

• d′ = inst_comm_td(d, pm), with
d′:=(intfs(A), name′, context′, actmode,BW ′, eact, e

′
ac, e

′
ae, constr

′, pd′), where

– intfs(A), name, actmode, eact, eac′ , eae′ ,constr′, pd′ are defined the same way as for
inst_ass_td.

– context′:=commitment

– BW ′:= {wvf ′|∃wvf ∈ BW : wvf ′ = norm_comm_wvf(wvf, pm)}

�

In an instantiated diagram, all predicates belonging to a symbolic event are either specified by
the user or set to a default according to definition 6.36. For instantiated diagrams determinism of
waveforms can formally defined by:

Definition 6.39 (Deterministic Waveform)
A waveform wvf of an instantiated diagram is deterministic, iff

• ∀e ∈ SEwvf : (trigger(e) ⇒ ¬stable(e))

• ∀e ∈ SEwvf : (trigger(e) ⇒ ¬exit(e))

�

Definition 6.40 (Instantiation of STDx Declarations)
Given a STDx-declaration decl = (name, context, diagrams, pm). Let inst_ass_decl and inst_comm_decl

be transformations, s.t.

• decl′:=inst_ass_decl(decl), with decl′ = (name′, context, diagrams′, ∅), where
name′ is an access-path consisting of the name of the instantiating specification and the name
of decl
diagrams′ refers to the instantiated diagrams
{d′|∃d ∈ diagrams : d.name ∈ decl.diagrams ∧ d′ = inst_ass_td(d, pm)}
Since the parameter mappings have been applied to the instantiated diagrams, the instantiated
declaration decl′ defines no parameter mappings.

• decl′:=inst_comm_decl(decl), with decl′ = (name′, context, diagrams′, ∅), where
name′ is an access-path consisting of the name of the instantiating specification and the name
of decl
diagrams′ refers to the instantiated diagrams
{d′|∃d ∈ diagrams : d.name ∈ decl.diagrams ∧ d′ = inst_comm_td(d, pm)}

�

Definition 6.41 (Instantiation of STDx-Specifications)
Given a STDx-specification spec = (intf(A), name, ass_decls, comm_decl, specvars).
Let inst_spec be a transformation of spec, s.t.
spec′:=inst_spec(spec), with spec′ = (intfs(A), name, ass_decls′, comm_decls′, specvars), where
intfs(A) refers to the interface intf(A) extended with specvars according to footnote 15 on page

159.
name, specvars are the same as in spec, and

168

6.5 Symbolic Timing Diagrams (STDx)

• ass_decls′ refers to the instantiated declarations
{decl′|∃decl ∈ declarations ∧ decl.name ∈ spec.ass_decl ∧ decl′ = inst_ass_decl(decl)}

• comm_decl′ refers to the instantiated declaration decl′for which
∃decl ∈ declaration ∧ decl.name = comm_decl ∧ decl′ = inst_comm_decl(decl)

�

In the remainder of this work, we consider only instantiated STDx-specifications. Hence, all
diagrams are assumed to be instantiated according to the above definitions.

6.5.4 Unwinding of Symbolic Timing Diagrams

In this subsection we present an unwinding algorithm which generates TSA representations for in-
stantiated diagrams. By vitually moving a frontier from left to right through the diagram according
to the ordering induced by the waveforms and constraints the unwinding automaton is generated
step by step. The unwinding algorithm starts with an identification of classes of events which have
to happen simultaneously or which have to happen in a strict order. Each set of events that have
to happen simultaneously represents a valid phase of unwinding the diagram. Unordered events or
sets of events have to be represented by alternative interleavings in the automaton.

The unwinding algorithm only considers the core diagram. Activation mode actmode and ac-
tivation condition eact as well as the optional activation context eac and activation exception eae
are not regarded by the algorithm. They come into play again later when providing the resulting
automaton with activation control.

We start the description of the algorithm with the definition of a phase:

Definition 6.42 (Phases)
A set ζ ⊆ SEBW which contains exactly one symbolic event of each waveform is called a phase

of the bundle of waveforms BW :

PhasesBW :=
{
ζ ⊆ SEBW ∪ {>wvf}|∀wvf ∈ BW∃1e ∈ ζ : e ∈ SEwvf ∪ {>wvf}

}

�

Definition 6.43 (Partial Order of Phases) The successor functions →wvf on the individual
waveforms induce a partial order relation on BW :

≤BW⊆ PhasesBW × PhasesBW , with

ζi ≤BW ζj , iff ∀ei ∈ ζi∀ej ∈ ζj :
(∃wvf ∈ BW : ei ∈ SEwvf ∪ {>wvf}, ej ∈ SEwvf ∪ {>wvf}) ⇒ (ei ≤wvf ej)

Minimal and maximal elements of the bundle regarding ≤BW are defined straightforwardly:

ζ0:=
⋃

wvf∈BW

{e0 ∈ SEwvf |e0 is minimal w.r.t. ≤wvf}

and
>BW :=

⋃

wvf∈BW

{>wvf}

169

6 Requirement Capturing for Open Embedded System

.
�

In contrast to the individual successor functions →wvf , a phase ζ may have different alternative
successors according to the partial order relation ≤BW . Hence, alternative interleavings have to be
considered for possible successor phases according to ≤BW . The unwinding algorithm for Symbolic
Timing Diagrams is based on this definition of partially ordered phases.

Definition 6.44 (Successors of a Phase)
A phase ζ divides the set SEBW into the two disjoint subsets:

• future(ζ):={e′ ∈ SEBW | e′ 6∈ ζ ∧ ∃wvf ∈ BW : ∃e ∈ ζ : e ≤wvf e
′} (all events located right

from phase ζ)

• past(ζ):=SEBW \future(ζ) (all events located left from phase ζ - and including ζ)

We write ζ1 →ζ ζ2 iff :
ζ1 6= ζ2 ∧ ζ1 ≤BW ζ2

and

∀ei ∈ ζ1∀ej ∈ ζ2 : (∃wvf ∈ BW : ei, ej ∈ SEwvf ∪ {>wvf})
⇒ (ei ≤ ej∧ 6 (∃ek ∈ SEwvf : ei ≤wvf ek ≤wvf ej) ∨ (ei = ek = ej))

(if ei ∈ ζ1 and ej ∈ ζ2 are symbolic events of the same waveform, then either ei = ej or ei →wvf ej)
�

The successor relation →ζ on the set of phases defines for a phase the set of possible direct
successor phases. In general, no order is determined for two phases ζi 6= ζj with same predecessor
ζk regarding →ζ unless constraints define an additional ordering of ζi and ζj on the set of phases.
→ζ only determines possible moves of the front, while constraints further restrict these possible
moves or specify time bounds for permitted moves.

Definition 6.45 (Unwinding-TSA of a Diagram)
The Timed Symbolic Automaton (cf. definition 6.6)

TSA(TD) = (Vs, S, s0, Cstep ∪ Cτ , T, F)

for a symbolic timing diagram

TD = (intfs(A), name, context, actmode,BW, eact, eac, eae, constr, ∅)

consists of:

1. S ⊆ PhasesBW ∪{ζexit}. The set of states correspond to the phases of TD plus an unique exit
state, which is entered on violation of possible constraints and by exit conditions of symbolic
events. Since ζexit is a newly introduced state, ζexit is not affected by any constraint.

2. s0 = ζ0 , where ζ0 is the minimal phase w.r.t ≤BW according to definition 6.43

170

6.5 Symbolic Timing Diagrams (STDx)

3. Vs ⊆ intfs(A) is the set of variables in interface intfs(A) of system A, with which TD is
associated.

4. Cstep is a set of clocks referring to model steps. Cτ is a set of clocks referring to super-steps
of the model.
A clock ze ∈ Cstep as well as a clock zze ∈ Cτ is introduced - and is associated with - in
advance for each symbolic event e ∈ SEBW ; Most of these clocks will later be eliminated
according to TSA normalization, because they will not be referred to in any timing constraint
of TSA(TD).

5. The construction of transition relation T is the major task of the unwinding algorithm. The
rules for construction of T will be explained below (in definition 6.48).

6. The set F of fair states is derived from the leadsto and distance constraints18. No progress is
enforced if no target event of a mandatory leadsto or ’separation (distance) with upper bound’
constraint is pending. Furthermore, canceling the diagram - entering the exit state - due to
exit conditions or due to violation of possible constraints has to be interpreted as premature
acceptance. Thus,
F = {ζ | ∀ζ1 ∈ (past(ζ) ∪ ζ) ∀ζ2 ∈ future(ζ):

∀e1 ∈ ζ1∀e2 ∈ ζ2 :
6 ∃(leadsto,mandatory, e1, step, [−∞,m], e2) ∈ constr,m ∈ N

∧ 6 ∃(leadsto,mandatory, e1, superstep, [−∞,m], e2) ∈ constr,m ∈ N

∧ 6 ∃(leadsto,mandatory, e1, step, [−∞,∞), e2) ∈ constr
∧ 6 ∃(distance,mandatory, e1, step, [−,m], e2) ∈ constr,m ∈ N

∧ 6 ∃(distance,mandatory, e1, superstep, [−,m], e2) ∈ constr,m ∈ N }
∪{ζexit}

�

The set of transitions is derived from unwinding the diagram w.r.t. constraints and exit conditions:
T = Tunwind ∪ Texitconds ∪ Texitorder ∪ Texitdistancetime ∪ Texitprogresstime ∪ Tstuttering,where the

individual sets are:

• Tunwind - transitions corresponding to ’normal ’ unwinding the bundle of waveforms BW w.r.t.
to mandatory constraints. This subset of transitions captures the ’normal’, required changes
of the observables in intfs(A) according to the partial order of PhasesBW plus the additional
ordering and timing relations of events as required by the mandatory constraints of TD.

• Texitconds - transitions capturing exit conditions of symbolic events.

• Texitorder - transitions provided for ordering violations of possible constraints.

18Here an important subtlety of distance constraints must be emphasized:
A distance constraint with timing-interval [n, m] requires event e2 to be observed at least n steps (or super-steps)

and at most m steps (or super-steps) after observation of e1 and vice versa. If one of the constrained events is
observed, then it is required that the other event is observed. In contrast, a distance constraint with timing-
interval [n,∞] only requires a minimal distance without requiring the second event to be observed at all. Hence,
distance constraints with interval [n,∞] have no influence on ’progress enforcement’, while distance constraints
with interval [n.m] require progress.

171

6 Requirement Capturing for Open Embedded System

• Texitdistancetime - transitions capturing distance timing violations of possible constraints. Texitdistancetime
provides transitions to the exit state ζexit for events, which are observed earlier than specified
by some possible constraint.

• Texitprogresstime- transitions resulting from progress timing violations of possible constraints.
Texitprogresstimeprovides transitions to the exit state ζexit for events, which are observed later
than specified by some possible constraint.

• Tstuttering - transitions - self loops - allowing the TSA to re-enter the actual state - and letting
time pass - if the actual observation does not trigger a state change.

The transition relation T is constructed in two phases. In the first phase T− = Tunwind∪Texitconds∪
Texitorder ∪ Texitdistancetime ∪ Texitprogresstime is constructed. Based upon T− the transition relation
T is completed by adding the self loops Tstuttering to the transition relation. For the construction of
the transition relation, we need a definition of a maximum-successor of a phase w.r.t. all waveforms
in a bundle of waveforms.

Definition 6.46 (Maximum Successor of a Phase)
Given a phase ζ ∈ PhasesBW . Let ζsucc : PhasesBW →ζ PhasesBW denote a maximum-

successor which associates a phase ζ with a successor ζ ′, such that for all events e ∈ ζ, ζ ′ contains
event e′, with e→wvf e

′ according to the order on waveform wvf to which e belongs:

ζsucc(ζ):= ∪
wvf∈BW

{
e′ ∈ SEwvf |∃e ∈ SEζwvf : e ∈ ζ ∧ e→wvf e

′
}

�

For the construction of the transition relation of TSA(TD) we introduce the following abbrevia-
tion:

Definition 6.47 (Linger - Predicate)
Given a symbolic waveform wvf w.r.t. interface declaration intfs(A) according to definition

6.31.
Let linger : SEwvf ∪ {>} → PredVs

be a mapping that associates a linger condition with each

symbolic event. Let

linger(e):=

{

stable(e) ∧ ¬trigger(e) if det(e) = deterministic

stable(e) otherwise

�

Definition 6.48 (Construction of Transition Relation for TSA(TD))

Construction of Tunwind (normal unwinding) :
For each phase ζ1 ∈ PhasesBW :
A transition t = (ζ1, enable, ζ2, clocks, timing) from phase ζ1 is added to Tunwind for each
successor phase ζ2 ∈ PhasesBW of ζ1 according to →ζ , iff

172

6.5 Symbolic Timing Diagrams (STDx)

ζ2 adheres to the following conditions:

∀e1, e2 ∈ ζ1 : (∃(distance,−, e1, step, [0, 0], e2) ∈ constr
∧(e1 6∈ ζ2)) ⇒ e2 6∈ ζ2

(6.21)

(ζ2 does not violate a possible or mandatory simultaneous constraint)

∀e1, e2 ∈ ζ1 : (∃(distance,−, e1, step, (0,∞], e2) ∈ constr
∧(e1 6∈ ζ2)) ⇒ e2 ∈ ζ2

(6.22)

(ζ2 does not violate a possible or mandatory conflict constraint)

∀e1, e2 ∈ ζ1 : (∃(distance,−, e1,−, [n,−], e2) ∈ constr, n ∈ N

∧(e1 6∈ ζ2)) ⇒ e2 ∈ ζ2
(6.23)

(ζ2 does not violate a possible or mandatory (step or super-step) separation constraint)

∀e1, e2 ∈ ζ1 : ((∃(precedence,−, e1, step, (0,∞], e2) ∈ constr
∨∃(precedence,−, e1,−, [n,∞], e2) ∈ constr, n ∈ N)
∧(e1 6∈ ζ2)) ⇒ e2 ∈ ζ2

(6.24)

(ζ2 does not violate a possible or mandatory (step or super-step) precedence constraint)

Let UnwSucc(ζ1) denote the set of successor phases of ζ1 according to →ζ , which adhere to condi-
tions (6.21) - (6.24).
For ζ2 ∈ UnwSucc(ζ1), t = (ζ1, enable, ζ2, clocks, timing) ∈ Tunwind is build as follows:

1. enable:=
∧

ei∈ζ1∧ei 6∈ζ2

trigger(ei) ∧
∧

ej∈(ζ1∩ζ2)

linger(ej), which is the conjunction of propositions

associated with the trigger predicates of the unwound events and the linger predicates of the
events in ζ1 ∩ ζ2. The transition from ζ1 to successor phase ζ2 is enabled only if the trigger
predicates of all events e ∈ ζ1 ∧ e 6∈ ζ2 evaluate to true.

2. The clocks associated with all events in ζ1 are reset, whose trigger predicates determine the
state change by transition t.
clocks:={ze ∈ Cstep|e ∈ ζ1\(ζ1 ∩ ζ2)} ∪ {zze ∈ Cτ |e ∈ ζ1\(ζ1 ∩ ζ2)}.

3. the timing predicate regards all clocks which are reset for some source event of a constraint
in past(ζ1) with target event in ζ2 :
timing:=

173

6 Requirement Capturing for Open Embedded System

∧

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(leadsto,−, e, step, [−∞,m], e′) ∈ constr,m ∈ N

ze ≤ m

∧
∧

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(distance,−, e, step, [−,m], e′) ∈ constr,m ∈ N

ze ≤ m

∧
∧

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(distance,−, e, step, [n,−], e′) ∈ constr, n ∈ N

ze ≥ n

∧
∧

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(precedence,−, e, step, [n,∞], e′) ∈ constr, n ∈ N

ze ≥ n

∧
∧

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(leadsto,−, e, superstep, [−∞,m], e′) ∈ constr,m ∈ N

zze ≤ m

∧
∧

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(distance,−, e, superstep, [−,m], e′) ∈ constr,m ∈ N

zze ≤ m

∧
∧

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(distance,−, e, superstep, [n,−], e′) ∈ constr, n ∈ N

zze ≥ n

∧
∧

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(precedence,−, e, superstep, [n,∞], e′) ∈ constr, n ∈ N

zze ≥ n

Construction of Texitconds (capturing exit conditions of symbolic events):
For each phase ζ1 ∈ PhasesBW :
A transition t = (ζ1, enable, ζexit, clocks, timing) from ζ1 to the exit state ζexit is added to
Texitconds for the dedicated successor phase ζsucc(ζ1) of ζ1 according to →ζ , with:

1. enable:=
∨

e∈ζ1

unstab(e) ∧ exit(e), where

unstab(e):=

{

¬stable(e) ∧ ¬trigger(e) if det(e) = deterministic

¬stable(e) otherwise

.

2. no clocks have to be reset: clocks:=∅

3. the timing predicate has to regard all upper bound constraints related to clocks, which
were reset in past(ζ1) and are constraint by upper bounds in future(ζ1):
timing:=

174

6.5 Symbolic Timing Diagrams (STDx)

∧

e ∈ past(ζ1), e
′ ∈ future(ζ1) :

∃(leadsto,mandatory, e, step, [−∞,m], e′) ∈ constr,m ∈ N

ze ≤ m

∧
∧

e ∈ past(ζ1), e
′ ∈ future(ζ1) :

∃(distance,mandatory, e, step, [−,m], e′) ∈ constr,m ∈ N

ze ≤ m

∧
∧

e ∈ past(ζ1), e
′ ∈ future(ζ1) :

∃(leadsto,mandatory, e, superstep, [−∞,m], e′) ∈ constr,m ∈ N

zze ≤ m

∧
∧

e ∈ past(ζ1), e
′ ∈ future(ζ1) :

∃(distance,mandatory, e, superstep, [−,m], e′) ∈ constr,m ∈ N

zze ≤ m

Construction of Texitorder (capturing violations of possible ordering constraints):
For each phase ζ1 ∈ PhasesBW :
A transition t = (ζ1, enable, ζexit, clocks, timing) from ζ1 to the exit state ζexit is added to
Texitorder for each successor ζ2 ∈ PhasesBW of ζ1 according to →ζ , iff ζ2 violates a possible
constraint in at least one of the following ways:

∃e1, e2 ∈ ζ1 : ∃(distance, possible, e1, step, [0, 0], e2) ∈ constr ∧ (e1 ∈ ζ2 ∧ e2 6∈ ζ2) (6.25)

(two events are expected to happen simultaneous but are observed at different times)

∃e1, e2 ∈ ζ1 : (∃(distance, possible, e1, step, (0,∞], e2) ∈ constr
∨∃(distance, possible, e1,−, [n,−], e2) ∈ constr, n ∈ N)
∧(e1 6∈ ζ2) ∧ (e2 6∈ ζ2)

(6.26)

(two events are expected not to be observed simultaneously (separated by a possible step or
super-step lower separation bound) but both are observed when entering ζ2)

∃e1, e2 ∈ ζ1 : (∃(precedence, possible, e1, step, (0,∞], e2) ∈ constr
∨∃(precedence, possible, e1,−, [n,∞], e2) ∈ constr, n ∈ N)
∧(e1 6∈ ζ2) ∧ (e2 6∈ ζ2)

(6.27)

(two events are expected to be observed in a strict order (separated by a possible step or
super-step lower precedence bound) but both are observed when entering ζ2)

Let SuccExOrd(ζ1) denote the set of successor phases of ζ1 according to →ζ , which adhere
to at least one of the conditions (6.25), (6.26), and (6.27).

For ζ2 ∈ SuccExOrd(ζ1), t = (ζ1, enable, ζexit, clocks, timing) ∈ Texitorder is build as follows:

1. enable:=
∧

ei∈ζ1∧ei 6∈ζ2

trigger(ei) ∧
∧

ej∈ζ1∩ζ2

linger(ej).

2. no clocks are reset : clocks:=∅.
Since transition t enters ζexit, no clocks have to be considered an more. Thus, no clocks
have to be reset.

175

6 Requirement Capturing for Open Embedded System

3. the timing predicate has to regard all upper bound constraints related to clocks which
were reset in past(ζ1) and are constraint by upper bounds in future(ζ1). Furthermore
all lower bound constraints have to be regarded which refer to clocks that were reset in
past(ζ1) and are constraint by lower bounds for entering events e′ ∈ ζ2\(ζ1 ∩ ζ2). :
timing:=

∧

e ∈ past(ζ1), e
′ ∈ future(ζ1) :

∃(leadsto,mandatory, e, step, [−∞,m], e′) ∈ constr,m ∈ N

ze ≤ m

∧
∧

e ∈ past(ζ1), e
′ ∈ future(ζ1) :

∃(distance,mandatory, e, step, [−,m], e′) ∈ constr,m ∈ N

ze ≤ m

∧
∧

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(distance,mandatory, e, step, [n,−], e′) ∈ constr, n ∈ N

ze ≥ n

∧
∧

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(precedence,mandatory, e, step, [n,∞], e′) ∈ constr, n ∈ N

ze ≥ n

∧
∧

e ∈ past(ζ1), e
′ ∈ future(ζ1) :

∃(leadsto,mandatory, e, superstep, [−∞,m], e′) ∈ constr,m ∈ N

zze ≤ m

∧
∧

e ∈ past(ζ1), e
′ ∈ future(ζ1) :

∃(distance,mandatory, e, superstep, [−,m], e′) ∈ constr,m ∈ N

zze ≤ m

∧
∧

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(distance,mandatory, e, superstep, [n,−], e′) ∈ constr, n ∈ N

zze ≥ n

∧
∧

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(precedence,mandatory, e, superstep, [n,∞], e′) ∈ constr, n ∈ N

zze ≥ n

Construction of Texitdistance (capturing violation of lower bound distances as specified by possible
constraints):
For each phase ζ1 ∈ PhasesBW :
A transition t = (ζ1, enable, ζexit, clocks, timing) from ζ1 to ζexit is added to Texitdistance for
each successor phase ζ2 ∈ PhasesBW of ζ1 according to →ζ , iff ζ2 can possibly violate a lower
bound distance specification of a possible constraint in the following ways:

∃e1 ∈ past(ζ1), ∃e2 ∈ ζ2 : ∃(distance, possible, e1,−, [n,−], e2) ∈ constr , n ∈ N (6.28)

(e2 ∈ ζ2 is the target event of a quantitative possible separation constraint, which specifies
a step or super-step lower bound. The added transition will only be enabled if the clock
associated with e1 is less than n when e2 is observed)

∃e1 ∈ past(ζ1), ∃e2 ∈ ζ2 : ∃(precedence, possible, e1,−, [n,∞], e2) ∈ constr, n ∈ N (6.29)

176

6.5 Symbolic Timing Diagrams (STDx)

(e2 ∈ ζ2 is the target event of a quantitative possible precedence constraint, which specifies
a step or super-step lower bound. The added transition will only be enabled if the clock
associated with e1 is less than n when observing e2)

Let SuccExLowBd(ζ1) denote the set of successor phases of ζ1according to →ζ , which adhere
to conditions (6.28) or (6.29).
For ζ2 ∈ SuccExLowBd(ζ1), t = (ζ1, enable, ζexit, clocks, timing) ∈ Texitdistance is build as
follows:

1. enable:=
∧

ei∈ζ1∧ei 6∈ζ2

trigger(ei) ∧
∧

ej∈ζ1∩ζ2

stable(ej). Transition t has to be taken if ζ2 can

be entered earlier than expected.

2. no clocks are reset : clocks:=∅. Since ζexit is entered, no clock have to be considered any
more.

3. the timing constraint has to guarantee that t can only be taken as long as a lower bound
of some possible distance or precedence constraint with target event in ζ2\(ζ1 ∩ ζ2) can
be violated. If all relevant clocks have exceeded the respective lower bound, t will be
disabled:
timing:=

∨

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(distance, possible, e, step, [n,−], e′), n ∈ N

ze < n

∨
∨

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(precedence, possible, e, step, [n,∞], e′), n ∈ N

ze < n

∨
∨

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(distance, possible, e, superstep, [n,−], e′), n ∈ N

zze < n

∨
∨

e ∈ past(ζ1), e
′ ∈ ζ2\(ζ1 ∩ ζ2) :

∃(precedence, possible, e, superstep, [n,∞], e′), n ∈ N

zze < n

Construction of Texitprogresstime (capturing violation of upper bound distances as specified by pos-
sible constraints):
For each phase ζ1 ∈ PhasesBW :
A transition t = (ζ1, enable, ζexit, clocks, timing) from ζ1 to exit state ζexit is added to
Texitprogresstime for each successor phase ζ2 ∈ PhasesBW of ζ1 according to →ζ , if ζ2 can
violate some upper bound distance specification of a possible constraint in the following ways:

∃e1 ∈ past(ζ1), ∃e2 ∈ future(ζ1) :
∃(distance, possible, e1,−, [−,m], e2) ∈ constr,m ∈ N

(6.30)

(some source event of a quantitative possible distance constraint - which specifies a step or
super-step upper bound - is in past(ζ1), whereas the target event of this constraint is in
future(ζ1). The added transition will only be enabled if the clock associated with e1 has

177

6 Requirement Capturing for Open Embedded System

become greater than m without observing e2)

∃e1 ∈ past(ζ1), ∃e2 ∈ future(ζ1) :
∃(leadsto, possible, e1,−, [−∞,m], e2) ∈ constr,m ∈ N

(6.31)

(some source event of a quantitative possible leadsto constraint - which specifies a step or
super-step upper bound - is in past(ζ1), whereas the target event of this constraint is in
future(ζ1). The added transition will only be enabled if the clock associated with e1 has
become greater than m without observing e2)

1. enable:=
∧

e′∈ζ1∧e′ 6∈ζ2

linger(e′). Transition t has to be taken if ζ2 can only be entered later

than expected.

2. no clocks are reset : clocks:=∅. Since ζexit is entered, no clocks are of interest any longer.

3. timing :
timing:=

∨

e ∈ past(ζ1), e
′ ∈ future(ζ1) :

∃(leadsto, possible, e, step, [−∞,m], e′)

ze > m

∨
∨

e ∈ past(ζ1), e
′ ∈ future(ζ1) :

∃(distance, possible, e, step, [−,m], e′)

ze > m

∨
∨

e ∈ past(ζ1), e
′ ∈ future(ζ1) :

∃(leadsto, possible, e, superstep, [−∞,m], e′)

zze > m

∨
∨

e ∈ past(ζ1), e
′ ∈ future(ζ1) :

∃(distance, possible, e, superstep, [−,m], e′)

zze > m

Up to this point, the transition relation consists of transitions for all events of which the bundle of
waveforms consists. All constraints of the timing diagram are taken into account.

To be able to take a transition in every step also if the actual observation does not trigger a
state change of the automaton, the transition relation is completed with self loops. The meaning of
Tstuttering is that TSA(TD) can re-enter its currently active state as long as nothing happens that
enforces a state change.

The transition relation T of TSA(TD) is built from T− ∪ Tstuttering , with:

Construction of Tstuttering (self-loops):

For each phase ζ1 ∈ PhasesBW :
A transition t = (ζ1, enable, ζ1, clocks, timing) is added to Tstuttering, where

• enable:=
∧

e ∈ ζ1

linger(e).

• Stuttering is permitted, when none of the transitions to successor states ζsucc w.r.t. T− is
taken. This is the case if all propositions for the linger predicates associated with the events
of the actual phase evaluate to true.

178

6.5 Symbolic Timing Diagrams (STDx)

• no clocks need to be reset: clocks = ∅. Clocks of the automaton are associated with events.
No event is observed.

• no timing has to be considered: timing = true. Constraints are already covered by outgoing
transitions. If ζ1 ∈ F , then the automaton can take (ζ1, enable, ζ1, ∅, true) ∈ Tstuttering
infinitely often. Otherwise, there is either an outgoing transition
(ζ1,−, ζexit,−,−) ∈ T− or no outgoing transition of ζ1 is enabled.

• for ζexit , (ζexit, true, ζexit, ∅, true) ∈ Tstuttering is added.

�

Lemma 6.11 (Unwinding a Diagram yields a Partially Ordered TSA)
TSA(TD) is a Partially Ordered TSA according to definition 6.15.

�

Proof 6.11
Follows from the partial order and finiteness of PhasesBW according to definition 6.43 and

construction rules of definition 6.48, which strictly adhere to the successor relation →ζ .
�

For the proof of the following lemma, we need an association of a particular transition in TSA(TD)
with the phase of diagram TD , for which the unwinding algorithm has introduced the transition
in TSA(TD).

Definition 6.49 (Association of TSA-Transition with Unwinding Phase)
Given the unwinding-TSA TSA(TD) = (Vs, S, s0, Cstep∪Cτ , T, F) of Symbolic Timing Diagram

TD = (intfs(A), name, context, actmode,BW, eact, eac, eae, constr).
For transition t ∈ T , let phase(t) : T → PhasesBW denote the phase associated with the target

state of t, i.e. the phase ζ ∈ PhasesBW for which t has been introduced.
�

Lemma 6.12 (Determinism of TSA(TD))
Given a Symbolic Timing Diagram TD = (intfs(A), name, context,actmode,BW,eact, eac, eae, constr, ∅).

Then TSA(TD) = (Vs, S, s0, Cstep ∪ Cτ , T, F) (according to definitions 6.45 and 6.48) is a deter-
ministic POTSA, if the following conditions are satisfied:

• ∀wvf ∈ BW : wvf is deterministic (6.32)

• ∀e ∈ SEBW : det(e) = deterministic (6.33)

• 6 ∃(precedence, possible,−,−, [n,∞],−) ∈ constr, n ∈ N (6.34)

• 6 ∃(distance, possible,−,−, [n,∞],−) ∈ constr, n ∈ N (6.35)

• 6 ∃(distance, possible,−,−, [−,m],−) ∈ constr,m ∈ N (6.36)

• 6 ∃(leadsto, possible,−,−, [−,m],−) ∈ constr,m ∈ N (6.37)

�

179

6 Requirement Capturing for Open Embedded System

Proof 6.12

1. Texitdistance = ∅.
Follows from conditions (6.34) and (6.35).

2. Texitprogresstime = ∅.
Follows from conditions (6.36) and (6.37).

3. ∀ζ, ζ1, ζ2 ∈ S : ∀t1 = (ζ, enable1, ζ1,−,−) ∈ Tunwind∀t2 = (ζ, enable2, ζ2,−,−) ∈ Tunwind :
t1 6= t2 :6 ∃σ ∈ ΣVs

: σ |= (enable1 ∧ enable2).

By construction of Tunwind: t1 6= t2 ⇒ ζ1 6= ζ2 and thus:

• enable1 =
∧

ei∈ζ∧ei 6∈ζ1

trigger(ei) ∧
∧

ej∈(ζ∩ζ1)

linger(ej), and

• enable2 =
∧

ei∈ζ∧ei 6∈ζ2

trigger(ei) ∧
∧

ej∈(ζ∩ζ2)

linger(ej).

The assertion follows from pairwise disjointness of SEwvf , SEwvf ′ , ∀wvf,wvf ′ ∈ BW accord-
ing to definition 6.32 and because wvf,wvf ′ are deterministic according to condition (6.32).

4. ∀ζ ∈ S : ∀t1 = (ζ, enable1, ζexit,−,−) ∈ Texitorder∀t2 = (ζ, enable2, ζexit,−,−) ∈ Texitorder :6
∃σ ∈ ΣVs

: σ |= (enable1 ∧ enable2).

Likewise, the assertion follows from construction of Texitorder and from pairwise disjointness
of SEwvf , SEwvf ′ , ∀wvf,wvf ′ ∈ BW according to definition 6.32 as well as from determinism
of wvf,wvf ′.

5. ∀ζ ∈ S : ∃1t = (ζ, enable, ζ, ∅, true) ∈ Tstuttering.
Trivial. Follows immediately from construction of Tstutteringw.r.t ζsucc(ζ) for all ζ ∈ S

6. ∀ζ ∈ S : ∃1t = (ζ, enable, ζexit, ∅, timing) ∈ Texitconds.
Trivial. Follows immediately from construction of Texitconds w.r.t. ζsucc(ζ),∀ζ ∈ S.

7. ∀ζ ∈ S : ∀t1 = (ζ, enable1, ζ
′,−,−) ∈ Tunwind∀t2 = (ζ, enable2, ζexit,−,−) ∈ Texitorder :6 ∃σ ∈

ΣVs
: σ |= (enable1 ∧ enable2).

∀ζ ∈ S: UnwSucc(ζ) ∩ SuccExOrd(ζ) = ∅. This follows immediately from definition of
UnwSucc(ζ) and SuccExOrd(ζ):

• condition (6.21) ⇔ ¬condition (6.25)

• conditions (6.22)∧(6.23)⇔ ¬condition (6.26)

• condition (6.24)⇔ ¬condition(6.27)

Hence, ∀ζ ′ : ∃t1 = (ζ,−, ζ ′,−,−) ∈ Tunwind :6 ∃t2 = (ζ,−, ζexit,−,−) ∈ Texitorder with
phase(t2) = ζ ′ and vice versa.

Consequently:
∀ζ ∈ S : ∀t1 = (ζ, enable1, ζ

′,−,−) ∈ Tunwind ⇒ ∀t2 = (ζ, enable2, ζexit,−,−) ∈ Texitorder :
ζ ′ 6= phase(t2), and
∀t2 = (ζ, enable2, ζexit,−,−) ∈ Texitorder : ζ ′ = phase(t2) ⇒6 ∃t1 = (ζ, enable1, ζ

′,−,−) ∈
Tunwind.

180

6.5 Symbolic Timing Diagrams (STDx)

In particular holds: ∀t1 ∈ Tunwind∀t2 ∈ Texitorder : (phase(t1)\(ζ∩phase(t1))) 6= (phase(t2)\(ζ∩
phase(t2))). According to definition 6.48:

• enable1 =
∧

ei∈ζ∧ei 6∈ζ′
trigger(ei) ∧

∧

ej∈(ζ∩ζ′)

linger(ej)

• enable2 =
∧

ei∈ζ∧ei 6∈phase(t2)

trigger(ei) ∧
∧

ej∈(ζ∩phase(t2))

linger(ej)

Since ζ →ζ ζ
′ and ζ →ζ phase(t2), we have:

∀e′ ∈ ζ ′∀e′′ ∈ phase(t2) : (∃wvf ∈ BW : e′, e′′ ∈ SEwvf) ⇒ ((e′ →wvf e
′′) ∨ (e′′ →wvf e

′)).

Because ζ ′ 6= ζ and phase(t2) 6= ζ and ζ ′ 6= phase(t2), there exist at least one waveforms
wvf , for which ζ ′ and ζ ′′ differ. Since wvf is deterministic (cf. definition 6.31), and since
∀wvf,wvf ′ ∈ BW : SEwvf and SEwvf ′ are pairwise disjoint according to definition 6.32,
enable1 and enable2 are mutual exclusive and hence 6 ∃σ ∈ ΣVs

: σ |= (enable1 ∧ enable2).

8. ∀ζ ∈ S : ∀t1 = (ζ, enable1, ζ
′,−,−) ∈ Tunwind, t2 = (ζ, enable2, ζexit,−,−) ∈ Texitconds :6 ∃σ ∈

ΣVs
: σ |= (enable1 ∧ enable2).

Follows from the definition of Tunwind and Texitconds:

• enable1:=
∧

ei∈ζ∧ei 6∈ζ′
trigger(ei) ∧

∧

ej∈(ζ∩ζ′)

linger(ej)

• enable2:= ∨
e∈ζ

unstab(e) ∧ exit(e), where

unstab(e):=

{

¬stable(e) ∧ ¬trigger(e) det(e) = deterministic

¬stable(e) otherwise

Hence, t1 ∈ Tunwind can only be enabled if for all events e ∈ ζ, e 6∈ ζ ′ it holds ∃σ ∈ ΣVs
:

σ |= trigger(e), while for all events e ∈ (ζ ∩ ζ ′) holds: ∃σ ∈ ΣVs
: σ |= stable(e). In contrast,

t2 in Texitconds can only be enabled if at least for one event e ∈ ζ it holds ∃σ ∈ ΣVs
: σ |=

¬trigger(e) ∧ ¬stable(e) (by condition (6.33)).

9. ∀ζ ∈ S : ∀t1 = (ζ, enable1, ζ
′,−,−) ∈ Tunwind, t2 = (ζ, enable2, ζ,−,−) ∈ Tstuttering : 6 ∃σ ∈

ΣVs
: σ |= (enable1 ∧ enable2).

Trivial. Follows immediately from the definition of Tunwind and Tstuttering.

10. ∀ζ ∈ S : ∀t1 = (ζ, enable1, ζexit,−,−) ∈ Texitorder, t2 = (ζ, enable2, ζexit,−,−) ∈ Texitconds :6
∃σ ∈ ΣVs

: σ |= (enable1 ∧ enable2).

Follows from the definition of Texitorder and Texitconds:

• enable1:=
∧

ei∈ζ∧ei 6∈phase(t1)

trigger(ei) ∧
∧

ej∈(ζ∩phase(t1))

linger(ej)

• enable2:= ∨
e∈ζ

unstab(e) ∧ exit(e), where

– unstab(e):=

{

¬stable(e) ∧ ¬trigger(e) det(e) = deterministic

¬stable(e) otherwise

181

6 Requirement Capturing for Open Embedded System

Hence, t1 ∈ Texitorder can only be enabled if for all events e ∈ ζ, e 6∈ phase(t1) holds ∃σ ∈
ΣVs

: σ |= trigger(e), while for all events e ∈ (ζ ∩ phase(t1)) ∃σ ∈ ΣVs
σ |= stable(e) holds.

In contrast, t2 in Texitconds can only be enabled if ∃σ ∈ ΣVs
s.t. for one event e ∈ ζ holds

σ |= (¬trigger(e) ∧ ¬stable(e)) (by condition (6.33)).

11. ∀ζ ∈ S : ∀t1 = (ζ, enable1, ζexit,−,−) ∈ Texitorder, t2 = (ζ, enable2, ζ,−,−) ∈ Tstuttering :6
∃σ ∈ ΣVs

: σ |= (enable1 ∧ enable2).

Follows form the definition of Texitorder and Tstuttering: In order to enable a transition t1 ∈
Texitorder at least the trigger condition trigger(e) of some event e ∈ ζ ∧ e 6∈ phase(t1) has to
be satisfied by some σ ∈ ΣVs

, while t2 ∈ Tstuttering can only be enabled, if σ |= ¬trigger(e),

∀e ∈ ζ .

12. ∀ζ ∈ S : t1 = (ζ, enable1, ζexit,−,−) ∈ Texitconds, t2 = (ζ, enable2, ζ,−,−) ∈ Tstuttering :6 ∃σ ∈
ΣVs

: σ |= (enable1 ∧ enable2).

Follows form the definition of Texitconds and Tstuttering: In order to enable a transition t1 ∈
Texitconds at least the stable condition stable(e) of some event e ∈ phase(t1) would have to be
violated by the same valuation σ ∈ ΣVs

, which satisfies ∀e ∈ ζ : σ |= stable(e) in order to

enable t2 ∈ Tstuttering.

�

Notice, that renouncement of quantitative possible constraints means no lack of expressiveness:
instead of using quantitative possible constraints in commitments, explicit assumption diagrams us-
ing appropriate quantitative mandatory constraints can be used; and instead of using quantitative
possible constraints in assumptions, commitment diagrams using appropriate quantitative manda-
tory constraints can be used.

Lemma 6.13 (Global Constrainedness of TSA(TD))
Given a TD = (intfs(A), name, context, actmode,BW, eact, eac, eae, constr, ∅). TSA(TD) is

globally constrained, iff

• ∀c = (leadsto,mandatory,−,−,T,−) ∈ constr : T = [−∞,m],m ∈ N (6.38)

• 6 ∃c = (leadsto, possible,−,−, [−∞,m],−) ∈ constr,m ∈ N (6.39)

• 6 ∃c = (distance, possible,−,−, [−∞,m],−) ∈ constr,m ∈ N (6.40)

�

Proof 6.13
According to definition 6.45, states ζ ∈ S are fair iff:
F = {ζ | ∀ζ1 ∈ (past(ζ) ∪ ζ) ∀ζ2 ∈ future(ζ):

∀e1 ∈ ζ1∀e2 ∈ ζ2 :
6 ∃(leadsto,mandatory, e1, step, [−∞,m], e2) ∈ constr,m ∈ N

∧ 6 ∃(leadsto,mandatory, e1, superstep, [−∞,m], e2) ∈ constr,m ∈ N

∧ 6 ∃(leadsto,mandatory, e1, step, [−∞,∞), e2) ∈ constr
∧ 6 ∃(distance,mandatory, e1, step, [−,m], e2) ∈ constr,m ∈ N

∧ 6 ∃(distance,mandatory, e1, superstep[−,m], e2) ∈ constr,m ∈ N }
∪{ζexit}

182

6.5 Symbolic Timing Diagrams (STDx)

Transitions without upper bounds in their timing constraints are only added to the transition
relation of TSA(TD) for quantitative possible constraints specifying an expected upper bound on
some clock (Texitprogresstime: in definition 6.48) and for ’staying ’ in some state because the actual
observation enforces no state change (Tstuttering: in definition 6.48) as well as for qualitative manda-
tory leadsto constraints (requiring liveness in a pure form without upper time bound - according to
Tunwind: in definition 6.48). Quantitative possible constraints are excluded from consideration due
to conditions (6.39) and (6.40).

Except for premature acceptance due to exits according to transitions in Texitconds or Texitorder
or Texitdistance always all symbolic events e ∈ SEBW are considered in some order permitted by the
diagram TD along all paths through TSA(TD).

• In Texitconds - by definition - all upper bound constraints related to clocks, which were reset
in past(ζ1) and are constrained by upper bounds in future(ζ1) are respected.

• In Texitorder - by definition - all upper bound constraints related to clocks which were reset in
past(ζ1) and are constrained by upper bounds in future(ζ1) are respected.

• Transitions t ∈ Texitdistance guarantee that t can only be taken as long as a lower bound
of some possible distance or precedence constraint with target event in ζ2\(ζ1 ∩ ζ2) can be
violated. If all relevant clocks have exceeded the respective lower bound, t will be disabled.
Hence t ∈ Texitdistance are upper bounded.

Hence, it remains to be proved that condition (6.38) guarantees global constrainedness:
On entering any state ζ ′′ in TSA(TD), all timing constraints19 associated with e′′ ∈ ζ ′′ along

every path to ζ ′′ in TSA(TD) must be satisfied. Construction of Tunwind guarantees, that all
transitions entering ζ ′′ specify an upper bound timing constraint on either ze′′ or zze′′ iff e′′ has
been the target event of a quantitative mandatory (step or super-step) leadsto constraint. Hence,
for unfair states according to 6.45, always upper bound constraints for all possible successor states
are part of the timing predicates along every path to a state containing target events of upper
bounded leadsto constraints.

�

Definition 6.50 (Unwinding Representation of Symbolic Timing Diagram (U(TD)))
The unwinding representation U(TD) of a symbolic timing diagram

TD = (intfs(A), name, context, actmode,BW, eact, eac, eae, constr, ∅)

(cf. definition 6.34) is a POTSAAC according to definition 6.24:

U(TD):=(actmode′, eacond, eaexcept,A), where

• actmode′:=actmode is the activation mode for activating A

• eacond:=

{

eact ∧ eac if actmode = iterative

eact if actmode = initial
is the activation condition for activating A

19Recall, that each event e ∈ SEBW is associated with two clocks, ze ∈ Cstepand zze ∈ Cτ which are reset for
observations σ ∈ ΣVs

satisfying trigger(e) if the actual state of TSA(TD) is ζ, with e 6∈ ζ and if ζ → ζ ′, with

e ∈ ζ ′ (e is expected to happen next).

183

6 Requirement Capturing for Open Embedded System

• eaexcept:=

{

false if actmode = iterative

eae if actmode = initial
is the activation exception for A. Recall from definition 6.24 that eaexcept is relevant only for
initial POTSAAC

• A:=TSA(TD) is the unwinding-TSA TSA(TD) according to definitions 6.45 and 6.48.

According to definition 6.26 we write Ω(U(TD)) ◦ f to denote the SMI-observer module encoding
U(TD) with dedicated fairness condition output f . If TSA(TD) is globally constrained, we write
Ω(U(TD)) . o to denote the SMI-observer module encoding U(TD) with dedicated stepwise non
failure acceptance output o.

�

Finally, we define the semantics of a STDx-specification based upon the languages accepted by
the observer modules obtained from the unwinding representations (according to the algorithms
and results of section 6.3) of all diagrams belonging to a STDx-specification.

Definition 6.51 (Semantics of a STDx-specification)
Let spec = (intf(A), name, ass_decls, comm_decls, specvars) be a STDx-specification. The

semantics of spec is defined by the timed observation sequences (c.f. 5.6), i.e. by the languages
accepted by the unwinding representations of the individual diagrams:

L(spec):=






ts|



ts 6∈
⋂

a∈ad(spec)

L(U(a))



 ∨



ts ∈
⋂

c∈cd(spec)

L(U(c))











�

Recall from section 6.3 that for deterministic POTSAAC CTL and LTL model checking, respec-
tively, can be applied in order to determine whether a system fulfills a given specification. Theorem
6.3 established that for explicitly constrained deterministic POTSAAC verification using invariants
is applicable.

Definition 6.52 (Verification using Deterministic STDx-specifications)
Let C = (V,Θ, ρ, E) be a CSTS and spec = (intf(A), name, ass_decls, comm_decls, specvars)

be a STDx-specification. If all diagrams of spec are deterministic, verification can be applied by
constructing the parallel composition

C ||Ω
a∈ad(spec)

Ω(U(a)) ◦ fa ||Ω
c∈cd(spec)

Ω(U(c)) ◦ fc

and checking the acceptance formula

∧

a∈ad(spec)

GF(fa) ⇒
∧

c∈cd(spec)

GF(fc)

If all unwinding-TSA of all diagrams referred to by spec are deterministic and globally constrained,
then verification can be applied by constructing:

C ||Ω
a∈ad(spec)

Ω(U(a)) . oa ||Ω
c∈cd(spec)

Ω(U(c)) . oc

184

6.5 Symbolic Timing Diagrams (STDx)

and checking the acceptance formula

∧

a∈ad(spec)

G(oa) ⇒
∧

c∈cd(spec)

G(oc)

�

Complexity Issues

It must be emphasized, that STDx is a non-canonical specification formalism, i.e. a requirement
can often be specified in many different ways. Also, it depends on the user as well on the particular
requirement, whether the requirement is specified using a single diagram or with a set of diagrams.
As a rule of thumb, the complexity of the resulting TSA depends on the degree of independence
of the symbolic events in a diagram. If the symbolic events of various waveforms are temporally
unrelated (i.e. not ordered or bound by constraints), then unwinding has to regard a relatively large
amount of possible interleavings and hence the TSA has to represent all phases according to the
degree of freedom incorporated by the diagram. In order to get an idea of the worst case complexity
of the resulting TSA, we assume a diagram with n symbolic waveforms with one symbolic event on
each (after activation). Then there exist 2n possible phases, which have to be represented as states

in the TSA with (2n− 1)+
n∑

i=0

((
n
i

)
(
2n−i − 1

)
)

transitions (where the first (2n− 1) transitions

belong to Texitconds and the rest are transitions of Tunwind). In contrast, the TSA of a diagram with
n symbolic events along one waveform - which are hence totally ordered - requires n states and 2n
transitions (where n transitions belong to Texitconds and n transitions belong to Tunwind).

Due to the treatment of parameters and the instantiation of specifications, observers can not be
shared among different declarations and specifications, even though they are generated from the
same diagrams. Hence, complexity of the representation of a requirement specification comprised
of several STDx-specifications depends on the grouping of diagrams in declarations. Notice, that is
is not possible to instantiate the same diagram template twice with different parameter mappings
within the same declaration. The most concise representation can be obtained by grouping several
diagrams within one declaration, while formalizing of a requirement specification comprised of
several STDx-specifications will in general lead to a more complex representation due to redundant
references to assumption diagrams.

Conclusion

In this section it has been shown how requirement specifications formalized using the graphical spec-
ification formalism STDx can be applied for verification of embedded systems. Graphical specifica-
tions with an intuitive reading and a formal semantics are unwound and observers are constructed,
for which an efficient verification procedure exists.

• The consequence of lemmata 6.12 and 6.13 is that invariance checking is applicable for veri-
fication using STDx, if no quantitative possible constraints (determinism) and no unbounded
leadsto constraints (global constrainedness) are used in requirement specifications. As stated,
possible quantitative constraints can be avoided in commitments by formulating appropriate
assumptions using mandatory quantitative constraints and vice versa.
Concerning unbounded leadsto constraints, we claim that in the specification and verification

185

6 Requirement Capturing for Open Embedded System

of embedded reactive systems, there always exists a concrete upper time bound for required
reactions. The observer construction for STDx is capable of capturing bounded liveness re-
quirements. Because the time model for conceptual models should not resemble physical time
and because it should be possible to specify a concrete upper bound for reaction deadlines,
we claim that specification of unbounded progress is not a necessity. Hence renunciation of
unbounded liveness is an acceptable price to be paid for applicability of invariance checking,
instead of using LTL model checking with fairness constraints.

• Using SMI observer modules generated from TSAs obtained from unwinding diagrams, it-
erative activation can easily be realized. This remedies the problems arising with invariant
activation, where several contradictory instances of a diagram can be active at the same
time, which often led to counter-intuitive error-paths for older versions of Symbolic Timing
Diagrams.

• The distinction between step and super-step constraints allows to specify the input/output
behavior of internal activities of a system in terms of model-time as well as in terms of δ-
delays. The interfaces of internal activities in general contain fast as well as slow inputs.
For reactions it has often to be distinguished whether an activity reacts to stimuli in a step
oriented way, i.e. in terms of δ-delays, or in terms of model-time, i.e. a certain amount of
super-steps after the stimulus. Since a system is synchronously composed of such internal
activities also in the asynchronous execution semantics, being able to quantitatively specify
time bounds w.r.t. both steps and super-steps is a prerequisite for compositional verification
of real-time requirements for systems according to the asynchronous semantics.
In section 7.3 a proof-rule for compositional verification is presented. In section 8.3.2, an
example for a compositional proof of a real-time requirement is presented.

• Unfortunately, the restriction of STDx-specifications of referring to only one commitment
declaration limits the use of template diagrams, because only one parameter mapping can
be specified for the instantiation of commitment diagrams. This implies no severe restriction
for component proofs, because each requirement can be verified in a separate proof. For
compositional proofs the restriction is a real limitation, as will become apparent in section
8.3.3. In order to share assumptions for several instances of a diagram template with different
parameter mappings it would be necessary allow specifications to refer to more than one
commitment declaration. Hence, a topic for future work enhancing the formalism should be
the support of multiple references to commitment declarations by STDx-specifications.

• Recall from section 5.4 that STDx-specifications can be associated with architectures in the
same way as behavior descriptions. Architectures - serving as containers - are bound uniquely
to component instances by configurations as the central building blocks. Different views,
such as behavioral description and requirement specifications, are associated with different
configurations referring to the same entity. This concept of defining bindings of components
with particular views by separate configurations has the advantage of fixing the structural
description independently of a concrete view to the components. SSL itself does not describe
behavior, in particular communication is not delayed but instantaneous. Hence, structure
descriptions can always be interpreted as the synchronous parallel composition of their com-
ponents.
Using configurations, a hierarchical structure can be exploited for structured handling of proof

186

6.5 Symbolic Timing Diagrams (STDx)

obligations and verification results in the STVE. The structure description serves as basis for
design navigation, proof obligation generation and management of verification results. This
will be explained in section 7.4.

6.5.5 Related Work

Symbolic Timing Diagrams have already a long history at the research institute OFFIS. Invented
and first presented in the early 1990ies [DS93], many enhancements and changes have been applied
to syntax, graphical representation and semantics of Symbolic Timing Diagrams during more than
a decade of ongoing development.

A first description of a formal semantics of - an early version of - STD was given by Rainer Schlör
and Werner Damm in [DS93] . A full semantics definition for this version of STD can be found
in [DJS95]. For this early version only qualitative constraints have been supported. A structured
organization using the three layers of diagrams, declarations and specifications has not been part of
this early graphical formalism; only textual specification clauses were used to associate commitments
with assumptions. Also, specification variables and templates with formal parameters have been
introduced later.

The semantics has been defined by unwinding the single diagrams into partially ordered symbolic
automata (POSA). POSA are basically Büchi Automata with symbolic expressions as transition
triggers. For POSA a translation to linear temporal logic formulae has been defined. The complete
foundation and description of the constructs and algorithms applied in this translation can be found
in [Sch00].

A first real time version (RTSTD) of STD has been developed in the context of the ESPRIT
project SACRES. This version together with a brief semantic definition has been presented by
Konrad Feyerabend and Bernhard Josko in [FJ97]. In contrast to STD, unwinding of RTSTD has
been defined on the basis of Timed Automata as unwinding representation. From these variant of
timed automata TPTLc formulae have been generated (cf. section 6.3). Since one global clock is
assumed in TPTLc, RTSTD can consequently only refer to one sort of clock. Although the global
clock can refer to an arbitrary time domain- not necessarily discrete time, RTSTD have been applied
- to the best of our knowledge - always with the assumption of ”next step=next time”, due to the
lack of a TPTLc tableaux generation.

Within the ESPRIT-project FORMAT the powerful verification environment CVE for VHDL-
based hardware designs was built employing major state-of-the-art methods and using STD as
graphical specification formalism.

The CVE-verification environment was originally developed by Siemens; later on - in the VFOR-
MAT project - it was extended and marketed by the company Abstract-Hardware under the product
name CheckOff.

During a cooperation of several years with the research center OFFIS, this company also provided
a graphical design capture tool for STD-specification development. Another implementation of a
graphical editor for STD has been developed on top of Tcl/Tk in the context of our master thesis.

In the ESPRIT project VFORMAT - a successor project of FORMAT - the extended Symbolic
Timing Diagrams (STDx) formalism has been developed. STDx is a conservative extension of the
visual formalism STD. The semantics is similar to the development of [FJ97]; the main difference is
the definition of constraint-priority (violations of possible constraints have priority over the violation
of strong constraints) and the treatment of symbolic events in a deterministic way by default.
Moreover, for STDx the restriction has been made that quantitative-timing constraints always refer

187

6 Requirement Capturing for Open Embedded System

to step clocks. Thus, it has been possible to define the semantics of STDx using the next time-
operator of LTL. This ensured still a tractable verification complexity, provided that the numbers
occurring in constraint intervals are reasonably small.

The first design of a user interface for STDx was again pursued by Abstract-Hardware within the
course of the VFORMAT project. Later on, the Tcl/Tk based STD editor developed at OFFIS has
also been adapted and extended in order to support STDx.

Unfortunately, STDx has never been documented with all language constructs in any document.
Even though STDx has been referred to in a series of publications, there exists no reference for the
unwinding algorithm before the modifications applied in the context of this work.

As stated above, in contrast to the unwinding algorithms for RTSTD and STD, violation of
possible constraints has priority over mandatory constraints. In combination with quantitative
constraints this induces some difficulties regarding determinism and adherence to upper bound
constraints. The major contribution of this work has been in two aspects:

• The variant of STDx presented here permits quantitative constraints regarding two different
concepts of time by distinguishing clocks counting steps and clocks counting super-steps.

• The semantics of our STDx variant is defined in terms of observer modules instead of linear
temporal logic. This, for the first time, permits realization of an iterative activation in a
satisfactory way.

Kathryn Fisler presented in her PhD thesis [Fis96] another variant of timing diagrams (TDL) that
allows to formalize non-regular languages. In general the semantics of TDL requires a more general
class of languages than regular languages due to the use of variables in time-bound annotations, but
a certain regular sub-class of TDL can be translated into CTL - a later publication also presents a
LTL semantics [Fis00]. TDL is embedded in a framework of six hardware design notations (heteroge-
neous hardware language-HHL). Like STDx, TDL supports different activation modes of diagrams;
diagrams can either be activated invariantly or iteratively. Real time constraints of TDL refer to
steps of the model according to the assumption ”next time=next step”. In contrast to STDx, TDL
assumptions are not separate explicit diagrams but are expressed as part of the diagram.

Nina Amla et al. presented another variant of timing diagrams called ’(Synchronous) Regular
Timing Diagrams’ (SRTD) [AEN99, AEKN00]. An SRTD is specified by a number of waveforms
which describe changes of values w.r.t. a given clock. Activation is realized by splitting the dia-
gram into a pre- and a postcondition fragment, where the precondition triggers the activation of
the postcondition fragment. Furthermore several instances of a diagram may either be activated
overlapping or may only be activated according to a non-overlapping semantics. The semantics def-
inition is oriented towards a decompositional verification method: a deterministic finite automaton
for the complement of each individual waveform and each sequential dependency between wave-
forms is created, as well as a non-deterministic finite ω−automaton realizing the activation of the
individual waveform automata. If all complement (waveform-) automata reject the computation
after activation, then the computation adheres to the property specified by the diagram. Real time
constraints refer to steps of the model.

A further interesting approach to visual specificatio ns can be found in the work of Cheryl Kleuker
(formerly Dietz) [Die96, DD97] about Constraint Diagrams. There, waveforms are partitioned
into intervals which are annotated with conditions describing system states. Timing requirements
between intervals of different waveforms as well as regarding the duration of individual intervals can
be expressed using real-time constraints. Assumptions and commitments are specified within the

188

6.5 Symbolic Timing Diagrams (STDx)

same diagrams, whereat commitments are graphically denoted by surrounding boxes. Semantically,
Constraint Diagrams are based on a subset of the interval temporal logic Duration Calculus.

Constraint Diagrams have mainly been used within a transformational approach for the construc-
tion of correct systems by refinements, but have been applied to verification as well. Reachability
based model checking for timed automata on the basis of Constraint Diagrams has been presented
by Henning Dierks and Marc Letrari in [DL02]. There, an automatic construction of so-called test
automata from Constraint Diagrams has been described, with which verification using the model
checker Uppaal has been applied.

Finally, the work of Jochen Klose has to be mentioned [Klo03]. Even though, Live Sequence
Charts (LSC) seem to be different to STDx at first glance, the formalism uses very similar TSA as
semantical basis of its unwinding algorithm. In [Klo03], LSCs refer only to steps of a model, whereas
referring also to super-step counters would be an advantage even for specifications at system-level.
Hence, in particular the considerations regarding two different kinds of clocks are of interest also
for the formalism of LSCs. The translation of TSA into specification observers (cf. section 6.3)
could be applied also for TSA obtained from unwinding of LSCs, and thus improve the real-time
capabilities of LSCs.

189

6 Requirement Capturing for Open Embedded System

190

7 Verification Techniques for Complex

Embedded Systems

In this chapter we focus on the verification techniques for complex embedded systems integrated
with the STVE. In the previous chapter we have described the formalization of requirements for
the on-the-fly techniques of robustness analyses, formal debugging, and pattern-based verification
and the construction of synchronous observers from Timed Symbolic Automata obtained from un-
winding of Symbolic Timing Diagrams. According to the placement of the different techniques in
the development process, the STVE is comprised of two major components, a so-called verification
manager offering basis functionality and on-the-fly verification and a proof-manager for specification
verification using STDx. Even though verification-manager and proof-manager are separate inte-
gration platforms, they share some optimization and approximation techniques in their respective
verification applications.

This chapter is organized as follows: section 7.1 presents the overall structure of the STVE
and the interaction of its parts. In section 7.2, the optimization and approximation techniques
integrated with STVE are presented. The principle of compositional verification using STDx is
described in section 7.3. Section 7.4 concretizes the presentation of compositional verification by
relating the basic techniques to the concrete structure representation using SSL. There also the
proof-management as integrated with the proof-manager is described. The chapter concludes with
an overview of other approaches to compositional verification.

7.1 Structure of the Statemate Verification Environment

Figure 7.1 gives an overview about the overall integration of the STVE. Solid lines in the figure
denote data-flow, while dotted lines depict flow of control.

The verification-manager is closely integrated with the Statemate user interface. Using a plug-
in mechanism of the Statemate tool set, the verification-manager can be invoked directly from
the main window by simply pressing a button (À). The verification-manager is the central control
user interface of the STVE. This GUI offers invocation of the Statemate to SMI/SSL compilation
(Á) , construction and execution of robustness analyses, formal debugging checks (cf. section 6.1)
and observer-pattern-based verification tasks (cf. section 6.4).

191

7 Verification Techniques for Complex Embedded Systems

STDx−
Manager/Editor

SSL data−
baseWorkarea

Manager
Proof−

Manager
Verification−

STATEMATE

VDB

an
al

ys
es

, f
or

m
al

 d
eb

ug
gi

ng

pa
tte

rn
 v

er
ifi

ca
tio

n

check in update

load/sto
re

pr
oo

fs
translation

2

4

5

31

to SM
I/SSL

Figure 7.1: The Overall Picture of Integration

The STDx-manager (cf. section 6.5) can be invoked (Â) from the verification-manager for each
individual sub-activity of the design in order to create or edit specifications for verification using
the proof-manager. Up to this point, all data are stored in the user’s workarea. In order to perform
requirement verification for STDx specification, the design representation has to be checked into an
SSL database, and the proof-manager has to be invoked. Again check-in for the design representation
as well as for STDx specifications can be controlled using the verification manager (Ã). If there exists
already an active incarnation of the proof-manager, this incarnation is notified about the check-in
(also Ã). Upon notification - as well as upon start - the proof-manager compares the contents of
the SSL data-base with the mirrored contents in its verification data base (VDB) and performs the
necessary update operations on the VDB (Ä).

The Verification-Manager

By the compilation of a Statemate design into its SMI/SSL representation, for each activity a
directory is created containing all files belonging to the semantical representation [Bro99]. The
verification-manager offers creation of proof-obligations for robustness analyses, formal debugging
checks and observer-pattern-based verification (cf. section 6.4). Proof-obligations are created and
the corresponding proof-tasks are executed in the workarea in dedicated directories located in the
directory associated with the chosen activity, s.t. for each individual analysis, debugging or pattern-
proof a separate directory is used. Construction of proof-obligations is realized using a pure push-
button technique. For analyses the potential conflicts are offered - after a preparation phase -
in a selection list, s.t. the user can define a proof-obligation by simple graphical selection. For
robustness analyses and drive-to-state debugging checks a multiple selection is supported, in the
remaining cases only single definitions are possible.

Instances of observer-pattern are created by selection from a list, assigning the instance a name
and mapping the formal parameters to concrete expressions in a dedicated dialog. For entering
expressions - to be mapped to the formal parameters of a pattern or to define a drive-to-property
check - a list of the variables, states and events in the scope of the selected activity is offered which

192

7.1 Structure of the Statemate Verification Environment

permits easy graphical selection.
User defined pattern instances are stored in a separate directory and can be shared between

different proof-obligations. This allows to define e.g. assumptions only once and to reuse these
definitions in various proofs.

All verification related operations are managed by the user interface, hiding by default all control
aspects from the user. Results are recorded in reports, no further book-keeping of results or depen-
dence management is supported. For each of the proof-obligations an executable script is generated.
Hence, results can be re-established on demand after modifications in the design. Proof-obligations
can be redefined, copied and, of course, deleted. Proof-tasks can be re-executed any-time, with or
without modification of the proof-obligation or the proof-configuration.

Witness sequences are collected and managed by the verification manager. Part of this man-
agement is the translation of witnesses into Statemate simulation control programs. Hence, the
user can easily animate witnesses and errorpaths by using the Statemate simulator. Additionally,
witnesses can be displayed as set of waveforms.

Optimizations and abstractions can be enabled or disabled, using an easy-to-use graphical con-
figuration dialog. Propositional abstraction and automatic abstraction refinement are offered per-
mitted only for observer-pattern based proofs. These abstractions perform over-approximations of
the model-behavior and should hence not be combined with falsification-oriented checks such as in
particular formal debugging.

For all checks offered by the verification-manager, the verification engine can be chosen to be
either the VIS model checker or the Prover plug-in based bounded model checker. Furthermore, for
each check performed using the VIS model checker it can be chosen whether CTL model checking
or invariance checking is to be used. For each check using the bounded model checker an lower
unroll-bound as well as an upper unroll-bound can be specified. These user-settings are managed
by the verification-manager as configurations of the proof-scripts. Hence, a proof-obligation can be
executed with various different configurations. This allows the advanced user - without bothering
him with details of control aspects - to gain significant control about the applied techniques at an
appropriate abstract level.

For the unexperienced user all configurations are predefined with useful defaults, to which the
user settings can always be reset.

Summarizing, the verification-manager integrates all verification activities that are offered for
application during development of a Statemate model with an easy-to-handle graphical user in-
terface. Application of the offered techniques to a Statemate model under development does only
require a little bit of expert knowledge.

But the verification-manager bridges also the gap to the more ambitious approach of applying
specification verification using STDx. Therefore the verification-manager offers control over the
check-in of the model representation as well as the STDx specifications into the SSL data-base,
that serves as entry point to verification facilities integrated with the proof-manager. The STDx-
manager with which STDx specification can be created and edited and which controls creation and
editing of diagrams can be invoked for each activity representation in the structural view to the
model. The proof-manager can be invoked in order to perform specification verification.

The Proof-Manager

Once invoked, the proof-manager checks the contents of the SSL data-base for modification w.r.t. the
contents of an existing VDB. If there exists no VDB yet, the proof-manager creates one according

193

7 Verification Techniques for Complex Embedded Systems

to the contents of the SSL data-base. Otherwise, validity of existing proof-results is computed
according to the description in section 7.4. The VDB basically mirrors the contents of the SSL
data-base in a particular directory structure. Symbolic links in the file-systems permit navigation
of the design according to the structure description. The VDB provides the data-basis for the
integrated file-system oriented verification tools developed at the C.v.O.- University of Oldenburg
and by OFFIS, as well as the model checking engines.

The proof-manager offers proof-obligation construction for component proofs , derivation of STDx
specifications from other STDx specifications referring to the same SSL entity declaration, as well
as for compositional proofs.

Proof-obligations are constructed according to user-selection of SSL configurations. According
to user selection, the proof-manager constructs executable proof-scripts for the selected proof-
obligations, which can be invoked immediately or with an arbitrary delay by the user and can
later be re-run if the proof-result has been invalidated due to modification of the (sub-)component
or STDx specification. If invoked, a proof-script automatically performs all necessary operations
in order to verify whether the (sub-)component to which the script refers fulfills the corresponding
STDx specification. Due to the famous mechanism of make, only the necessary operations have
to be re-executed in case of an invalidation, in order to re-establish the proof-result. Interactive
selections, such as variable selections for propositional abstraction are stored as data associated
with a proof-obligation and can be reused in re-executions of proof-tasks.

The verification of designs often lead to complex proof states. Parts of the design have al-
ready been proven, other parts still have to be verified. According to the compositional proof
rule, dependences among proofs have to be regarded for compositional verification using STDx. A
compositional conclusion about a top-level specification can only be drawn if an implication in-
volving sets of STDx specifications for sub-components can be proven to be a tautology, and if
all sub-component specification referred to in the premise of the implication are satisfied by the
sub-components. Hence, in contrast to the on-the-fly techniques of analyses, formal debugging and
pattern-based verification, compositional proofs do not depend only on a single proof-task; but
moreover depend on the set of sub-component proofs for STDx specifications referred to in the
premises of the hierarchical conclusion.

During the various iteration phases of the development, parts of the design which have been
proven correct may be changed by the developers. Since fulfillment of the involved sub-component
specifications is essentially part of the compositional proof rule, book keeping of proof-results and
dependence management have to be part of an automated environment for compositional reason-
ing. The implementation of dependence management has to keep track of the proof-results and
to hierarchically invalidate dependent proofs when parts of the design or relevant sub-component
specifications are modified. On the other hand, proof results which are independent from a modifi-
cation have to remain valid and only these proof-tasks have to be re-executed which were affected by
modifications in order to re-establish a compositional proof. Therefore all proofs are under control
of a proof-manager.

The most complex proof situation, of course, arises during verification of hierarchical designs.
Compositional proofs require at least two steps of verification activities. In the first step a a
selection from the STDx specifications of a structural specification configuration is checked against
a selected STDx specification of the considered activity. In the second step the selection of STDx
specifications of its sub-activities has to be proved for their behavioral - or again decomposed -
representations. This second task consists of several proof-tasks each checking a sub-activity against
its STDx specifications. Due to dependence management and book-keeping of results, these steps

194

7.2 Optimizations and Abstractions in the Verification of Statemate Models

can be performed in any order. Hence, a top-down strategy as well as a bottom-up strategy can
be applied, and also critical-first verification can be performed this way. Regardless, which of these
strategies is preferable, the proof-manager ensures that in the end a compositional conclusion is
justified only if all sub-tasks of the proof have been applied successfully.

Besides construction of proof-obligations and execution control for the corresponding proof-tasks,
the proof-manager provides a complete overview about the proof-states of all parts of the de-
sign. In order to provide navigation of the design and to maintain the different views to the (sub-
)components, the compositional representation of the design and the formal specifications referring
to its (sub-)components are kept in a SSL design-database.

Witnesses for failed proofs can be directly visualized under control by the proof-manager as a
set of waveforms. Furthermore, they can be exported to the workarea and run in the Statemate

simulator.

7.2 Optimizations and Abstractions in the Verification of
Statemate Models

Model checking has proven to be fairly well applicable in practice for models of non-trivial size.
Many successful applications of model checking to industrial size models have been reported over
the past years (for an overview cf. e.g. [CWA+96]). State-of-the-art model checkers are able
to handle models of impressing complexity [BCM+90]. Although the symbolic representation of
models using ROBDDs can efficiently handle models orders of magnitude larger than the explicit
representation can, the inherent complexity of the model checking problem limits its feasibility in
general.

To alleviate this problem, many optimization and abstraction techniques have been proposed and
some have been applied very successfully in practice [CGP99, BCC+99].

In this section, we will briefly overview some techniques to cope with complexity problems in the
verification of Statemate models. While some of these techniques are tailored to specific problems
arising in the verification of asynchronous Statemate models, others are of rather basic nature
and make no use of specific features of a particular representation.

Cone of Influence Reduction(COI) : Reactive systems usually consist of more than only one single
function. Several computations reacting to subsets of the inputs each influence only a subset
of the outputs. Computations running in parallel may interfere with each other but often this
is not the case. Therefore, the main idea behind Cone of Influence reduction is that not all
parts of a model contribute to the validity a particular specification. Only these inputs and
variables can have an impact on the validity of a requirement, which are transitively connected
to variables which are referred to in the specification [CGP99].
For verification purposes, the model can be reduced to only these parts which contribute to
the property without doing harm to the validity of the specification. A functional depen-
dency analysis determines which variables and control structures are potentially relevant to
the validity of a specification. Computation paths irrelevant for the validity of a particular
specification can be eliminated from the model. This COI reduction is an exact approximation
of the model, i.e. both truth and falsehood of a specification are preserved.
COI reduction can be computed on several levels of model representation. E.g. COI reduc-
tion is part of state-of-the-art model checkers like VIS [VIS96a] or SMV [McM93], where it is

195

7 Verification Techniques for Complex Embedded Systems

performed automatically and invisibly to the user as part of every verification task. Of course,
the maximal advantage can be obtained from applying COI reduction already on a high level
description of the model. By applying COI reduction to the SMI representation, we avoid the
construction of an un-reduced finite state machine representation for the model checker.

Relaxed Cone of Influence Reduction(RCOI) [Bie03] : While COI reduction often yields drastic
reductions of complexity when verifying synchronous Statemate models, the technique does
not show this efficiency in the verification of asynchronous Statemate models. The problem
with the asynchronous semantics is that all computations of the model depend on stabilization
of the asynchronous model: The model is “glued together” by dynamic stabilization. New
inputs are read and timer variables are modified only in stable states. On the other hand,
the model becomes stable only if no transition can be taken without reading new inputs or
observing a timeout event.
Following this observation, a variable v (or state) of an asynchronous model may belong to
the COI of a specification for one of two reasons:

• v (in)directly influences variables which are referred to in the specification. Then, v has
a functional dependence to a variable of the specification and would also belong to the
COI in the synchronous semantics,

• v has no functional dependency with the variables of the specification and belongs to the
COI only due to stabilization detection.

Now, RCOI reduction exploits this distinction by only considering the functional dependences
and abstracting from the stabilization of an asynchronous model. Provided that the model
always eventually becomes stable, the validity of a specification only depends on the functional
dependencies of variables. Note that RCOI does not preserve super-step divergence of a model.
If a diverging computation for a variable - not belonging to the functional cone of influence -
is eliminated by RCOI reduction, the reduced model may stabilize, whereas the un-reduced
model is divergent. Hence, it must be guaranteed that those portions of a model which are
eliminated by RCOI reduction do not cause the model to diverge. For this purpose a dedicated
stabilization check for asynchronous models if offered by the STVE. This check is required for
an asynchronous model in order to justify application of RCOI reduction. Only provided that
the model always stabilizes, RCOI is an exact approximation of an asynchronous model for a
given specification1.
RCOI reduction was formally introduced in [Bie03]. There also a proof of soundness as well
as many experimental results can be found.

Propositional Abstraction : COI and RCOI reductions often drastically reduce the model com-
plexity w.r.t. a specification. Since both reductions preserve the functional dependencies in
a model M for specification φ, the reduced model may still contain complex computations.
This complexity often remains too high for successful verification.
Although the COI consists of only these variables which may have an impact on the validity
of φ, for some of them their concrete values may be of no relevance regarding φ.
If e.g. φ must hold for arbitrary values of a variable x, it may have no impact on the validity

1Since RCOI does not preserve the length of a super-step, RCOI is only applicable to specifications not referring to
step counters - or X−operators.

196

7.2 Optimizations and Abstractions in the Verification of Statemate Models

of φ if x is assigned arbitrary values instead of the result of a complex computation. By
abstracting from concrete computations for x, the complexity of model M can possibly be
reduced drastically. If the concrete values for some variable x do not influence the validity of
φ, also the computation of the values need not be considered for verification of φ: After e.g.
assigning x with a new input instead of a computed value, COI reduction can eliminate the
computation from the abstract model.
Often not only application of model checking suffers from the complexity of the exact model,
but also the construction of the finite state machine representation for the model checker is im-
possible, e.g. if the model contains infinite data-objects like variables of real number domains.
Thus, in practice abstractions are useful only if applicable to a syntactical representation of a
system before building its semantical representation M .
Propositional abstraction - as offered by the STVE [BDW00, BBD+99] - provides a mecha-
nism to automatically compute abstraction MA of M w.r.t. a user selected set of variables.
The user selected variables are treated abstractly and only their influence on other objects is
maintained in MA.
Propositional abstraction is offered with two different abstraction granularities in the STVE:

• The more fine grained abstraction simply frees x, by making x an input. All assignments
to x are eliminated.

• The coarser abstraction - referred to as strong - abstracts from variable x of model M
by approximative existential quantification - in a pure syntactic fashion. In order to
approximate ∃x.b, each condition b in which x occurs is transformed. This is achieved by
replacing the least boolean term of b containing x is by either true or false, depending
on the polarity of x’s occurrence. For example, let x be a variable to be abstracted from,
then (y = 7) ∧ (x = z) is replaced by (y = 7) ∧ true, (y = 7) ∧ ¬(x = z) is replaced by
(y = 7) ∧ ¬false, ¬((y = 7) ∧ ¬(x = z)) is replaced by ¬((y = 7) ∧ ¬true), and so on.
Approximative existential quantification possibly enables more transitions for every step,
than in the un-abstracted model. In order to be able to also stay in a state for which
no transition is enabled in the concrete model, non-exclusive self loops are added to the
source states of transitions whose triggers are affected by applying abstraction. Staying
in the source state or taking an outgoing transition can now non-deterministically be
chosen.
As in the fine grained abstraction, assignments to x are eliminated. If x occurs on the
right hand side of an assignments to a non-abstract variable y, the entire right hand side
expression of the assignment is replaced by a fresh input.
By eliminating abstracted variables entirely from the model, the coarse abstraction is also
suitable for models containing infinite objects, such as real variables. When abstracting
from all variables of infinite domains, the resulting abstract model MA is a finite model.

Propositional abstraction is an over-approximation in both offered granularities, whereat
strong abstraction over-approximates freeing. Over-approximations are only applicable for
verification of universal specifications, i.e. specifications which express requirements for all
runs of a model. If an over-approximated abstract model fulfills a universal requirement, then
also the concrete model fulfills the requirement. Since over-approximations preserve only truth
of universal specifications, in case of a violated universal specification, no conclusion to the
concrete model is possible.

197

7 Verification Techniques for Complex Embedded Systems

Details regarding the above abstraction techniques and their realization can be found in the
dissertation of Tom Bienmüller [Bie03]. Also presented there is an application methodology
for automatic abstraction refinement. In this approach COI computation and propositional
abstraction are combined in order to automatically compute a series of abstractions. In an
automated verification process - starting with a very coarse propositional abstraction - the
abstraction is iteratedly refined unless the requirement is fulfilled by one of the abstract models
of the series. Otherwise, the iteration terminates if no further abstraction can be found and
the un-abstracted model also violates the requirement.
This automatic abstraction refinement verification process is integrated with the STVE and
offered in the context of pattern verification.

Counter Abstraction of Asynchronous Stabilization RCOI abstracts from stabilization dependences
among the variables of an asynchronous model in order to compute its functional cone of influ-
ence for a given specification, but the reduced model still contains the dynamic stabilization
detection.
A counter which triggers stabilization of super-steps with a user-defined length can be used
to abstract from dynamic stabilization. Using counter abstraction, stabilization depends no
longer on internal computations of the model, while reading of inputs and modifying timer
variables remains dependent on stabilization. After computing all reactions on inputs and
timeouts, the model performs idle steps until the next counter-triggered stabilization, if the
counter is chosen large enough. In order to determine an upper bound for the length of super-
steps, the verification environment offers a dedicated stabilization check. In general, such an
upper bound can only be established on top-level of an asynchronous Statemate model. If
the interface of a model contains fast inputs, they can change their values and the model
reacts to these changes independent of counter-based stabilization. Thus, counter abstraction
should not be applied to sub-component models considered in isolation
Provided that specification of interest does not count steps of the model and the counter is
defined according to an existing - and verified - upper bound, and provided that the model has
no fast inputs, counter abstraction is an exact approximation. Otherwise, counter abstraction
is just an approximation: the model stabilizes disregarding changes to fast inputs. Since the
un-abstracted model does not stabilize when any transition is enabled, a run of the abstract
model is not necessarily a run of the concrete model.

Freezing of Inputs When verifying open embedded systems, one often needs to express assumptions
about the environment in order to focus on particular functionality of the model. The STVE
offers different techniques to express assumptions about the environment of the model under
verification. For many use-cases, assumptions about the environment are of rather simple
character. For example, one often wants to disable all inputs modeling error indications from
external devices, in order to examine the model under normal conditions2. In this case, where
particular inputs are assumed to have fixed values, freezing can be applied.
Freezing sets inputs to user-defined constant values. The impact of this modification on
internal computations is analyzed by a data-flow analysis and those parts of the model which

2In Statemate, model simulations are often driven by user-defined simulation panels. Since these panels are not
part of the model, they are omitted in the SMI representation. Hence, inputs connected to a panel appear as free
inputs in the SMI representation.
Often panels are also used to preselect values for inputs of the model which are understood by the system designer

as model parameters rather than as inputs.

198

7.2 Optimizations and Abstractions in the Verification of Statemate Models

have become unreachable due to the modification are eliminated. The abstract model has
strictly less runs than the concrete model. Freezing is an under-approximation, i.e. each run
of the abstract model is always also a run of the concrete model.

Approximations of Non-deterministic Choices with Deterministic Choices The execution seman-
tics of Statemate permits non-deterministic choice of enabled transitions. In order to pre-
serve non-determinism in the translation of Statemate models into SMI, all outgoing tran-
sitions of a state are represented as non-deterministic choices, regardless if some of these
transitions - or all of them - are mutual exclusive. An elaborate determinization procedure
- partly interpreting the transition triggers using BDDs - transforms the non-deterministic
choice into a smaller choice of the potentially conflicting transitions as well as a deterministic
choice for all mutually exclusive transitions. Whether the remaining non-deterministic choices
are real ones or at most one guard can be become true at each step can be decided only by an
own verification task. Since non-determinism is resolved by introducing one input per possible
decision, non-determinism is a source of verification complexity. By simply transforming all
non-deterministic choices of a model into deterministic ones, an under-approximation can be
applied. Each run of the under-approximated model is also a run of the concrete model.

All the techniques listed so far attempt to reduce verification complexity by model transformations.
Instead of applying the verification task to the concrete model, an abstract model is constructed
and verification is applied to this abstract model. In section 4.10 abstractions have been classified
regarding preservation of falsehood and truth of verification result w.r.t. the concrete model. For
each of the techniques listed above we have stated whether its application is an under- or over-
approximation, or does neither preserve validity nor violation of specifications in general. It depends
on this classification whether this technique is applicable to a particular verification use-case: In
general, under-approximations are appropriate for falsification, i.e. application of verification aimed
at obtaining a witness trace for reachability of a particular configuration of the model. If this
specified configuration is reachable in the under-approximated model, it is also reachable in the
concrete model. In contrast to under-approximations, over-approximations are appropriate when
establishing satisfaction of a specification. Over-approximations extend the possible behavior of a
model. Hence, if the over-approximated model fulfills a requirement, the concrete model fulfills
the requirement anyway. Abstractions neither preserving falsehood nor truth of verification results
essentially do not fit in either use-case. In principle, results obtained using such an abstraction
are inconclusive regarding the concrete model. At least for violated requirements, the result can
be validated for the concrete model by concretizing the witness trace (this concretization is not
performed for propositional abstraction3):

In order to justify application of an approximation, the STVE applies for each model transfor-
mation applied during preparation for verification the reverse modification to the witness trace.
A witness trace obtained from verification of the abstract model, is used to simulate the concrete
model according to the stimuli as recorded in the abstract trace. This simulation is only successful,
if the concrete model

* (in case of counter abstraction) always stabilizes within the counter bound for the same inputs
as recorded in the abstract trace ,

3Propositional abstraction abstracts from variables, which may have an impact also on the timing of reactions and
on the synchronization between components of a model. In general, abstract witnesses obtained for the violation
of requirements using propositional abstraction can not be concretized.

199

7 Verification Techniques for Complex Embedded Systems

* (in case of COI and RCOI) computes the same values of variables in the cone of influence as
recorded in the abstract trace,

If an abstract witness trace can not be concretized in this manner, the result of an verification
task remains inconclusive. Otherwise, application of the particular approximation is justified.

In addition to application of model abstractions, also verification methodology according to the
following recommendations can avoid undesired verification complexity:

Usage of appropriate Verification Engine In practice, bounded model checking is often much faster
in finding violations of specifications than model checking or invariance checking are. On the
other hand, bounded model checking is only complete w.r.t. a user defined depth k, i.e.
bounded model checking can decide only whether a specification is valid for all runs of the
model up to a length of k step, but is in general not able to decide whether a specification
holds on all possible runs of arbitrary length.
The STVE is integrated with both a conventional model checker (the model checker VIS
[VIS96a, VIS96b]), which is capable also of invariance checking, and a bounded model checker
(based on the SAT solver Prover Plug-In, trademark of Prover Technologies AB in Sweden,
the United States and other countries). By selecting the verification engine according to
the expected result, the most appropriate verification engine for the particular use-case can
be chosen. If in a particular use-case a violation of the specification is more likely than a
true result, invocation of bounded model checking engine is suggested. This is obviously the
case for formal debugging, but can also be advantageous for robustness analyses if the po-
tential conflict is expected to be a real one. Otherwise, if the verification use-case requires a
complete decision procedure, as for observer pattern-based verification, invariance checking is
preselected. For the verification using STDx only model checking or invariance checking are
applied.

Application of Verification to the least Scope A key advantage of the SMI/SSL representation
according to the compositional semantics for Statemate models [DJHP97] is that sub-
activities of a system can be considered in isolation. Due to the concept of interfaces -
derived from analysis of data-flows - a sub-activity representation always takes all possible
interactions with its environment into account. E.g. if a data-item can be written outside a
particular component, this component is equipped with an input that enables the environ-
ment to interfere with local computations of the component. Hence, many properties can be
checked for the component in isolation without considering the concrete representation of the
surrounding system model. For example, whether two potentially conflicting transition can
ever be enabled at the same step can often be decided on the sub-activity model to which both
transitions belong. If this conflict can be ruled out for this scope, no further consideration of
a more complex scope is necessary.

Compositional Verification Results of verification tasks for sub-activity models can be exploited
hierarchically. In a modular way, model checking is applied to verify fulfillment of specifications
for sub-activities of a system. A specification for the composed system is then derived from
the specifications of its sub-activities using proof rules. Usually the size of a composed system
is given by the product of the size of its components. Therefore deriving a system specification
from the specifications of its sub-activities according to a proof-rule avoids considering the
complex model representation of the entire system. For a compositional proof only the involved
specifications and the structural mapping of the interfaces need to be considered. Hence, the

200

7.3 Compositional Verification

complexity of compositional proofs using tautology checking only depends on the complexity
of the involved specifications. In particular, the complexity is independent of the model
complexity.

7.3 Compositional Verification

Often, specification verification for entire systems suffers from the complexity of the system model.
One idea to overcome this ’state explosion problem’ is to verify specifications of sub-components
of the system and then to conclude the validity of a system specification from fulfillment of the
sub-component specifications. If it can be proved that the implication of the system specification
by a set of fulfilled sub-component specifications is a tautology, the complexity of a verification task
can be reduced to a number of localized, smaller verification tasks.

Each sub-component requirement of the system is specified in terms of assumption/commitment
specifications, i.e. the respective sub-component guarantees its commitments only provided that its
environment adheres to the assumptions.

A main task in assumption/commitment style compositional verification is the substitution or
elimination of local assumptions. If a specification of sub-component B assumes correct behavior
of sub-component A, and A guarantees that this assumption is fulfilled, then we would like to get
rid of the assumption of B. In practice, when considering the composition of component A with
component B, it is often necessary to assume properties of A for verification of B and vice versa.
A severe problem arising in this situation is that A sometimes can not guarantee the assumptions
of B without the guarantee of B to adhere to A’s assumptions. A small example illustrates this
situation:

i oa

b
A B

SYS

b/a;o

A B

not(i) and a/b

Figure 7.2: Simple Circular Dependency

Let SY S in figure 7.2 be an activity, which consists of the sub-activities A and B, where A reacts
on event a with emission of event b if event i is absent. Statechart B reacts on event b with emission
of events a and event o. Let CA (and accordingly for B) denote the CSTS representation of A, and
K(CA) the Kripke structure for CA according to definition 5.5.

For statechart A, one can verify that the LTL assumption/commitment specification

K(CA) |= (G(¬i) ∧ GF(a))
︸ ︷︷ ︸

=:aA

⇒ GF(b)
︸ ︷︷ ︸

=:cA

201

7 Verification Techniques for Complex Embedded Systems

is a valid specification. For statechart B it can be shown that

K(CB) |= GF(b)
︸ ︷︷ ︸

=:aB

⇒ GF(a ∧ o)
︸ ︷︷ ︸

=:cB

.

Now we can prove that if SY S is never provided with event i, the commitment of A guarantees
the assumption of B and vice versa. Hence, with aSY S := G(¬i) we obtain:

|= (aSY S ∧ cA) ⇒ aB and

|= (aSY S ∧ cB) ⇒ aA

Using these tautologies, a naive proof-rule for the composed system could state (cf. [Jos93]):

K(CA) |= (G(¬i) ∧ GF(a))
︸ ︷︷ ︸

aA

⇒ GF(b)
︸ ︷︷ ︸

cA

K(CB) |= GF(b)
︸ ︷︷ ︸

aB

⇒ GF(a ∧ o)
︸ ︷︷ ︸

cB

|= (G(¬i)
︸ ︷︷ ︸

aSY S

∧ GF(a ∧ o)
︸ ︷︷ ︸

cB

) ⇒ (G(¬i) ∧ GF(a)
︸ ︷︷ ︸

)

aA

|= (G(¬i)
︸ ︷︷ ︸

aSY S

∧ GF(b)
︸ ︷︷ ︸

cA

) ⇒ GF(b)
︸ ︷︷ ︸

aB

K(C(A||B)) |= (G(¬i)
︸ ︷︷ ︸

aSY S

⇒ (GF(b)
︸ ︷︷ ︸

cA

∧ GF(a ∧ o)
︸ ︷︷ ︸

cB

))

Obviously, this naive proof-rule is unsound for liveness specifications regarding mutual assump-
tions. Circular dependencies - regarding liveness - can only be handled using induction techniques,
as explained in detail for example in [Jos93] and [McM99]. Fortunately, the naive proof-rule is sound
if only safety properties are considered [Pnu85, Jos93] - as it is the case for non-failure acceptance
observers. Hence, the rule can be applied to compositional verification using Symbolic Timing Di-
agrams, which are restricted according to lemma 6.13, i.e. diagrams which are deterministic and
globally constrained. Since every reference to the future of another component’s behavior is limited
with an upper bound, the verification procedure itself is inductive (we refer to the explanation of
invariance checking in section 4.7). Notice, that soundness means that proof-obligations involv-
ing mutual assumptions can not be proved successfully. Thus, we have to require that circular
dependences are broken up.

In this section we present a automatic technique for compositional reasoning about requirements
based on a compositional rule. If the representation is reasonably small, fulfillment of the system
specification can be concluded automatically from fulfillment of the component specifications. The
presented proof rule may suffer from the complexity of the involved specification. If the complexity
of the involved specifications becomes too large, user interaction is necessary in order to substitute
local assumptions with local commitments of other sub-components. The proof of validity for these
substitutions becomes part of the proof-obligation and is smoothly integratable with the automated
proof-task.

The definitions and conclusions of this section do not hold for parallel composition of CSTS in
general, but only provided that the considered CSTS adhere to fact 5.1(cf. page 68). Recall from
section 5.2 that parallel composition of CSTS does in general not preserve consistency and viability.

In order to discuss some basic rules regarding the composition of CSTS w.r.t. verification using
synchronous observers and to present the compositional proof rule, we first have to define a more
concise notation than those that we have used in the previous sections:

202

7.3 Compositional Verification

Definition 7.1 (Concise Notation for Observers of Diagrams)
For a set D of deterministic and globally constrained diagrams let |||

d∈D

d denote the parallel

composition of all observers obtained from the unwinding representations of d ∈ D:

|||
d∈D

d := ||Ω
d∈D

(Ω(U(d)) . od)

Accordingly, for diagrams d1, d2 let d1|||d2 denote the parallel composition

d1|||d2:=(Ω(U(d1)) . od1)||Ω(Ω(U(d2)) . od2)

For CSTS C = (V,Θ, ρ, E), set A1 of assumption diagrams and set C1 of commitment diagrams
that all refer to the externally observable variables E of C, let

C |=Ω (|||
a∈A1

a, |||
c∈C1

c)

denote that C satisfies the conjunction of commitment diagrams in C1 provided that the environment
satisfies the conjunction of assumption diagrams in A1, i.e. :

C |=Ω (|||
a∈A1

a, |||
c∈C1

c) :⇔

K

(

C||Ω

(

||Ω
a∈A1

(Ω(U(a)) B oa)

)

||Ω

(

||Ω
c∈C1

(Ω(U(c)) B oc)

))

|=

(

∧
a∈A1

G(oa) ⇒ ∧
c∈C1

G(oc)

)

Accordingly, for sets A1, A2 of assumption diagrams and sets C1, C2 of commitment diagrams, let

C |=Ω

(

(|||
a∈A1

a1, |||
c∈C1

c1) ∧ (|||
a2∈A2

a2, |||
c2∈C2

c2)
)

:⇔

K

(

C||Ω

(

||Ω
a1∈A1

(Ω(U(a1)) B oa1)

)

||Ω

(

||Ω
c1∈C1

(Ω(U(c1)) B oc1)

)

||Ω

(

||Ω
a2∈A2

(Ω(U(a2)) B oa2)

)

||Ω

(

||Ω
c2∈C2

(Ω(U(c2)) B oc2)

))

|=

(

∧
a1∈A1

G(oa1) ⇒ ∧
c1∈C1

G(oc1)

)

∧

(

∧
a2∈A2

G(oa2) ⇒ ∧
c2∈C2

G(oc2)

)

Let furthermore for sets D1, D2 of diagrams (|||
d1∈D1

d1) ⇒Ω (|||
d2∈D2

D2) be a concise notation

according to:

203

7 Verification Techniques for Complex Embedded Systems

(|||
d1∈D1

d1) ⇒Ω (|||
d2∈D2

d2) :⇔

K

((

||Ω
d1∈D1

(Ω(U(d1)) B od1)

)

||Ω

(

||Ω
d2∈D2

(Ω(U(d2)) B od2)

))

|=
(

∧
d1∈D1

G(od1) ⇒ ∧
d2∈D2

G(od2)
)

Let (true) denote the situation that no observer is involved. Hence,

(true) ⇒Ω (c):⇔ (Ω(U(c)) B oc) |= G(oc)

�

We first consider some basic features for the verification using synchronous observers:

Lemma 7.1 (Basic Rules)
The following rules apply to deterministic and globally constrained diagrams:

Basic Conjunction Rule I:

Given a CSTS C = (V,Θ, ρ, E) , assumption diagram a and commitment diagrams c1, c2 which all
refer to the externally visible variables E of C.

C |=Ω (a, c1) C |=Ω (a, c2)

C |=Ω (a, c1|||c2)

Basic Conjunction Rule II:

Given a CSTS C = (V,Θ, ρ, E) , assumption diagrams a1, a2 and commitment diagrams c1, c2 which
all refer to the externally visible variables E of C.

C |=Ω (a1, c1) C |=Ω (a2, c2)

C |=Ω (a1|||a2, c1|||c2)

Weakening Rule

Given a CSTS C = (V,Θ, ρ, E) , assumption diagrams as, aw and commitment diagrams c which all
refer to the externally visible variables E of C

C |=Ω (as, c)
(aw) ⇒Ω (as)

C |=Ω (aw, c)

Embedding Rule

Given a CSTS C = (V,Θ, ρ, Ein∪
· Eout), assumption diagram a and commitment diagram c which

both refer to the external visible variables E of C. Furthermore, let Cx = (Vx,Θx, ρx, Einx∪
· Eoutx)

be a second CSTS, such that Eout ∩ Eoutx = ∅.

C |=Ω (a, c)

(C||Cx) |=Ω (a, c)

204

7.3 Compositional Verification

Assumption Elimination Rule

Given a CSTS C = (V,Θ, ρ, E) , assumption diagrams a1, a2 and commitment diagram c which all
refer to the external visible variables E of C.

C |=Ω (a1|||a2, c)
(a1) ⇒Ω (a2)

C |=Ω (a1, c)
�

Proof 7.1

Basic Conjunction Rule I: Follows immediately from definitions 7.1, 6.25 and 5.7:
∀ts ∈ TComps(C) : ((ts ∈ L(U(a)) ⇒ (ts ∈ L(U(c1)))

∧

∀ts ∈ TComps(C) : ((ts ∈ L(U(a)) ⇒ (ts ∈ L(U(c2)))
∧

⇒ ∀ts ∈ TComps(C) : ((ts ∈ L(U(a)) ⇒ (ts ∈ (L(U(c1) ∩ L(U(c2))))

Basic Conjunction Rule II: Follows immediately from definitions 7.1, 6.25 and 5.7:
∀ts ∈ TComps(C) : ((ts ∈ L(U(a1)) ⇒ (ts ∈ L(U(c1)))

∧

∀ts ∈ TComps(C) : ((ts ∈ L(U(a2)) ⇒ (ts ∈ L(U(c2)))
⇒ ∀ts ∈ TComps(C) : ((ts ∈ (L(U(a1) ∩ L(U(a2))) ⇒ (ts ∈ (L(U(c1) ∩ L(U(c2))))
Notice, that (L(U(a1) ∩ L(U(a2)) may be empty.

Weakening Rule: Follows immediately from definitions 7.1, 6.25 and 5.7 and lemma 6.9:
∀ts ∈ TComps(C) : ((ts ∈ L(U(aw)) ⇒ (ts ∈ L(U(as)))

∧

∀ts ∈ TComps(C) : ((ts ∈ L(U(as)) ⇒ (ts ∈ L(U(c)))
⇒ ∀ts ∈ TComps(C) : ((ts ∈ (L(U(aw) ∩ L(U(as))) ⇒ (ts ∈ L(U(c))),
because L(U(aw) ⊆ L(U(as).
Notice, that the weakening rule also holds, if L(U(aw) = ∅.

Embedding Rule: Trivial.

Assumption Elimination Rule: Follows immediately from definitions 7.1, 6.25 and 5.7 and lemma
6.9 :
∀ts ∈ TComps(C) : ((ts ∈ L(U(a1)) ⇒ (ts ∈ L(U(c)))

∧

∀ts ∈ TComps(C) : ((ts ∈ L(U(a2)) ⇒ (ts ∈ L(U(c)))
⇒ ∀ts ∈ TComps(C) : ((ts ∈ (L(U(a1) ∩ L(U(a2))) ⇒ (ts ∈ L(U(c)))

�

According to the embedding rule and the basic conjunction rule II, the parallel composition of two
non-interfering CSTS satisfies specifications, which are fulfilled by the individual transition systems
independent of the parallel composition:

Lemma 7.2 (Composition Rule)
Given C1 = (V1,Θ1, ρ1, E1) and C2 = (V2,Θ2, ρ2, E2) representing sibling Statemate activities A1

and A2 according to the compositional semantics, s.t. E1out ∩E2out = ∅. For assumption diagram a1

and commitment diagram c1 which both refer to the external visible variables E1 of C1 and assumption
diagram a2 and commitment diagram c2 which both refer to the external visible variables E2 of C2

holds (provided that a1, a2, c1, c2 are deterministic and globally constrained):

205

7 Verification Techniques for Complex Embedded Systems

C1 |=Ω (a1, c1) C2 |=Ω (a2, c2)

(C1||C2) |=Ω ((a1|||a2) , (c1|||c2))
�

Proof 7.2
The proof of Composition Rule follows from the Embedding Rule and Basic Conjunction

Rule II of lemma 7.1.
�

Here is, where circular dependences come into play - the question is : is a1 ∧ a2 satisfiable? Are
a1 and a2 mutual assumptions about C2 and C1, respectively, or is at least one of a1 and a2 an
assumption about the environment of (C1||C2). The composition rule holds, even though (a1|||a2)
might assume a miracle. If w.l.o.g. fulfillment of a1 depends on validity of c2, then the composition
rule can be satisfied even though a1 is violated because c2 does not hold. In order to derive a system
property from the local commitments, we hence need a stronger rule than this composition rule. In
general, the local assumptions need not be independent from the local commitments of the other
sub-components. The following compositional proof rule allows the conclusion of a system property
from local specifications.

Definition 7.2 (Compositional Proof Rule)
Let C1, C2 be two CSTS. Let spec1, spec2 be symbolic timing diagram specifications, s.t. spec1

refers to the observables of C1 and spec2 refers to the observables of C2. Assumed that all considered
diagrams are deterministic and globally constrained, we define our compositional proof rule for a
specification spec of the composed system by4:

C1 |=Ω

(

|||
a1∈ad(spec1)

a1, |||
c1∈cd(spec1)

c1

)

C2 |=Ω

(

|||
a2∈ad(spec2)

a2, |||
c2∈cd(spec2)

c2

)

|=

(((

|||
a1∈ad(spec1)

a1

)

⇒Ω

(

|||
c1∈cd(spec1)

c1

))

∧

((

|||
a2∈ad(spec2)

a2

)

⇒Ω

(

|||
c2∈cd(spec2)

c2

))

∧

(

|||
a∈ad(spec)

a

))

⇒Ω

(

|||
c∈cd(spec)

c

)

(C1||C2) |=Ω

(

|||
a∈ad(spec)

a, |||
c∈cd(spec)

c

)

�

Lemma 7.3 (Soundness of Compositional Proof Rule)
The compositional proof rule defined in definition 7.2 is sound.

�

Proof 7.3 The structure of the premise reflects the fact, that the subcomponents have been proven
to fulfill their commitments only provided that their respective assumptions hold. Let Lprem be the
set of all timed observation sequences that are accepted by the premise:

4Let ad(spec) refer to the assumption diagrams instantiated by spec and cd(spec) refer to the commitment diagrams
instantiated by spec as defined in definition 6.30.

206

7.3 Compositional Verification

Lprem:=

{

ts|



ts 6∈
⋂

a1∈ad(spec1)

L(U(a1)) ∨ ts ∈
⋂

c1∈cd(spec1)

L(U(c1))







ts 6∈
⋂

a2∈ad(spec2)

L(U(a2)) ∨ ts ∈
⋂

c2∈cd(spec2)

L(U(c2))





ts ∈
⋂

a∈ad(spec)

L(U(a))

}

Note that this set is in general not the same as

{

ts|



ts ∈
⋂

c1∈cd(spec1)

L(U(c1)) ∧ ts ∈
⋂

c2∈cd(spec2)

L(U(c2)) ∧ ts ∈
⋂

a∈ad(spec)

L(U(a))





}

(7.1)

The contribution of a sub-component commitment to the acceptance of Lprem depends on whether
its assumptions are fulfilled. Lprem is equal to set (7.1) only if all sub-component assumptions are
fulfilled. Hence,

(((

|||
a1∈ad(spec1)

a1

)

⇒Ω

(

|||
c1∈cd(spec1)

c1

))

∧

((

|||
a2∈ad(spec2)

a2

)

⇒Ω

(

|||
c2∈cd(spec2)

c2

))

∧

(

|||
a∈ad(spec)

a

))

⇒Ω

(

|||
c∈cd(spec)

c

)

can only be proven to be a tautology, if all relevant local assumptions are fulfilled by sub-
component commitments or by top-level assumptions, because sub-component commitments can
only contribute to the validity of the top-level commitment if their respective assumptions hold.

W.l.o.g., assume that some assumption ax ∈ ad(spec1) of C1 is violated. Then the term
(

|||
a1∈ad(spec1)

a1 ⇒Ω |||
c1∈cd(spec1)

c1

)

is trivially satisfied and

{

ts ∈
⋂

c1∈cd(spec1)

L(U(c1))

}

does not restrict Lprem. Moreover, assume that

all assumptions in ad(spec2) of C2 are satisfied. Then Lprem would be equal to the set

{

ts|



ts ∈
⋂

c2∈cd(spec2)

L(U(c2)) ∧ ts ∈
⋂

a∈ad(spec)

L(U(a))





}

The conjunction of all sub-component specifications with the top-level assumptions can only
imply the top-level commitment, i.e. Lprem ⊆

⋂

c∈cd(spec)

L(U(c)), if all relevant local assumptions are

satisfied.
�

207

7 Verification Techniques for Complex Embedded Systems

This way, the compositional proof rule covers two verification tasks in one sweep. On the one
hand it is checked whether the sub-component assumptions are fulfilled in the parallel composition
of the components. On the other hand it is cheked whether the top-level commitment follows from
a set of sub-component specifications.

Invariance checking is based on reachability computation, i.e. acceptance of all observers is
considered stepwise; circular dependences within the premise of the implication will not lead to a
true-result. If all local assumptions are fulfilled, by local commitments of other sub-components or
by top-level assumptions, then fulfillment of the top-level commitment only depends on the top-level
assumptions and the local sub-component commitments.

The compositional proof rule reflects the fact that fulfillment of a system requirement can only
be concluded from fulfilled sub-component specifications. If local assumptions are violated or are
mutually exclusive, then the implication in the premise of the proof rule will in general not hold.
Only if a sub-component specification is entirely irrelevant for the proof, its local assumptions may
be violated without having an effect on the result.

According to the definition of observers, all observables regarded by the individual specifications
are inputs to the parallel composition of their observers. Hence, the overall implication can only
be true, if these inputs are guessed according to the requirements of the sub-components, provided
that their respective assumption are fulfilled. If one of the local assumptions is not satisfied, then
the respective commitment need not hold, and hence will not contribute to the fulfillment of the
top-level commitment.

The compositional proof rule handles the composition of two components. It has an obvious and
natural generalization to the composition of n components, with n ≥ 2. We omit a formal definition
of this extension due to limited space.

Definition 7.3 (Assumption Substitution in Compositional Proof Rule)
W.l.o.g. let cx ∈ cd(spec2) and az ∈ ad(spec1), s.t.

|= (cx ⇒Ω az)

Then, az can be substituted by cx in the implication of the compositional rule and instead of the
original implication it can be checked, whether

((((

|||
a1∈(ad(spec1)\az)

a1

)

|||cx

)

⇒Ω

(

|||
c1∈cd(spec1)

c1

))

∧

((

|||
a2∈ad(spec2)

a2

)

⇒Ω

(

|||
c2∈cd(spec2)

c2

))

∧

(

|||
a∈ad(spec)

a

))

⇒Ω

(

|||
c∈cd(spec)

c

)

is a tautology.
�

Lemma 7.4 (Soundness of Assumption Substitution)
Assumption substitution according to definition 7.3 is sound.

�

208

7.4 Extending Verification to Complete Systems

Proof 7.4 Soundness follows immediately from the weakening rule of lemma 7.1.
If cx and az are involved in a circular dependence (ax ⇒Ω cx and az ⇒Ω cz , where cz ⇒Ω ax),

then assumption substitution preserves the dependence.
If there exist sub-component specifications5 specx 6= specy , s.t. cx ∈ cd(specx) and cy ∈

cd(specy), with |= (cx ⇒Ω az) and |= (cy ⇒Ω az), then it depends on the choice of cx or cy,
whether assumption substitution breaks up or preserves circular dependences.

�

Assumption substitution can be applied not only using single local commitments. Of course, also
top-level assumptions can be used as substitutes for local assumptions, and also conjunctions of
local commitments and top-level assumptions.

Each of the implications used for substitution becomes part of the proof-obligation: Before check-
ing whether the top-level commitments can be derived from the top-level assumptions and the local
specifications after assumption substitution, it can automatically be checked whether the substitu-
tions are justified. In the application examples in section 8.3 substitutions by single diagrams as
well as by combinations of top-level assumptions and local commitments are applied.

This way, the user has to guess only substitutions, while their justification is automatically
checked. Guessing useful substitutions remains an interactive task, which sometimes might require
some effort and insight into the dependences among the specifications. In order to support the user
in finding appropriate implications for substitution, the proof-obligation generator proposes a list of
possible candidates. This list is generated simply as the cross-product of all top-level assumptions
and all sub-component commitments with all sub-component assumptions, which do not refer to
the same sub-component as the respective commitment.

Since assumption substitution remains an interactive task, it should be applied to a compositional
proof only if necessary, i.e. if otherwise the technique suffers from complexity of the involved
specifications. If no circular dependences have to be broken up and if the complexity of the entailed
specifications can be kept reasonably small, verification according to the compositional proof rule
can be applied fully automatically without assumption substitution.

7.4 Extending Verification to Complete Systems

The Role of SSL

Recall from chapter 5 that each of the activities of a Statemate design is associated with an entity
declaration in the structural representation according to the compositional semantics. The different
views to an activity are uniformly determined by SSL configurations, which associate simple or
structural architectures with the corresponding entity. Simple architectures are used as containers,
which can either bind a behavior representation to the entity or contain a set of STDx specifications
for the referenced entity (we refer to definitions 5.11 - 5.14 (page 77 et seqq.)).

According to this representation, a proof-obligation of an activity can be formulated as a rela-
tionship among configurations of its representing entity. This way, a component proof is determined
by the configuration, which associates a SMI representation to an entity and a STDx specification

5Recall, that multiple STDx-specifications can refer to the same sub-component. It is often the case, that a set of
these specifications is involved in a compositional proof (cf. application examples in section 8.3).

209

7 Verification Techniques for Complex Embedded Systems

of the set associated to the entity by a specification configuration, where both configurations have
a depth of 0 (cf. definition 5.14 on page 79). Accordingly, the tautology proof of a compositional
conclusion is determined by a selection from the STDx specification sets of a configuration C ′′ with
Ckind(C ′′) = specification and depth(C ′′) = 1 and a selection from the STDx specification set
of configuration C ′′′ with Ckind(C ′′′) = specification and depth(C ′′′) = 0. The compositional
conclusion hence relates C ′′, C ′′′ and a structural configuration C ′ with Ckind(C ′) = behavior and
depth(C ′) > 0.

Because it is necessary that formal specification and behavioral representation of an activity
refer to the same entity, the proof-manager associates all proofs with the entities of the design
representation6.

For illustration of these relations consider figure 7.3: Assume, for the case study of the radio-
based signaling system that E is the entity representing SYSTEM, E11 is the interface representation
of TRAIN, E12 stands for the interface of COMMUNICATION and finally E13 represents CROSSING’s inter-
face. Then the compositional representation guarantees that configuration C - associating behavior
description B with E - is equivalent to the decomposed view that is represented by configuration C ′

(Dashed lines in figure 7.3 refer to the the next-level configurations associated with the component
instances by structural behavior configuration C ′, while dotted lines denote the next-level configu-
rations associated with the component instances associated by structural specification configuration
C ′′).

Uniform identification of STDx specifications plays a central role in the proof-management. The
proof-management is geared to the specifications involved in the individual proofs, because it is
sufficient that there exists a proof which establishes fulfillment of a STDx specification, regardless
whether this proof is a component proof or if the specification is derived from other specifications.

6This is also reflected by the graphical user interface(GUI). The window for proof-obligation creation consists of
three columns. In the firsts columns, all entities of the SSL data-base are listed. By selecting one entity, a new
proof for this entity can be initiated. According to the user selection, all configurations of the selected entity
are displayed in the second columns. These configurations provide behavioral representations (including de-
composed representations) or formal specifications (also including hierarchical configurations). In a third column,
all configuration of the selected entity are listed, which provide possible goals for proof-obligations. According to
the selection of the user, proof-obligations and proof-scripts for component proofs, tautology checks (hierarchical
w.r.t. design structure or simple implications of STDx specifications) or compositional conclusion rules are created.

210

7.4 Extending Verification to Complete Systems

12 1311

spec

struc

11 12 13

131112 13 1311 11 12 12

C ’ C ’C ’

B

original design specification hierarchy

SS SBEE B

A

E B

C C C

AE

C’C C’’ C’’’

Figure 7.3: A Schematic SSL Hierarchy for Behavior and Specification

with Component Instances
Configuration

Entity

Specification Architecture

Structural Architecture

Behavioral Architecture

Figure 7.4: Legend

Definition 7.4 (STDx Specification Selection)

A STDx specification spec bound by an architecture A to some entity E of a SSL design rep-
resentation is uniquely determined by the tuple specsel:=(C, spec), where C is a configuration for
which:

• depth(C) = 0

• Ckind(C) = specification

• ent(C) = E

• arch(C) = A and ent(arch(C)) = E

• spec ∈ Contents(arch(C))

211

7 Verification Techniques for Complex Embedded Systems

For specsel:=(C, spec), let adsel(specsel):=ad(spec) refer to all assumption diagrams instantiated
by STDx specification spec of selection specsel and likewise let cdsel(specsel):=cd(spec) refer to the
commitment diagrams of spec.

�

In the example of figure 7.3, a component proof-obligation for the entire SYSTEM can hence be
defined by relating C to a STDx specification of C ′′′. Accordingly, a tautology proof-obligation
as required for a compositional conclusion can be defined by relating a selection of the STDx
specifications sets of the architecture to which C ′

11, C
′
12, and C ′

13 refer (C ′
11, C

′
12 and C ′

13 are
uniformly identified by C ′′) and a selection from the STDx bound to E by C ′′′.

In definition 5.15 (page 82), SSL scopes have been defined. Because C ′
11, C

′
12, and C ′

13 refer
to different architectures of different entities, the STDx specifications in Contents(arch(C ′

1i) for
i = 1, 2, 3 also refer to the interfaces and therfore to the different scopes of entities E1i. In particular,
the scopes of E1i differ from the scope of structural architecture Astruc, which comprises of the
interface of E as well as of the local signals of Astruc.. In definitions 5.21 and 5.17 (pages 84, 83 ,
respectively, it has been considered, how the signals in the scope of an entity that is associated with
a component instance is lifted to the scope of the instantiating structural architecture. There, for
a structural configuration Cstruc the composition of mappings

mapa ◦mapc : SigCompConf(Cstruc) → Sig(arch(Cstruc)) (7.2)

has been defined, which maps the signal-names from the scopes of the component instance config-
urations referred to by Cstruc to the signal-names in the scope of the structural architecture to which
C refers. Exactly this mapping has to be applied to the STDx specification selections for C ′

11, C
′
12

and C ′
13 (with Cstruc:=C ′′ in (7.2)) before checking an implication according to compositional proof

rule of definition 7.2. Since the semantics of a SSL structure description is the synchronous parallel
composition of referenced components, mapping (7.2) is a structure invariant. By applying to every
expression in the diagrams of the respective STDx specifications this structure invariant becomes
part of the composition proof rule. According to the structure invariant the local interfaces to which
the sub-component specifications of C ′

1i refer are lifted to the scope of C ′′. Recall from section 5.4,
that mapa as well as mapc are type-preserving mappings which comply with the promises of fact
5.1.

Definition 7.5 (Relating the Composistional Proof Rule to SSL)
Let lift(Cstruc, (Cx, td)) denote the lifting of diagram td from the scope of Cx to the scope of

Cstruc, where ∃ca ∈ Assocs(Cstruc) : Cx = Conf(ca) by applying the above composed mapping
(7.2) to every expression in td ∈ Contents(arch(C)).

Given configurations

• C, with (depth(C) = 0) ∧ (Ckind(C) = behavior),

• C ′, with (depth(C ′) = 1) ∧ (Ckind(C) = behavior), with ent(C ′) = ent(C)

• C ′′ with (depth(C ′′) = 1) ∧ (Ckind(C ′′) = specification), with ent(C ′′) = ent(C) and
arch(C ′′) = arch(C ′)

• C ′′′ with (depth(C ′′′) = 0) ∧ (Ckind(C ′′′) = specification) , with ent(C ′′′) = ent(C) , as
depicted in figure 7.3.

212

7.4 Extending Verification to Complete Systems

Let (C ′′′, spec) denote the top-level selection of a STDx specification to be verified by compositional
verification.
W.l.o.g., let selspec1:=(C ′

11, spec1) and selspec2:=(C ′
12, spec) be specification selections for sub-

component configurations, s.t. ∃ca′ ∈ Assocs(C ′′) : C ′
1i = Conf(ca′) for i = 1, 2 and speci ∈

Contents(arch(C ′
1i)).

Furthermore, let C1i , i = 1, 2 denote configurations associated with component instances of
arch(C ′), i.e. C1i:∃ca ∈ Assocs(C ′) : C1i ∈ Conf(ca). With Ci:=[[Contents(arch(C1i))]] (according
to definition 5.11) , we rephrase the compositional proof rule:

C1 |=Ω

(

|||
a1∈adsel((C

′
11,spec1))

a1, |||
c1∈cdsel((C

′
11,spec1))

c1

)

C2 |=Ω

(

|||
a2∈adsel((C

′
12,spec2))

a2, |||
c2∈cdsel((C

′
12,spec2))

c2

)

|=

(((

|||
a1∈,adsel((C

′
11,spec1))

lift(C ′′, a1)

)

⇒Ω

(

|||
c1∈cdsel((C

′
11,spec1))

lift(C ′′, c1)

))

∧

((

|||
a2∈adsel((C

′
12,spec2))

lift(C ′′, a2)

)

⇒Ω

(

|||
c2∈cdsel((C

′
12,spec2))

lift(C ′′, c2)

))

∧

(

|||
a∈adsel((C′′′,spec))

a

))

⇒Ω

(

|||
c∈cdsel((C′′′,spec))

c

)

C |=Ω

(

|||
a∈adsel((C′′′,spec))

a, |||
c∈cdsel((C′′′,spec)

c

)

By the promises of fact 5.3, (C1||C2) = [[Contents(arch(C11))]]||[[Contents(arch(C12))]] is equiva-
lent to C, where C:=[[Contents(arch(C))]]

�

For checking whether the claimed implication is a tautology, technically all referenced observables
in the observers for the lifted diagrams are represented by inputs. Since the observables to which
the diagrams refer are represented by inputs in their individual observer modules, the parallel com-
position of all observers involved in the implication to be proven a tautology refers to all observables
in the lifted scope only by inputs. This follows immediately from the definition of ||Ω.

In this regard a problem w.r.t. violations for tautology checking should be mentioned. If the
implication of the compositional proof-rule has can not be proven to be a tautology, the model
checker generates a witness for the violation of the claim. In general, this witness does not provide
insight into the reason for the violation, because the witness only shows, that due to un-satisfied
local assumption(s) the entire implication is no tautology. It hence requires some intuition, to find
out the reasons for the violation.

Proof-Management

Compositional conclusion rules have to take into account the equivalence of structural behavior
configurations and simple behavior configurations. According to fact 5.3 (on page 80), there exists
an equivalent behavior configuration for each structural behavior configuration. When determining
whether all prerequisites of a compositional conclusion are fulfilled, every existing proof-obligation

213

7 Verification Techniques for Complex Embedded Systems

for the involved sub-component specifications has to be regarded. Proofs for a (sub-)activity can
be component proofs, derivations from another specification of the same activity or again a compo-
sitional proof. It has to suffice for proof-management that there exists any proof that establishes
fulfillment of a particular specification, which is a prerequisite of a compositional proof for the
instantiating activity.

For reasons of simplicity, we have not pictured further decompositions in figure 7.3, but a com-
positional conclusion rule proof has to take also proofs into account which are defined as relations
between, for example, C13 and C ′

13 as well as for every relation between a configuration equivalent
to C13 and C ′

13.
Proof-obligations are the building blocks of proof-management. They either define an executable

proof task for a proof of fulfillment of a particular STDx specification or conclusion rules for com-
positional reasoning using the results of other proof tasks.

Definition 7.6 (Proof-Obligations for SSL Description)
A proof-obligation is determined by a tuple pobl:=(script, result, C1, specsels, specsel, rpobl),

where

• script is a unique name of an executable proof-script associated with pobl. If no script shall
be referred to, then script:=ε

• result ∈ {true, false, not_proved, initiated} is the result of the last execution of proof-script
script.

• specsel = (C2, spec) , where C2 is a configuration with Ckind(C2) = specification and
depth(C2) = 0 and spec is a STDx specification, s.t. spec ∈ Contents(arch(C2))

• C1 is a configuration, s.t. ent(C1) = ent(C2)

• rpobl is a reference to another proof-obligation. If no proof-obligation is referred to, then
rpobl:=ε

• specsels is a (possibly empty) set of specification selections, s.t.:

(Ckind(C1) = behaviour) ⇔ (specsels = ∅) (7.3)

(Ckind(C1) = specification) (7.4)

∧(depth(C1) = 0) ⇒ ∀(C, spec) ∈ specsels :

(C = C1) ∧ (spec ∈ Contents(arch(C1)))

∧(rpobl = ε) ∧ (script 6= ε)

(Ckind(C1) = specification) (7.5)

(depth(C1) = 1) ⇒ ∀(C, spec) ∈ specsels : ∃ca ∈ Assocs(C1) :

(Conf(ca) = C)

∧(spec ∈ Contents(arch(Conf(ca))))

∧(rpobl = ε) ∧ (script 6= ε)

Then:

214

7.4 Extending Verification to Complete Systems

1. (7.3) is a component proof-obligation iff (depth(C1) = 0) ∧ (rpobl = ε) ∧ (script 6= ε)

2. (7.3) is a component-proof conclusion rule iff (depth(C1) = 0) ∧ (script = ε) and rpobl refers
to a proof-obligation according to case 1.

3. (7.3) is a horizontal conclusion rule iff (depth(C1) = 0) ∧ (script = ε) and rpobl refers to a
proof-obligation according to (7.4)

4. (7.3) is a compositional conclusion rule iff (depth(C1) > 0) ∧ (script = ε) and rpobl refers to
a proof-obligation according to (7.5)

5. (7.4) is a derivational tautology proof-obligation

6. (7.5) is a compositional tautology proof-obligation

7. All other cases are illegal.

�

Based on the definition 7.6 a proof-graph can be constructed which allows to manage dependences
between individual sub-proofs and supports propagation of proof results according to modifications
of the design or specifications.

Definition 7.7 (Proof-Graph)
A proof-graph is a directed acyclic graph G = (N ,D) , where N are the nodes of the graph, and

D ⊆ N ×N are the edges of G.
Each node n ∈ N is a tuple n:=(ent, pobl), where

• ent denotes an entity

• pobl is a proof-obligation according to definition 7.6

There exists an edge d ∈ D, d:= (n1, n2) iff:

(n2.ent = n1.ent) ∧ (n2.pobl.rpobl 6= ε)

∧

((

(n2.pobl.rpobl.specsels 6= ∅) ∧
(
n1.pobl.specsel = (C, spec) : ∃i, j ∈ N0 :

(Ci, specj) ∈ n2.pobl.rpobl.specsels : (C, spec) = (Ci, specj)
))
)

Let in : N → D denote a mapping that obtains all incoming edges d ∈ D for node n ∈
N :in(n):={d ∈ D|∃n′ ∈ N : d = (n′, n)}. Furthermore, let src : D → N obtain the source
node of an edge d ∈ D. Hence, for d = (n1, n2) let src(d):=n1.

�

Though component proof conclusion rules are nearly trivial, they are added for homogeneity
reasons. We illustrate definition 7.7 with figure 7.5 for a fictitious compositional proof (cf. figure
7.3). Suppose that there exists a structural architecture Astruc of entity E and a configuration C ′,
s.t. ent(C ′) = E, arch(C ′) = Astruc, Ckind(C ′) = behavior and depth(C ′) = 1. Accordingly,

215

7 Verification Techniques for Complex Embedded Systems

let C ′′ be a configuration with ent(C ′′) = E, arch(C ′′) = Astruc, Ckind(C ′′) = specification and
depth(C ′′) = 1. Furthermore, we assume that ∃ca ∈ Assocs(C ′), s.t. C11 = Conf(ca) and likewise
for C12 and C13. Accordingly, we assume that C ′

11, C
′
12 and C ′

13 are specification configurations
which are bound to the component instances of Astruc by configuration C ′′. Finally, let C ′′′ be
a configuration, with depth(C ′′′) = 0 and Ckind(C ′′′) = specification that binds an architecture
Aspec (arch(C ′′′) = Aspec) to entity E.

12 211 1 13 3 13 4

11
1

12
2

13
3

13
4

11
1

12
2

13
4

13
3

11 12 13 13

p’

p

Node for

Node for

Node for

Proof−Obligation
Tautology

Proof−Obligation

11 21 31 32

11 21 31 32

11 12 13 13

(C ’,s)(C ’,s) (C ’,s) (C ’,s)

(C

’,s
)

(C

’,s

)

(C

’,s

)

(C

 ’,
s

)

(C

’,s
)

(C

’,s

)

(C

 ’,
s

)

(C

’,s

)

C C C C

Conclusion Rule

STDx selection

C C

p p p

C

p

C

Behavioral Configuration
Compositional

Component

(C’’’,s)

C’’

p ’ p ’ p ’ p ’

(C’’’,s)

C

Figure 7.5: A Schematic Proof Graph

Dashed lines in the above figure denote edges of the proof-graph, while solid lines depict references
of proof-obligations to other proof-obligations (called rpobl in definition 7.6).

Hence, pij with i ∈ {1, 2, 3} and j ∈ {1, 2} in figure 7.5 are nodes referring to component
proof-obligations with ∃k : pij .pobl = (script, result, Cjk, specsels, specsel, rpobl), s.t. script 6=
ε,specsels = ∅ and rpobl = ε. p′ij with i ∈ {1, 2, 3} and j ∈ {1, 2} in figure 7.5 are nodes referring to
component-proof conclusion rules, s.t. ∃k : p′ij .pobl = (script, result, Cjk, specsels, specsel, rpobl),
s.t. script = ε, specsels = ε, p′ij .pobl.specsel = pij .pobl.specsel, and p′ij .pobl.rpobl = pij .pobl. p if
figure 7.5 is a node for a compositional tautology proof-obligation, which is referred to by node p′

216

7.4 Extending Verification to Complete Systems

that represents a compositional conclusion rule: p′.pobl.rpobl = p.pobl.

Definition 7.8 (Result Propagation)
Given a proof-graph G = (N ,D). Then for n ∈ N holds:

• if (n.pobl.script 6= ε)∧ (n.pobl.rpobl = ε), then n.pobl.result is the result of the last execution
of n.pobl.script

• if (n.pobl.script = ε) ∧ (n.pobl.rpobl 6= ε), then

n.pobl.result:=







true iff (n.pobl.rpobl.result = true)∧
(

∀s ∈ n.pobl.rpobl.specsels∃d ∈ in(n) :

n′ = src(d) ∧ (n′.pobl.specsel = s)∧

(n′.pobl.result = true)
)

not_proved otherwise

�

Results are propagated along the edges of a proof-graph if a proof-script has been executed and
obtained a proof result for the proof-obligation to which the script belongs. Propagation stops in
a node , if its stored result is not affected by result propagation. Changes in the design or the
specification hierarchy require more effort in order to keep the managed proof results consistent
with the actual proof state.

Proof-management is based upon a SSL data-base. Changes in the behavior of a model, in its
structure or regarding its STDx specifications are sensed by the proof-manager only if the modifi-
cations are checked into the SSL data-base, whereat every part of the newly checked-in information
is assigned a modification time-stamp. Since all verification tools integrated with the STVE oper-
ate file-system based, proof-management provides a directory structure called verification data-base
(VDB). This way, the VDB mirrors the contents of the SSL data-base and serves as working space
for the verification tool set, but also proof-obligations, proof results and the proof-graph are stored
in this file system. On every check-in into the SSL data-base proof-management compares the con-
tents of the SSL data-base with copies of the contents in the VDB. Only if this comparison reveals
a difference, the contents are also updated in the file system.

The results stored in the proof-graph have to be recomputed for every change in the VDB.
Therefore, first all nodes n with (n.pobl.rpobl = ε) ∧ (n.pobl.script 6= ε) are considered and it is
determined whether the changes in the data-base affect the stored result. If for some node n any of
the specifications or the model representation referred to by n.pobl.script have been modified since
the last execution of the script, then n.pobl.result has to be set to not_proved. To enable this
invalidation, for every script a list of references to parts of the design and specification hierarchy is
maintained by proof-management. Invalidation is only performed if there are real changes affecting
some of the referred parts, i.e. if some referred contents of the VDB have been updated. If the
referred data is only attached a new time-stamp then the result remains valid. In a second step,
all nodes n with (n.pobl.rpobl 6= ε) ∧ (n.pobl.script = ε) have to be considered and it has to be
determined whether n.pobl.rpobl.result has been changed by the first step. Finally, this changes
are propagated along the edges of the proof-graph.

217

7 Verification Techniques for Complex Embedded Systems

7.5 Compositional Techniques - Related Work

In this section, we overview several compositional verification approaches based on model checking.
We only describe the main characteristics of the different approaches. An excellent overview can be
found in e.g. [KV98].

Many finite state systems are composed of multiple processes running in parallel. The specifica-
tions for such systems can often be decomposed into properties describing the behavior of parts of
the system. Since in general the complexity of a systems grows exponentially with the complexity
of its parallel components, an obvious strategy is to check local properties using only the part of
the system that is directly concerned with the implementation of these local properties. Hence,
the central idea of compositional verification is: if it can be deduced that a combination of local
properties implies an overall specification and if these local properties can be proven to be fulfilled
by parts of the system, then it can be concluded that the system satisfies this specification as well.

There are a number of difficulties involved in developing a verifier that supports this style of rea-
soning. First, the verifier must be able to check whether every system containing a given component
satisfies a given local property. It is often the case, that the local property is true only under certain
conditions. Hence, the verifier must provide an environment for the component to be verified. This
can be achieved by either deriving an abstracted environment from the known concrete environ-
mental components or by support of making assumptions about the environment of the component
when doing verification. These assumptions, representing requirements on other components, must
also be checked in order to complete verification. Second, the verifier must provide a method for
concluding validity of a given specification from a particular combination of verified local properties.
In principle, two possible solutions can be found in the literature. Either the conclusion is justified
by the constructive rules of the compositional verification framework or establishing validity of the
conclusion is itself a verification task, e.g. the implication between system specification and local
properties needs to be proved using a tautology checker.

In general, a major distinction between different compositional verification approaches lies in the
required knowledge about a component’s environment when doing verification of a local property.
Approaches originating in program verification, such as compositional minimization, rely on the
knowledge of a concrete environment of the function to be verified. In contrast, approaches origi-
nating in hardware verification, such as assume-guarantee reasoning aim at verifying properties of a
component regardless of a concrete environment. Here, a component is proven to guarantee a par-
ticular property ϕ in an arbitrary environment, provided this environment satisfies the assumptions
made for verifying ϕ.

Compositional Minimization and Compositional Model Checking

Instead of verifying a system model by model checking the parallel composition of the constituent
components, compositional model checking [CLM89] is based on the automatic reduction of compo-
nents to the behavior that is observable at the interface to other components. Figure 7.6 illustrates
this idea for a system comprised of two components P and Q. When checking a local property of
component P, Q is considered being part of the environment of P. Using compositional minimiza-
tion [CLM89, AdAG+01, AHM+98, Hol00], a reduced version Q’ of Q is derived that characterizes
just the behavior of Q that is visible to P via the communication between P an Q (cf. figure 7.6
(B)). The reduced component Q’ is called an interface process. Hiding the communications of Q
that are not visible to P and merging those states of Q that become indistinguishable may permit

218

7.5 Compositional Techniques - Related Work

Q

P

P

Q’

(A)

(B)

Figure 7.6: Compositional Minimization

the reduction of Q to a smaller component. The parallel composition of such simplified components
will result, in general, in a much smaller system representation than the original one.

The problem in order to check correctness for the reduced system is ensuring that the simplified
parallel composition satisfies the same logical properties as the original system. A rule of inference
called interface rule provides the basis for compositional model checking. This rule deals with the
parallel composition of two processes P and Q. Each of these processes is associated with a set of
atomic propositions ΣP and ΣQ, respectively, used in distinguishing states and transitions. Interface
processes P’ and Q’ of P and Q are then constructed according to the restriction of P ′ ≡ P ↓ ΣQ

and Q′ ≡ Q ↓ ΣP , respectively.

P ↓ ΣQ ≡ P ′

ϕ ∈ L(ΣQ)
P ′||Q |= φ

P ||Q |= φ

Q ↓ ΣP ≡ Q′

ψ ∈ L(ΣP)
P ||Q′ |= ψ

P ||Q |= ψ

,

where L(Σ) is some logic ranging over the atomic propositions. In [CLM89] an algorithm is
presented for construction of interface processes for parallel components for asynchronous as well as
for synchronous processes7 w.r.t. the universal fragment of the temporal logic CTL for asynchronous
processes and CTL* for the synchronous case. Obviously, the soundness of the interface rule depends
on the choice of the equivalence relation ≡ as well as on the supported logic L(Σ). Thus, four
properties are given in [CLM89] in order to establish soundness of the interface rule w.r.t. ≡ and
L(Σ).

1. Suppose ΣP = ΣQ, then P ≡ Q implies ∀ϕ ∈ L(ΣP)[P |= φ⇔ Q |= φ].

2. If P ≡ Q and R is another process, then P ||R ≡ Q||R and R||P ≡ R||Q

3. (P ||Q) ↓ ΣP ≡ P ||(Q ↓ ΣP) and (P ||Q) ↓ ΣQ ≡ (P ↓ ΣQ)||Q

4. If ϕ ∈ L(Σ) and Σ ⊆ ΣP , then P |= ϕ iff P ↓ Σ |= ϕ

If ≡and L(Σ) conform to these pre-order properties, then P ||Q |= ϕ follows from the interface rule.
According to the choice of ≡ and L(Σ) e.g. the following rule is sound:

7The authors use the term asynchronous to indicate, that in such processes there is no notion of “next system
state”, whereas synchronous processes are strictly synchronized with their environment s.t. “next system state” is
a concept one can reason about.

219

7 Verification Techniques for Complex Embedded Systems

P ↓ ΣQ ≡ P ′ Q ↓ ΣP ≡ Q′

ϕ ∈ L(ΣQ) ψ ∈ L(ΣQ)
P ′||Q |= ϕ P ||Q′ |= ψ

P ||Q |= ϕ ∧ ψ

Analogously to this rule also rules for other boolean combinations of ϕ and ψ can be obtained.
A disadvantage of this approach to compositional verification is that only boolean combinations of
ϕ and ψ can be verified, temporal logical relations between the components would require more
complicated conclusion rules. In [CLM89] the authors surmise that it may be impossible to develop
fully general system of inference rules that will handle arbitrary temporal properties. They argue
that it may be necessary in order to use the interface rule to prove an implication of the form
(ϕ∧ψ) → δ, where δ is another temporal logic formula that expresses a global property. In general,
decomposition of a global property δ into local specifications ϕ and ψ can not be automated and
thus remains an interactive task.

The interface processes P ′ and Q′ are obtained from the representation of P andQ. Hence, veri-
fication of a local property ϕ of component P requires a concrete environment model of component
P .

Assume-Guarantee Paradigm

In contrast to compositional minimization which requires a concrete representation of the environ-
ment of a component for verification of a local property, assume-guarantee reasoning permits the
independent verification of local properties for components of a system. Using assumptions about
the environment of a component P , it can be verified whether P guarantees a property ϕ in all
environments conforming to the assumptions. For some concrete environment of P it remains to be
proved that the assumptions made for verification of ϕ are not violated. The first approaches for
reactive systems following this methodology were presented in [CM81] for invariant properties and
in [Pnu85] for linear temporal logics properties.

A usual notation for assume-guarantee reasoning is a triple 〈ϕ〉P 〈ψ〉 where ϕ denotes the assump-
tions made for verification of the guarantee part ψ for component P . Validity of an assume-guarantee
triple is defined inductively:

Definition 7.9 (Validity of an Assume-Guarantee Triple)
An assume-guarantee triple 〈ϕ〉P 〈ψ〉 is valid for all computations π = s0s1.... of P , iff:

∀i ≤ k : si fullfills ϕ ⇒ ∀j ≤ k + 1 : sj fullfills ψ

�

Informally, an assume-guarantee triple is valid if the satisfaction of ψ for a computations of length
k+1 follows from the satisfaction of ϕ up to step k of the same computation. This definition can be
exploited in compositional reasoning. Given assume-guarantee triples for n parallel components of
a system, the satisfaction of the conjunction of their guaranteed properties follows for the parallel
composition of all components from the satisfaction of the conjunction of their assumptions. This
is formally expressed by the following rule:

220

7.5 Compositional Techniques - Related Work

Rule 7.1 (Compositional Assume-Guarantee Rule)

〈ϕ1〉P1 〈ψ1〉 ∧ ... ∧ 〈ϕn〉Pn 〈ψn〉

〈∧iϕi〉 P1||...||Pn 〈∧iψi〉

�

Note, that since the satisfaction of the guarantees is only implied by the satisfaction of the
assumptions, the above rule is also valid if the conjunction of the component assumptions is not
satisfiable. Hence, using the rule above, it remains to be shown that the system can perform any
computation conforming to the assumptions.

Decomposition of global property specifications can, in general, not be automated, but remains
an interactive task. Hence, expert knowledge is required in order to find a valid decomposition
of a system specification. Pnueli argued in [Pnu85], that this interactive decomposition improves
comprehension of the system under consideration and is thus a desirable activity. Nonetheless,
even for large system manual decomposition is often difficult and error-prone. On the other hand,
knowledge of how the system should behave plus feedback from an automatic verifier makes this
feasible in practice.

Modular Model Checking

A special approach to compositional verification based on assume-guarantee reasoning is known as
Modular Model Checking in the literature [GL94, KV98, KV00]. Once a valid decomposition of a
system specification has been found, verification activities for local specifications for components of
a system can be performed using a model checker. Variants of this approach have been presented
for various different specification logics and techniques.

For linear temporal logic, an assume guarantee specification can be seen as a pair 〈ϕ,ψ〉 , where
both ϕ and ψ are linear temporal logic formulas. The meaning of such a pair is that all compu-
tations of the component are guaranteed to satisfy ψ, assuming that all the computations of the
environment satisfy ϕ. This is formally8 denoted by the assume-guarantee assertion [ϕ]M [ψ]. As
observed in [Pnu85], in this case the assume-guarantee assertion [ϕ]M [ψ] can be combined to a
single linear temporal logic formula and checking whether M satisfies ϕ → ψ. Thus, model check-
ing a component with respect to assume-guarantee specifications is essentially the same as model
checking the component with respect to linear temporal logic formulas.

The situation is different for branching time temporal logic. Here the guarantee is a branching
time temporal logic formula, which describes the computation tree of the component. There are
two approaches to the assumptions in assume-guarantee pairs.

One approach was considered by Grumberg and Long in [GL94], where branching time temporal
assumptions are taken to the computation tree of the system within which the component is inter-
acting. Grumberg and Long argued, that in the context of modular verification it is advantageous
to use only universal branching time temporal logic, i.e. branching time temporal logic without
existential path quantifiers. In a universal branching time temporal logic one can state properties
of all computations of a model, but one cannot state that certain computations exist. Consequently
, universal branching time temporal logic formulas have the helpful and desired property that once
they are satisfied in a component, they are satisfied also in a system that contains this component.

8in the following we will use [φ] in order to emphasize that φ has a linear time interpretation, while 〈φ〉 is used in
order to emphasize that φ has a branching time interpretation.

221

7 Verification Techniques for Complex Embedded Systems

More formally, a component M satisfies an assume-guarantee pair, formally denoted by assume-
guarantee assertion 〈ϕ〉M 〈ψ〉 iff whenever M is part of a system satisfying ϕ, the system satisfies
ψ too. The relation between systems containing M is defined using a simulation-pre-order ’�’. The
simulation pre-order required by Grumberg and Long has to satisfy (w.r.t. synchronous parallel
composition):

1. ∀φ ∈ ACTL : P |= φ⇒ P ′ |= φ, iff P ′ � P.

2. ∀P, P ′ : P ||P ′ � P

3. ∀P, P ′, P ′′ : P � P ′ ⇒ P ||P ′′ � P ′||P ′′

Grumberg and Long have shown in [GL94] that one can associate with every ACTL formula ϕ a
maximal model Mϕ - also known as a tableau of ϕ - such that a model M ′ satisfies ϕ precisely when
M ′ �Mϕ. Hence, branching time temporal assumptions can be dealt with by building the tableau
Mϕ for the assumption specification ϕ, and then checking whether the parallel composition of the
component M ||Mϕ guarantees ψ.

Given a pre-order according to the specification above, the rule for compositional verification can
be formalized as follows:

M �Mϕ

M ′||Mϕ |= ψ

M ′||M |= ψ

Another approach, presented by Josko in [Jos87, Jos93] prior to the approach of Grumberg and
Long claims that the assumption in the assume-guarantee pair concerns the interaction of the
component with its environment along each computation, and is therefore more naturally expressed
in linear time temporal logic. A temporal logical framework - called MCTL - is presented, where
an assume-guarantee pair consists of a linear temporal assumption ϕ and a branching time temporal
guarantee ψ. The meaning of such a pair is that ψ holds in the computation tree that consists of
all computations satisfying ϕ, formally denoted by [ϕ]M 〈ψ〉. Although different logics are used
for assumptions and guarantees, the composition rule looks quite similar. Both approaches mainly
differ in the tableau construction methods. Using linear temporal logic assumptions, the tableau
construction required in Josko’s approach has to follow a linear time interpretation. Kupferman
and Vardi have shown in [KV98] that construction of the maximal model of an ACTL* formula ϕ
involves double exponential blowup (22O(l)

, where l is the length of ϕ [KV98]), while the construction
of the maximal model of ACTL as well as LTL formulas involves only exponential blowup (2O(l)

[KV00]). There, Kupferman and Vardi also have shown that

• the model checking problem for assumption ϕ and guarantee ψ in ACTL, i.e. proving whether
〈ϕ〉M 〈ψ〉 can be done in time km2O(l) and in space O

(
m(log k + l +m)2

)
, where l is the

length of ϕ, k is the size of M , and m is the length of ψ.

• the model checking problem for ϕ and ψ in ACTL*, i.e. can be done in time k2O(m)+2O(l)
and

in space O
(
m(m+ log k + 2O(l))2

)
, where l is the length of ϕ, k is the size of M , and m is

the length of ψ.

• the model checking problem for ϕ in ACTL* and ψ in ACTL can be done in time km22O(l)

and in space O
(
m(log k + 2O(l))2

)
, where l is the length of ϕ, k is the size of M , and m is the

length of ψ.

222

7.5 Compositional Techniques - Related Work

Since LTL is embedded in ACTL*, these bounds hold also for ϕ in LTL and ψ in ACTL, as it is,
in general, also the case for MCTL.

On the other hand, Kupferman and Vardi emphasize in [KVW00], that these complexities are
the worst-case bounds. In practice, the constructions need not yield an exponential blowup. They
surmise, that if the size of the assumption is not too large, the algorithms are impractical only for
worst-case complexities.

However, Kupferman and Vardi point out a fundamental difference between the impact that the
guarantee and the assumption have on the complexity of model checking. When verifying assume-
guarantee assertions of the form

〈ϕ1 ∧ ... ∧ ϕl〉M 〈ψ1 ∧ ... ∧ ϕm〉

it is easily possible to decompose the problem to verifying assertions of the form

〈ϕ1 ∧ ... ∧ ϕl〉M 〈ψi〉

in isolation, while it is not possible in general to decompose the assumption in a similar fashion.

Modular Model Checking using Synchronous Observers

Our approach to compositional verification is very similar to the one presented by Halbwachs,
Lagnier and Raymond in [HLR93]. There, verification using synchronous observers has been pre-
sented first - to the best of our knowledge - for component verification as well as for compositional
verification.

Synchronous observers are combined with a component M using a particular asymmetric parallel
composition such that the observer only observes the component without ever disabling any possible
computation of the component. An observed computation of the component under verification is
accepted by the observer if its designated output never indicates a complaint.

Since a synchronous observer observes a computation step by step, the concept of time follows a
linear time interpretation. Because the acceptance criterion of the observers as presented in [HLR93]
is defined as a stepwise acceptance, this approach is restricted to safety specifications9.

Like for the observation of a component, observers can be used also to judge about sequences of
inputs provided by the environment of the component, and can thus be applied to specify assump-
tions.

Based on assume-guarantee reasoning, synchronous observers can be applied for compositional
verification, which is considered in [HLR93] and e.g. in [Hol00] explicitly.

Obviously, the complexity of verification using synchronous observers is proportional to the prod-
uct of the sizes of the parallel ingredients. In order to present a more concrete complexity bound,
the complexity of a specific observer construction procedure has to be taken into account.

Summary

All approaches to modular model checking listed above including our own approach - regardless
of the concrete specification formalism of the particular approach - follow the assume-guarantee
paradigm for which a composition rule can be generalized by the following rule:

9By using a more advanced acceptance criterion - e.g. Büchi-acceptance - this approach could be extended to
liveness specifications as well, at the price of a higher verification complexity.

223

7 Verification Techniques for Complex Embedded Systems

Rule 7.2 (Generalized Composition Rule)

{ϕ1}M1 {ψ1}
{ϕ2}M2 {ψ2}

C(ϕ1, ϕ2, ψ1.ψ2, φ, ψ)






{φ}M1||M2 {ψ} ,

where {φ}M {ψ} is an assume-guarantee assertion with respect to a particular interpretation
suiting the specification formalisms to which φ and ψ, respectively, belongs, and C is a compo-
sition condition ruling the allowed compositional conclusion with respect to local assumptions and
guarantees and global assumption and guarantee.

�

In many approaches to modular model checking the composition condition C is a fixed conclusion
rule - usually the conjunction of the local specifications. In principle there is no difference in our
approach. In our approach composition condition C has to be established by tautology checking,
i.e. C itself has to be verified by a separate verification task. Provided that it can be proved that
a particular combination of local specifications and global specifications is a tautology w.r.t. the
synchronous parallel composition of the involved components, complicated relations between local
specifications and global specifications can automatically be concluded based on the conclusion rule.

Rule 7.3 (Composition Rule of this work)

{ϕ1}M1 {ψ1}
{ϕ2}M2 {ψ2}

|= (((ϕ1 → ψ1) ∧ (ϕ2 → ψ2) ∧ φ) → ψ)






{φ}M1||M2 {ψ} ,

where {φ}M {ψ} is an assume-guarantee assertion with respect to a particular interpretation suit-
ing the specification formalisms to which φ and ψ, respectively, belongs. The composition condition
ruling the allowed compositional conclusion with respect to local assumptions and guarantees and
global assumption and guarantee must explicitly be checked using tautology checking.

�

The approaches based on linear time temporal logic, branching time temporal logic, as well as
the MCTL approach that combines both interpretations, are not equipped for reasoning about
a quantitative perception of real-time that is independent from the temporal logical ’next step’
operator. Through using synchronous observers, the specification formalism presented in this work
is equipped to quantitatively refer to time by counting occurrences of particular observations.

The effort required for tableau construction of TPTL [AH89] - a discrete time quantitative logic
extending LTL - is worse than the effort required for LTL since explicite specification clocks have
to be represented in the tableau10. The same counts for TCTL [EMSS90]- which is a discrete time
quantitative extension of CTL - compared to the complexity of CTL model checking.

Semantically, observers are represented in the same formalism that is used for the model repre-
sentation. Since model checking is applied to a parallel composition of observers, model checking of
observer acceptance benefits from reduction techniques - like Cone of Influence Reduction - that is
applied by state-of-the-art model checkers such as, for example the VIS model checker. For applying

10Alur and Henzinger have shown in [AH89] that tableau construction for a TPTL formula with N logical and
temporal operators and K as the product of constants in timing constraints can be done in time 2O(NK), the
model checking problem is EXSPACE-complete, as it is for ACTL*

224

7.5 Compositional Techniques - Related Work

invariance checking to the parallel composition of a set of observers, the worst case model checking
complexity is that of computing a reachability analysis for this parallel composition.

225

7 Verification Techniques for Complex Embedded Systems

226

8 Application of Verification Techniques -

Experiences and Results

In this section we illustrate the presented verification techniques with some examples of their ap-
plication to the Radio-based Signaling System. In section 8.1, application of robustness analyses
and formal debugging techniques is documented. All verification tasks have been applied to the
case study using the asynchronous as well as the synchronous execution semantics in order to allow
a comparison of the complexity of the respective interpretation. Section 8.2 documents the appli-
cation of observer-pattern based verification for five important safety requirements regarding the
case-study.

Application of STDx verification is demonstrated in section 8.3. There, a proof of a real-time
property of train requesting a status report from crossing is documented, as well as a real-time
related compositional proof for the reaction of crossing. Finally, it is shown by a compositional
proof that - in absence of hardware errors - a train passes crossing only after crossing has reported
itself safe.

8.1 Application of Robustness Analyses and Formal Debugging

Analysis and debugging checks are applied to a model in an iterative process of finding and fixing
bugs, adding features and reapplying the checks to the modified model. Application of analysis and
debugging techniques support the developer in finding errors and generating simulations in order
to explore the model and to discover flaws. In this section, we document the application of analysis
and debugging techniques to the Radio-based Signaling System case study.

Since - to our knowledge - there exists no official version management for the case study, we have
entered the iteration cycle at a fictitious point in time: somewhere in the development between the
version of the model as documented in [KT00] and the version presented by [Klo03].

Each analysis has been applied to several temporary versions of the case study during the iteration
of finding and fixing errors. In order to give an impression of the complexity of each of this iterations,
we have collected the results of analysis application to the latest versions of the model which are free
of robustness errors. All checks were performed on two dual processor SunOS 5.8 Blade 1000 work
stations, with each 2GB memory and 900MHz SPARC processors. Since both machines could not be
claimed exclusively for running the checks, the measured verification times are not absolutely exact
and are generously rounded. Moreover, the times measured for invariance checking and bounded
model checking are not exactly comparable. The times for model checker runs capture the pure
model checking times, without previous model preparation times (in particular Finite State Machine
generation), which is neglect-able compared to the time required by the model checker. In contrast,
the times listed for bounded model checking also include model preparation steps. This difference
originates in different integration and usage of the verification engines. Since the times measured for

227

8 Application of Verification Techniques - Experiences and Results

bounded model checking and invariance checking for the different checks in general differ in orders
of magnitude, we feel that these inaccuracies are tolerable.

8.1.1 A Synchronous Variant of the Radio-based Signaling System

Klose [Klo03] refers to a synchronous variant of the case-study using the words:

The model presented here uses the asynchronous simulation semantics of Statemate,
a variation using the synchronous semantics exists as well, but is not described in detail
here, since the differences are only minute.

Approximately half of the proofs presented in [Klo03] are performed using this undocumented
synchronous variant of the model. In principle, the synchronous variant equals the asynchronous
model and deviates from it only w.r.t. interpretation of time. Executing a Statemate model -
designed for asynchronous execution - using the synchronous execution semantics, allows the model
to react to inputs at every step instead of stable states. Hence, in absence of explicite references
to time - such as timeout expressions, synchronous execution over-approximates the asynchronous
execution.

In presence of timeout expressions and scheduled actions it must be ensured, that time-triggered
transitions and actions are taken and executed at the right moment in time. Thus, a consistent
interpretation of time has to be ensured, such that specific combinations of states are reachable in
the synchronous interpretation.

Here, the meaning of consistency is: all states and transitions reachable in the asynchronous
model must be reachable also in the synchronous model. Notice, that internal computations may
be performed more often compared to the asynchronous model. We are interested in a synchronous
variant of the model only for obtaining complexity and run-time results in comparison with the
results for the asynchronous model. Consequently, the execution w.r.t. synchronous execution
semantics deviates in the interpretation of concrete values for speed, acceleration, and deceleration
from the asynchronous model - the interpretation of positions is preserved.

Evidence for a consistent treatment of time can be obtained by checking on the one hand the
reachability of particular phases of the modeled protocols. On the other hand, impossibility of
violation of critical requirements regarding the protocol has to be verified. For example, crossing
must be able to answer a status request sent by the train. Hence, train has to guess a correct
crossing closing time in order to send its status request at the right moment. Furthermore, train
has to wait an appropriate amount of time before assuming the crossing to be faulty.

Seven formal debugging checks have been identified to capture key properties of timing for the
Radio-based Signaling System. It turned out that these seven checks succeed for both time models
with nearly the same values of constants referred to in the timeout expressions of the model. Results
for these checks are given at the end of this section.

One of these checks (Check 5 on page 241) revealed that constant CCT must have at least the value
’12’ for the synchronous execution semantics. Otherwise a status request from TRAIN is received
by CROSSING at an instant of time, where crossing is still not able to report its status, because
CROSSING can not enter the relevant state fast enough (state BARRIER_CLOSED - the static reaction
of this state answers a status request from TRAIN).

Unfortunately, different values for input D_SPEED (desired speed - input from the train driver) have
to be supplied to the model for the synchronous and the asynchronous execution semantics in order

228

8.1 Application of Robustness Analyses and Formal Debugging

to observe a ”normal run”. For the synchronous semantics, we ascertained that in absence of input
ACTIVATE_CROSSING_CTRL:CP_REG_INP a normal run is impossible for all values of D_SPEED>19 (cf.
Check ’normal run’ on page 243).

This check revealed a back-door effect : It is possible to treat the crossing point TRAIN:CP as already
regarded by setting input ACTIVATE_CROSSING_CTRL:CP_REG_INP. Considering a crossing point
(TRAIN:CP) to be already regarded disables the braking-curve - implemented by COMPUTE_NOMINAL_SPEED

- which means that the train overruns an unsecured crossing for arbitrary values of D_SPEED. Only if
ACTIVATE_CROSSING_CTRL:CP_REG_INP is assumed to be always false, TRAIN adheres to the protocol
of activating CROSSING and waiting for a safe-report before passing CROSSING. Such a subtlety is
not necessarily a bug in the model, because nothing bad will happen if the input is driven correctly.
On the other hand, if such a subtlety is not documented appropriately, the model fails to be a clean
specification of the system under development.

Moreover, a specification problem must be emphasized: Since TRAIN and CROSSING do not share
variables for the position of TRAIN and CROSSING, respectively, there is no global indication for TRAIN
passing CROSSING. Since CROSSING detects a passed TRAIN only using a sensor, which is driven by
a free input of SYSTEM, we can only rely on the perception of TRAIN (SYSTEM:PASSED_XING). The
perception of TRAIN is not always trustworthy, SYSTEM:PASSED_XING only coincides with reality, if
TRAIN treats CROSSING not as already regarded. Otherwise, TRAIN does not notice (and hence, does
not indicate) over-running CROSSING.

A ”normal run” is observed only if the TRAIN passes CROSSING w.r.t. its own perception (SYSTEM:-
PASSED_XING) without being emergency-stopped (TRAIN:STPPED). TRAIN continues its run along
the track as long as no STPPED event is issued by its sub-activity SPEED_CONTROL_CTRL before
CROSSING_SAFE_REC1 is delivered by COMMUNICATION. SPEED_CONTROL_CTRL can issue a STPPED

event only if the braking-curve is not disabled.
With appropriate assumptions about the environment (Assumption: initially ACTIVATE_CROS-

SING_CTRL:CP_REG_INP only after ACTIVATE_CROSSING_CTRL:IDLE immediate) it turned out that
an normal run for the synchronous model was only feasible if D_SPEED<20, while the asynchronous
model also shows a normal run for e.g. D_SPEED=100.

8.1.2 Stabilization

A core feature of a model regarding the asynchronous semantics is its stabilization behavior. There a
model must always eventually become stable, i.e. be able to accept new inputs from the environment.
Otherwise the model can engage in an infinite sequence of internal computations, which means
divergence in terms of the asynchronous semantics.

Hence, before one can rely on results of other checks, divergence freedom of the model has to be
assured. Moreover, an upper bound can be determined for the amount of steps the model can maxi-
mally perform until becoming stable again. Application of two very powerful abstraction techniques
to asynchronous models - Relaxed Cone of Influence (RCOI [Bie03]) and Counter Abstraction (cf.
section 7.2) - is only justified after having proven divergence freedom of the model. For the latter
technique - abstraction of dynamic stabilization using a counter - an upper bound for the length
of all super-steps must be determined. In order to obtain a first hint for this upper bound, we
applied bounded model checking to the stabilization check. Since checking for an upper bound for
the length of all super-steps does not permit application of the Relaxed Cone Of Influence (RCOI2),

1originated by CROSSING as CROSSING_SAFE_REC
2RCOI does not preserve the internal synchronization of an asynchronous model. Thus, RCOI may only be used

229

8 Application of Verification Techniques - Experiences and Results

the check has to cope with nearly the full complexity of the non-optimized model. We successively
applied the stabilization check with guessed upper-bounds :

• Bound 6: violation (13 Steps) in less than 1second

• Bound 7 : Violation of length 58 after about 1 hour

• Bound 8 : Violation of length 59 after about 2 and a half hour

• Bound 9 : No violation up to 68 Steps in about 13 hours without termination.

Thus, ’9’ seemed to be a good first guess for the stabilization bound check. When applying a sta-
bilization check with upper bound ’9’ to the original asynchronous model using invariance checking
instead of the bounded model checking engine, it turned out that the original model is too complex
to obtain a result.

When searching for sources of complexity, we first considered the timeout expressions occurring
in the model at transition triggers. A transition triggered by a timeout can only be taken if its
source state is active for a series of super-steps. Thus, large constants in time triggered transitions
have an important impact on model complexity, since the transition is enabled only after sequences
of super-steps have passed, each consisting of series of steps. Hence, the model checker has to apply
the transition relation several times in order to reach a state in which the transition is enabled.

Obviously, the transition BARRIER_CLOSED → TIME_OUT of statechart CROSSING_CTRL (cf. figure
3.10) can only be taken if BARRIER_CLOSED is active for MBCT (Maximum Barrier Closed Time=40)
super-steps. Consequently, the model checker has to apply the transition relation up to 40*9 times
in order to reach state TIME_OUT - if 9 is assumed to be the smallest upper bound for the length of
super-steps.

Our first approach to reduce model complexity was to reduce this timer constant to a mean-
ingful minimum, i.e. a smaller value which does not influence the reachability of all states and
transitions and which preserves the overall functionality of the model disregarding this concrete
deadline: Only when being in state BARRIER_CLOSED of CROSSING_CTRL , activity CROSSING can
answer an incoming status request originated from activity TRAIN. TRAIN can emit this event only
at transition WF_CROSSING_CLOSED →REQUEST_CROSSING_STATUS - triggered again by a timeout
event depending on constant CCT (Crossing Closing Time=8). Thus, a meaningful minimal value
for MBCT must preserve the ability of CROSSING_CTRL to react on status request. This is captured
by property ’last(CROSSING_CTRL:BARRIER_CLOSED) and CROSSING_CTRL:BARRIER_CLOSED and

SYSTEM:STATUS_RQ_REC’ (Check 5 on page 241).
In an iterative process, we searched for a meaningful value for MBCT, by repeatedly applying all

relevant “drive-to-...” checks and coverage computations as documented below.
Although the modification MBCT seems not to be of great impact in terms of state-bits, reducing

MBCT to 8 instead of 40 drastically decreases verification complexity for some checks. By applying
the listed “drive-to-...” checks and coverage computations to the original and the modified model,
we assured ourselves that the derived asynchronous model behaves the same as the original one -
except for the concrete deadline represented by MBCT. In the following we refer to this time-abstract
variant of the model as asynch1.

for a model for which the stabilization bound check already succeeded. In order to establish an upper bound for
the length of all super-steps only the normal, functional Cone Of Influence optimization can be applied which
preserves the synchronization behavior of the model.

230

8.1 Application of Robustness Analyses and Formal Debugging

After reducing MBCT to 8, the asynchronous model still remained too complex for verification of
stabilization with bound ’9’.

As another source of complexity we identified the computation of speed and position in activity
TRAIN. Since speed and position are calculated at time-triggered transitions only - i.e. only once
per super-step - the model stabilizes regardless of the concrete computations. Hence, if an over-
approximation - guessing arbitrary values for speed and position whenever the respective transitions
are taken - always stabilizes within a fixed bound, the original model will do so within the same
bound. Unfortunately, like RCOI also propositional abstraction [Bie03]- as offered by the STVE -
does not preserve stabilization of the model. Freeing as well as strong-abstraction abstract from
concrete values of data-items in a step-oriented way. Abstract data-items are allowed to change
every step, even if they are computed explicitly only once a super-step.

The local variables ODATA, T_COMMANDS and NOMINAL_SPEED of TRAIN are assigned new values
only at transitions which are triggered by timeout events. In order to abstract from the concrete
computations, we replaced the computations by fresh slow inputs, without influencing stabilization
of the model. In contrast to the propositional abstraction technique available in the STVE, this
hand-abstraction concerns only the action part of timeout-triggered transitions - the assigned values
are abstracted, transition triggers remain unchanged: new values are provided only in stable states.
Only the results of concrete computations are over-approximated using appropriate inputs. Hence,
replacing concrete computations with inputs only in the action parts of transitions strictly over-
approximates the model behavior. This would have an impact on the synchronization behavior of
the model only if the synchronization were dependent on concrete results of these computations.

We refer to the resulting abstract asynchronous variant of model asynch1 with hand-abstraction
of ODATA, T_COMMANDS and NOMINAL_SPEED as asynch3. Figures 8.1 and 8.2 show the abstracted
versions of statecharts ODOMETER_CTRL and SPEED_CONTROL_CTRL used for the stabilization bound
check.

Figure 8.1: Statechart ODOMETER_CTRL - left : original , right: ODATA driven by input

Using this over-approximation, we have been able to verify that all super-steps are upper-bounded
by 9 - each super-step of the model stabilizes within 9 steps. The complexity of verification is
relatively independent from the choice of the upper bound: choosing 15 or 20 instead of 9 does not
influence the verification time significantly.

231

8 Application of Verification Techniques - Experiences and Results

Figure 8.2: Statechart SPEED_CONTROL_CTRL - left : original, right : NOMINAL_SPEED and T_COMMANDS

driven by inputs

bound result Time(mc) asynch3 - 46i/273s

9 true 2h (136 image comps)

10 true 2h

15 true 2h

20 true 2h

Table 8.1: Bounded Stabilization Check Results

Once having proved stabilization, the usage of RCOI optimization and Counter Abstraction in the
following analysis and debugging checks is justified. Until stabilization has been proved, all results
of analysis and debugging checks obtained using RCOI optimization and Counter Abstraction are
valid only under the assumption that there exists a bound, for which the model always eventually
stabilizes.

8.1.3 Robustness Checks

Table 8.2 gives an overview of the variants of the model to which analyses and debugging checks have
been applied. Synch0 refers to the synchronous model, asynch0 refers to the original asynchronous
model, asynch1 denotes the asynchronous variant with MBCT reduced to 8 instead of 40 and finally
asynch3 denotes the hand-abstracted model used for the stabilization check. For each variant of
the model as well as for some of their sub-models, the number of input bits - denoted by i - and
state-bits - denoted by s - is listed. Additional inputs for the resolution of non-deterministic choices
are listed in parenthesis after the number of inputs. For example, the asynch0 variant of the entire
system model has 64 inputs representing the inputs of the Statemate model plus 33 inputs for
resolving non-determinism. 508 state-bits are required to represent the states and variables.

The numbers of input- and state-bits is not the only relevant measure for complexity. Although
asynch3 is larger than asynch0 in terms of inputs and state-bits, checking stabilization for asynch3 is

232

8.1 Application of Robustness Analyses and Formal Debugging

feasible, while this is impossible for asynch0. Also, the original model asynch0 is only two state-bits
larger than asynch1; the impact of MBCT on the model complexity is disproportional. Nonetheless,
model sizes in terms of inputs and state-bits give a rough impression of how complex the system
and its components are.

It must be emphasized, that for many checks Cone of Influence Reduction and other model
optimizations drastically reduce the size of the model. Therefore, for each documented verification
task the effective size of the model - handled by the model checker after all optimizations - is listed.
Similar optimization are applied to the model also for application bounded model checking. Hence,
the reported model sizes roughly correspond also to the size of models to which bounded model
checking has been applied.

Models: synch0 * asynch0 asynch1 ** asynch3 ***

SYSTEM 64(+33)i/425s 64(+33)i/508s 64(+33i)/506s 113(+33)i/557s

TRAIN 42(+13)i/215s 42(+13)i/261s 42(+13)i/261s -

ACTIVATE_CROSSING_CTRL 91(+5)i/59s 91(+5)i/83s 91(+5)i/83s -

SPEED_CONTROL_CTRL 43(+4)i/103s 43(+4)i/120s 43(+4)i/120s -

COMMUNICATION 7(+2)i/28s 7(+2)i/32s 7(+2)i/32s -

CROSSING 28(+18)i/188s 28(+18)i/227s 28(+18)i/225s -

Table 8.2: Model Sizes
* CCT=12 instead of 8 as in asynch0
** MBCT=8 instead of 40 as in asynch0
*** MBCT=8 and manual abstraction of ODATA, T_COMMANDS and NOMINAL_SPEED

Range-Violations: (RV) Range violations are severe bugs in a model. In the original model - as
presented in [KT00] - three range violations were detected. Although, all range violations
have already been fixed in the model version presented in [Klo03], we list these bugs here
nonetheless, since they document how simple the sources of severe bugs in a model can be:

• In the model version documented in [KT00] a data-item T has been increased at a self-
loop in statechart TIMER_CTRL without checking for an upper bound. Obviously, this
bug resulted from an unfinished attempt to model additional functionality. Since there
existed no reference to T anywhere in the model, deleting the entire self-loop fixed the
problem.

• According to [KT00] the static reaction of state FREE_RUN in statechart SPEED_CONTROL
computes:
/if (D_SPEED-ODATA.SPEED)<0 then

T_COMMANDS.ACC:=0

T_COMMANDS.DEC:=MIN(D_SPEED-ODATA.SPEED),TRAIN_D.MAX_DEC)

else ...

Hence T_COMMANDS.DEC is assigned a negative value, but is declared with a natural do-
main. This bug was simply an inadvertent permutation of function arguments, which
could be easily fixed. Recall, that range violations only emerges dynamically: if the
observed speed ODATA.SPEED is greater than the intended speed D_SPEED demanded by
the driver. Hence, the problem does not arise always during simulation but only for

233

8 Application of Verification Techniques - Experiences and Results

particular values of D_SPEED .

• The third range violation could not be detected by analysis - since analysis only considers
user defined data-items - but was revealed during error-path concretization for a drive
to state check:
In the implementation of procedure COMPUTE_NOMINAL_SPEED (in the model version de-
scribed in [KT00], but not documented there) a local variable of natural domain is
assigned a negative value. Since this local variable is only an auxiliary variable, which is
not known to the user, the analysis failed to detect this error.

For the fixed version of the model, range violation analysis detected six more potential situa-
tions of range violations. The un-reachability of these potential violations has been determined
already in the generation of a BDD representation of the model.

Model #possible #reachable Time inv Model Size

asynch0 6 0 1sec 0i/0s

asynch1 6 0 1sec 0i/0s

synch0 6 0 1sec 0i/0s

Table 8.3: Range Violation Checks

Non-Determinism: (ND) For the original model, non-determinism analysis detected two potential
non-determinism conflicts, one in statechart ACTIVATE_CROSSING_CTRL and the other one in
statechart BARRIER_CONTROL_CTRL.

• Triggers of transitions PASS_CROSSING→IDLE and PASS_CROSSING → FAULTY_CROSSING

in statechart ACTIVATE_CROSSING_CTRL (cf. figure 3.6) have been non-exclusive. Invari-
ance checking has been applied in order to check dynamic reachability of this potential
non-determinism. The model checker proved the situation to be unreachable.
In order to provide an unambiguous description of the system, the Statemate model
should reflect exclusiveness of transitions explicitly. Consequently, the Statemate model
has been modified such that mutual exclusion of the respective transitions is obvious
at first glance. This has been achieved by adding ’(not TIMEOUT)’ to the trigger of
PASS_CROSSING→IDLE.

• The detection of a potential non-determinism in scope BARRIER_CONTROL_CTRL is an arte-
fact due to the translation of Statemate models to SMI: Timeout events are modeled
using counters in the SMI code. These counters are initialized to the respective timeout
expression and are decremented every (Super-) step. An internal event is emitted when
the count-down reaches zero. Since neither counters nor the internal events are shared
between transitions triggered by timeout expressions, the analysis tool is not able to
determine static exclusivity of such time-triggered transitions..
It is sufficient to check reachability of this potential transition non-determinism first in
the scope of the affected transitions, i.e. statechart BARRIER_CONTROL_CTRL. Only if
the analysis detects a reachable non-determinism it can be useful to apply the analysis
to a larger scope, for which the non-determinism may be unreachable, due to mutual
exclusiveness of computations. Anyhow, for documentation purposes, we have applied

234

8.1 Application of Robustness Analyses and Formal Debugging

the checks also to the enclosing scope CROSSING and the entire system model. Table
8.4 shows the results for application of non-determinism analysis for the different model
variants:

Model #potential #reachable Time inv Model Size

asynch0 1 0 1sec 7i/32s

synch0 1 0 1sec 7i/24s

Table 8.4: Non-Determinism Checks for BARRIER_CONTROL_CTRL

Model #potential #reachable Time inv Model Size

asynch0 1 0 5m 12i/102s

asynch1 1 0 35sec 12i/100s

synch0 1 0 10sec 12i/83s

Table 8.5: Non-Determinism Checks for CROSSING

Model #potential #reachable Time inv Model Size

asynch0 1 0 TO!12h 31i/274s

asynch1 1 0 TO!12h 31i/272s

synch0 1 0 TO!12h 31i/225s

Table 8.6: Non-Determinism Checks for entire SYSTEM

Write/Write-Hazards: (WW) Even though multiple write accesses to the same data-item within
one step are resolved by the Statemate simulator, they should be treated as modeling flaws
in a model based development process. The behavior of a reference model should be indepen-
dent from internal resolution strategies of the simulator. In order to obtain an unambiguous
reference model from the early development phases, write/write hazards have to be avoided.
Write/Write-hazards analysis detects two potential hazards for record T_COMMANDS: for com-
ponent ACC used for communication of acceleration commands in TRAIN among activities
SPEED_CONTROL, BRAKE and ODOMETER and for component DEC capturing deceleration com-
mands:

TRAIN : Write/Write_Hazards: Since all accesses to record T_COMMANDS are located in the
scope of activity TRAIN it suffices to check activity TRAIN for multiple writer conflicts. Un-
fortunately, TRAIN is too complex for application of invariance checking, but TRAIN is the
minimal scope for applying a multiple writer analysis, since T_COMMANDS is driven as well by
SPEED_CONTROL_CTRL as by activity BRAKE. Unless a write/write hazard is expected to be
reachable, application of bounded model checking instead of model checking is not recom-
mended. Only if bounded model checking detects a multiple writer conflict within a user-
defined bound, the application is successful. Otherwise, if no hazardous situation is reached
bounded model checking provides no useful result. Hence, only a complete verification tech-
nique can be applied in order to determine whether a hazard is reachable or to prove that
there is no multiple writer hazard in the scope of TRAIN.
The asynchronous model turned out to be too complex for application of invariance checking

235

8 Application of Verification Techniques - Experiences and Results

in order to check the reachability of both potential hazards. Only CTL model checking using
an over-approximation of reachability computation [MJH+98] obtained the desired results.
The results are listed in columns ’Time mc’ of the tables below.

Model #potential #reachable Time inv Time mc Model Size

asynch0 2 0 TO!12h 40sec 24i/150s

synch0 2 0 2h 20sec 24i/124s

Table 8.7: Write/Write Hazard Checks for TRAIN

SYSTEM : Write/Write Hazards For the entire model, static analysis also detects two possible
multiple writer conflicts, both affecting the record T_COMMANDS.

Model #potential #reachable Time inv Time mc Model Size

asynch0 2 0 TO!12h 3m 31i/270s

asynch1 2 0 TO!12h 3m 31i/268s

synch0 2 0 TO!12h 1m 31i/225s

Table 8.8: Write/Write Hazard Checks (entire SYSTEM)

Sequential Write/Write Hazards: (SWW) It is not in general clear how to assess occurrence of
sequential multiple writer conflicts in a model. In the case of the Radio-based Signaling Sys-
tem, static analysis detects that both components of record T_COMMANDS might be affected by
sequential multiple writer conflicts. Both potential conflicts can be proven to occur in runs of
the model. Since T_COMMANDS is used for internal communication between the sub-activities
BRAKE, ODOMETER and SPEED_CONTROL_CTRL we treat the detected conflicts as intended be-
havior. Recall, that internal activities communicate in a step-by-step manner according to the
asynchronous semantics of Statemate. T_COMMANDS is only used for internal computations
of the model and not referred to in communications with the environment.

Model #potential #reachable Time bmc Time inv Model Size

asynch0 2 2 1m 4m 31/274s

asynch1 2 2 1m 4m 31i/272s

Table 8.9: Sequential Write/Write Hazards (entire SYSTEM)

Read/Write Hazards: (RW) The assessment of Read/Write hazards depends on the intended us-
age of the affected objects. Most of the affected objects are events. Communication between
parallel activities emitting and consuming events is an essential aspect of the modeling style of
the case-study. Data-items affected by Read/Write hazards are only these data-items which
are used for the computation of speed and positions. The SYSTEM model turned out to be too
complex for application of invariance checking. Using the bounded model checking engine 31
of 32 potential Read/Write hazards turned out to be dynamically reachable within an unroll

236

8.1 Application of Robustness Analyses and Formal Debugging

bound of 100 for the transition relation.

Model #potential #reachable Time bmc Time inv Model Size

asynch0 32 31 1h30m TO!12h 31i/270s

(k=100)

asynch1 32 31 1h TO!12h 31i/268s

(k=100)

synch0 32 31 3m30sec TO!12h 31i/225s

(k=100)

Table 8.10: Read/Write Hazards Checks (entire SYSTEM)

Since the case-study was never intended to serve as reference model for an implementation but
only as conceptual model illustrating a protocol, we decided to assess the detected Read/Write
hazards as being harmless. The simulator guarantees that all read accesses to objects refer
to their values from the beginning of the actual step while write accesses affect an object
only after all read-accesses have been executed. In a real development process, Read/Write
accesses would probably have to be treated with greater care.

Sequential Read/Write Hazards: (SRW) Also Sequential Read/Write hazard analysis revealed 22
reachable hazards out of 22 potential hazards. The same as for Read/Write hazard analysis,
the SYSTEM model is too complex for application of invariance checking. Bounded model
checking has been able to reach all hazards in an acceptable time (with maximal unroll depth
of 100).

Model #potential #reachable Time bmc Time inv Model Size

asynch0 22 22 45m TO!12h 31i/317s

asynch1 22 22 30m TO!12h 31i/315s

Table 8.11: Sequential Read/Write Hazards Checks (entire SYSTEM)

8.1.4 Summary of the Application of Analyses

Even though analyses require a complete verification technique, which can obtain witnesses for de-
tection of conflicts as well as definitely determine un-reachability of the examined potential conflict,
it is often advantageous to apply bounded model checking. Invariance checking using a BDD based
model checker suffers more often from complexity of the model. Therefore, in particular when reach-
ability of examined conflicts is expected, bounded model checking obtains witnesses in nearly all
considered cases much faster than invariance checking. As a rule of thumb, bounded model checking
should always be the first choice in the application of analyses. Only if bounded model checking
does not detect a witness for the examined conflict in reasonable time, invariance checking or even

237

8 Application of Verification Techniques - Experiences and Results

CTL model checking - with over-approximation of reachability computation - as in the case of the
presented non-determinism analysis - need to be applied in order to obtain a definite result.

In those cases for which a complete verification technique is unavoidable - as it is the case for
the stabilization check - only abstractions can help to tackle verification complexity. Except for
the stabilization check, all presented checks could have been performed by the developers of the
case-study using a nearly pure push-button technique, requiring only little expert knowledge.

We have presented a model-specific hand-abstraction for the considered case study, which led to
success for the presented stabilization check. An issue for future work should be the automation
and integration of the presented hand-abstraction with the STVE. Replacing local variables by slow
inputs preserves stabilization properties, but can significantly reduce complexity.

Obviously, application of analyses to the synchronous variant of the model leads to significantly
less verification complexity than application to the model using the asynchronous execution seman-
tics. If it can be ensured, that no timing problems disable parts of the model, application of analyses
for the synchronous execution semantics can obtain helpful hints also for the asynchronous case.

In general, application of analyses has been successful: for the considered case-study bounded
stabilization, absence of non-determinism and range-violations as well as absence of write/write
hazards have been formally proved for the asynchronous as well as for the synchronous variant of
the model. Thus, it has been verified that the case study is free of critical design flaws.

8.1.5 Application of Formal Debugging

In this section, seven formal debugging checks are presented, which iteratedly have been applied
to the case study. The obtained witnesses have been translated to simulation control programs
and executed with the Statemate simulator. All checks have been performed on dual processor
SunOS 5.8 Blade 1000 work stations, with each 2GB memory and 900MHz SPARC processors. If
not explicitly stated otherwise, the maximal unroll-depth for bounded model checking has been
chosen 100. Justified by the successful stabilization check, for the formal debugging checks also
approximation of dynamic stabilization with a counter has been applied. For each check the rows
asynch0-cnt9 and asynch1-cnt9 in the tables depict the results obtained from application of the
check to the models asynch0 and asynch1 , respectively, with counter approximation using bound 9.
For the resulting witnesses a SMI-based simulation of the model has been applied after verification
in order to re-establish dynamic stabilization for the approximated witnesses. In the tables below,
the results of these simulations are taken into account by entries of the form
<counter-trace-length>→<stabilizing trace length>

Recall from section 6.1 that the expression language supported for drive-to-property checks pro-
vides the special constructs ’last()’ and ’primed()’, of which we make use in the definition of
checks 2,3,4, and 5. ’last(<variable>)’ introduces a new variable in the model always keeping
the value of <variable> of the last step, while ’primed(<variable>)’ introduces a new output
referring to the primed value of <variable>. This way, the value of variable in the previous step
and their computed values for the next step can be referred to in simple invariant specifications for
drive-to-property checks.

Check 1: Drive to Transition: ’ACTIVATE_CROSSING_CTRL:PASS_CROSSING →
ACTIVATE_CROSSING_CTRL:IDLE’

The check is aimed at obtaining a witness for some run according to the protocol for which

238

8.1 Application of Robustness Analyses and Formal Debugging

train passes the crossing.
In order to take the specified transition, the system has to engage in a computation, s.t.

• TRAIN approaches the CROSSING

• TRAIN initiates communication with CROSSING (via COMMUNICATION)

• TRAIN requests status information from CROSSING or stops due to un-established COMMUNICATION.

• If TRAIN sends a status request, either CROSSING responds to the status request or the
TRAIN is stopped due to a timeout. If TRAIN is not stopped it passes a secured CROSSING.

Otherwise CROSSING has to be released manually.

Model Trace-Length Time bmc Time inv Model Size

asynch0 28 1m 8h 31i/270s

asynch1 28 1m 8h 31i/268s

asynch0-cnt9 65→32//65→33 30sec 15m 31i/273s

asynch1-cnt9 65→32 // 65→33 30sec 15m 31i/271s

synch0 16 5sec 3m 31i/225s

with freezing:
asynch0 50 1m 10h 26i/259s

asynch1 50 1m 10h 26i/257s

asynch0-cnt9 -/105→50 k=100 too small(2m) 15m 26i/262s

asynch1-cnt9 -/105→50 k=100 too small(2m) 15m 26i/260s

synch0 30 10sec 3h30m 26i/220s

Table 8.12: Check 1: Drive to Transition: ’ACTIVATE_CROSSING_CTRL:PASS_CROSSING →
ACTIVATE_CROSSING_CTRL:IDLE’ without freezing and with error-indication inputs
frozen to false

Note, that the witness need not necessarily show a ’normal run’ of the system. Even if e.g.
COMMUNICATION rejects establishing communication or if CROSSING fails to report a safe status
due to light- or barrier errors, the transition is reachable.
Table 8.12 lists the results and run-times for check_1. The check can be combined with
assumptions and freezing: the paths of the upper half 8.12 involve a ’faulty crossing’ and
’manual release’ (cf. figure 3.6), where the latter is represented simply by a free input of
the model. By freezing this input to false, transition ’FAULTY_CROSSING →PASS_CROSSING’
can be disabled in order to obtain more interesting witness. Also, disabling all error-sensors
influences the resulting witness-traces. The lower part of table 8.12 shows the effects of
freezing SYSTEM:SENSOR_ON, SYSTEM:SENSOR_ERR, SYSTEM:RED_ERR, SYSTEM:YELLOW_ERR and
SYSTEM:RELEASED_MAN to false.

Check 2: Drive to Property: ’CROSSING_CTRL:OPENING_GATES and

CROSSING:BARRIER_OPENING and primed(CROSSING_CTRL:IDLE)’
checks 2,3 and 4 check for reachability of different configurations of basic states of CROSSING
(statechart CROSSING_CTRL, cf. figure 3.10) in the context of the entire system model. Check_2

239

8 Application of Verification Techniques - Experiences and Results

checks the ability of CROSSING to become idle again and hence being ready for a new activa-
tion without getting stuck. Although check_2 is defined only by referring to states and one
event in the scope of CROSSING, the resulting witness traces are of interest w.r.t. the entire
system. In order to reach the specified configuration, TRAIN has to initiate COMMUNICATION,
COMMUNICATION has to transmit all communications, and CROSSING has to be activated by
TRAIN via COMMUNICATION. The resulting witness-traces according to table 8.13 show all prereq-
uisites for finally taking transition CROSSING_CTRL:OPENING_GATES→CROSSING_CTRL:IDLE.

Check 2 has been applied in combination with freezing the input SYSTEM:D_SPEED to 100 and
18 for the asynchronous and the synchronous variant of the model, respectively. Moreover,
crossing point TRAIN:CCPOS has been frozen to 150. Application of freezing drastically reduces
the degree of freedom in activity TRAIN to activate CROSSING and to compute an appropriate
nominal speed when approaching CROSSING.

Interestingly, while invariance checking obviously benefits from this restriction, bounded model
checking is aggravated by narrowing the possible solutions.

Model Trace-Length Time bmc Time inv Model Size

asynch0 49 5m TO!12h 31i/270s

asynch1 49 5m TO!12h 31i/268s

asynch0-cnt9 - k=100 too small(1m) TO!12h 31i/273s

asynch1-cnt9 - k=100 too small(1m) TO!12h 31i/271s

synch0 25 5sec 3h30m 31i/225s

with freezing:
asynch0 53 15m 5m 15i/254s

asynch1 53 15m 5m 15i/252s

synch0 25 5sec 1m 15i/225s

Table 8.13: Check 2: Drive to Property: ’CROSSING_CTRL:OPENING_GATES and CROSSING:-

BARRIER_OPENING and primed(CROSSING_CTRL:IDLE)’ without freezing and with
SYSTEM:D_SPEED frozen to 100 (for asynchronous model) and 18 (for synchronous model)
, respectively, and TRAIN:CPPOS frozen to 150

Check_3, check_4, check_5 and check_6 together are aimed at obtaining witness for the possibili-
ties of TRAIN to pass CROSSING according to the protocol. Check_4 is aimed at obtaining a witness
for receiving a SYSTEM:CROSSING_FREE_SND from TRAIN, due to a timeout in TRAIN, because TRAIN

has approached CROSSING too slow. Check_5 checks for reachability of the situation that CROSSING
receives a SYSTEM:STATUS_RQ_REC from TRAIN right in the moment, when CROSSING is ready to
answer the status request. Finally, check_6 checks for possibility of a timeout in CROSSING (indi-
cated by TIMEOUT_OPCENTER), which ends CROSSING’s willingness to answer a status request from
TRAIN. Since CROSSING’s ability to answer a status request is disabled, if the maximum barrier closed
time (MBCT) elapses before receiving CROSSING:PASSED or SYSTEM:CROSSING_FREE_REC, successful
application of checks 3, 4, 5 and 6 justifies the modification of MBCT for model asynch1.

Check 3: Drive to Property: ’CROSSING_CTRL:BARRIER_CLOSED and

primed(CROSSING_CTRL:OPENING_GATES) and CROSSING:PASSED and

240

8.1 Application of Robustness Analyses and Formal Debugging

not(SYSTEM:CROSSING_FREE_REC)’

Check_3 and check_4 focus on different configurations for taking compound transition
CROSSING_CTRL:BARRIER_CLOSED→CROSSING_CTRL:OPENING_GATES

in statechart CROSSING_CTRL (figure 3.10) of activity CROSSING. The examined transition
is triggered by a disjunction of two events. Event CROSSING:PASSED is driven by statechart
SENSOR_CTRL and depends on free input SYSTEM:SENSOR_ON. Event SYSTEM:CROSSING_FREE_REC
is driven by COMMUNICATION reacting on SYSTEM:CROSSING_FREE_SND, which is issued by TRAIN

indicating a timeout when approaching a secured CROSSING.
Check 3 focus on receipt of CROSSING:PASSED in absence of SYSTEM:CROSSING_FREE_SND

Model Trace-Length Time bmc Time inv Model Size

asynch0 45 2m TO!12h 31i/274s

asynch1 45 1m TO!12h 31i/272s

asynch0-cnt9 101→52/- 1m TO!12h 31i/277s

asynch1-cnt9 101→52/- 1m TO!12h 31i/275s

synch0 23 10sec 1h15m 31i/225s

Table 8.14: Check 3: Drive to Property: ’CROSSING_CTRL:BARRIER_CLOSED and primed(

CROSSING_CTRL:OPENING_GATES) and CROSSING:PASSED and not(SYSTEM:CROS-

SING_FREE_REC)’

Check 4: Drive to Property: ’CROSSING_CTRL:BARRIER_CLOSED and

primed(CROSSING_CTRL:OPENING_GATES) and not(CROSSING:PASSED)

and SYSTEM:CROSSING_FREE_REC’

In contrast to check_3, check_4 is aimed at producing a witness for TRAIN being stopped by a
timeout when approaching an already secured crossing, because TRAIN approaches CROSSING

not fast enough.

Model Trace-Length Time bmc Time inv Model Size

asynch0 54 25m TO!12h 31i/270s

asynch1 54 15m TO!12h 31i/268s

asynch0-cnt9 - k=100 too small TO!12h 31i/273s

asynch1-cnt9 -/(112→56) k=100 too small TO!12h(36h) 31i/271s

synch0 30 20sec TO!12h(24h) 31i/225s

Table 8.15: Check 4: Drive to Property: ’CROSSING_CTRL:BARRIER_CLOSED and primed(

CROSSING_CTRL:OPENING_GATES) and not(CROSSING:PASSED) and SYSTEM:-

CROSSING_FREE_REC’

Check 5: Drive to Property: ’last(CROSSING_CTRL:BARRIER_CLOSED)
and CROSSING_CTRL:BARRIER_CLOSED and SYSTEM:STATUS_RQ_REC’

CROSSING only responds to a status request when in state CROSSING_CTRL:BARRIER_CLOSED,

241

8 Application of Verification Techniques - Experiences and Results

because response to a status request is modeled using a static reaction of this state. This static
reaction is executed only if CROSSING_CTRL:BARRIER_CLOSED (1) was active in the last step
and (2) is active in the actual step and (3) a status request is received. By checking for reacha-
bility of this situation, evidence for correctness of essential timing is established: When TRAIN

reaches a designated activation point, communication with CROSSING is initiated and CROSSING

is sent an activation command. Once CROSSING is activated, CROSSING_CTRL commands the
lights to be turned on and the barriers to be lowered. State CROSSING_CTRL:BARRIER_CLOSED

is entered only after LIGHT_CONTROL and BARRIER_CTRL have reported successful completion
of these commands. Meanwhile, TRAIN simply waits for a particular time - defined by constant
CCT - before sending a status request.
Besides other aspects of this protocol, check 5 gives evidence for the correct value of CCT. Since
TRAIN send a status request only once, CCT must be large enough to ensure that CROSSING_CTRL
can enter CROSSING_CTRL:BARRIER_CLOSED before receiving the request. Using this check we
were able to determine the value ’12’ of CCT for the synchronous model. With the original
value of ’8’ , the synchronous model was unable to meet the desired protocol.
State CROSSING_CTRL:BARRIER_CLOSED is left after “maximum barrier closed time” (MBCT).
Using check 5 we assured ourselves that reducing MBCT to ’8’ (for model asynch1) instead of
the original value ’40’ (model asynch0) does not disable the protocol in general.

Model Trace-Length Time bmc Time inv Model Size

asynch0 48 5m TO!12h 31i/271s

asynch1 48 3m TO!12h 31i/269s

asynch0-cnt9 -/102→50 k=100 too small(30sec) 3h 31i/274s

asynch1-cnt-9 -/102→50 k=100 too small(30sec) 50m 31i/272s

synch0 26 10sec 2h 31i/226s

Table 8.16: Check 5: Drive to Property: ’last(CROSSING_CTRL:BARRIER_CLOSED) and

CROSSING_CTRL:BARRIER_CLOSED and SYSTEM:STATUS_RQ_REC’

Check 6: Drive to State: ’CROSSING_CTRL:TIME_OUT’
This check is mainly aimed at justifying the reduction of MBCT from ’40’ of the original model
asynch0 to ’8’ in models asynch1 and asynch3. As discussed in the context of the stabiliza-
tion check, this modification aims at tackling verification complexity, but has to preserve the
reachability of all states and preserves the behavior of the model w.r.t. the specified protocol
in general. Since state CROSSING_CTRL:TIME_OUT is reachable in asynch0, the state has to be
reachable also in asynch1 and asynch3 as well as in the synchronous variant synch0 of the
model. Table 8.17 summarizes results and run-times for check_6:

242

8.1 Application of Robustness Analyses and Formal Debugging

Model Trace-Length Time bmc Time inv Model Size

asynch0 - TO!12h TO!12h 31i/270s

asynch1 67 25m TO!12h 31i/268s

asynch0-cnt-9 - k=100 too small TO!12h 31i/273s

asynch1-cnt9 - k=100 too small TO!12h 31i/271s

synch0 64 8m TO!12h 31i/225s

with freezing:
asynch0 173 TO!12h 5m 4i/212s

asynch1 77 18m 2m 4i/209s

asynch3 67 2m 4m 31i/219s

synch0 66 30sec 1m 4i/194s

Table 8.17: Check 6: Drive to State: ’CROSSING_CTRL:TIME_OUT’ without freezing and with freez-
ing according to table 8.18 plus frz1 or frz2, respectively, of table 8.19.

Check ’normal run’: Drive to Property: ’TRAIN:ODATA.POS>250’
This check is aimed at obtaining witnesses for TRAIN reaching the ’end of the track’. Track
positions are modeled using natural numbers in the range from 0 to 255. For all runs, freezing
TRAIN:CPPOS=150 (cf. table 8.18) locates CROSSING at position 150. Hence, ’TRAIN:ODATA.POS>250’
specifies a situation where TRAIN has passed CROSSING and approaches the end off the track.
Since TRAIN pays no attention to the crossing position as desired, if CROSSING is treated as
’already regarded’, an assumption (cf. ass1 in table 8.19) is required, assuming that input
ACTIVATE_CROSSING_CTRL:CP_REG_INP may be set only after ACTIVATE_CROSSING_CTRL:IDLE
has been entered3. The check is expected to obtain witnesses for TRAIN passing a secured
CROSSING without being stopped before and without manual release of CROSSING, due to mal-
functions of lights or barriers (cf. table 8.18). Since TRAIN must automatically compute an
appropriate speed - depending on the desired speed - in order not to overrun CROSSING but
also not to be stopped before it, driver interaction by changing the desired speed has been
disabled using freezing or assumptions.
As already mentioned, the interpretation of speed differs between the asynchronous models
and the synchronous model. For the synchronous model SYSTEM:D_SPEED=18 turned out to
be a meaningful choice in order to reach TRAIN:ODATA.POS>250. For the asynchronous model,
choosing 100 has been successful.
Very interesting witnesses could be obtained by not freezing SYSTEM:D_SPEED but assuming
to be an arbitrary but fixed value. Assuming an arbitrary but fixed value for SYSTEM:D_SPEED,
forces the verification engine to determine the adequate speed in order to reach the end of
the track without being stopped but within as few steps as possible. It is thus let to the
verification engine to solve also an optimization problem. This could be achieved by using
assumption ass2 (cf. table 8.19), which allows SYSTEM:D_SPEED to be chosen arbitrarily in
step 0, but not to change for all subsequent steps. The computed value for SYSTEM:D_SPEED

3TRAIN:CP.ALREADY_REGARDED is assigned the value of input ACTIVATE_CROSSING_CTRL:CP_REG_INP when en-
tering ACTIVATE_CROSSING_CTRL:IDLE. Only if TRAIN:CP.ALREADY_REGARDED is not true, the function
COMPUTE_NOMINAL_SPEED computes values according to the desired braking-curve in order to stop the TRAIN be-
fore passing an unsecured CROSSING. Assumption ass1 enforces TRAIN:CP.ALREADY_REGARDED to be false until
reentering ACTIVATE_CROSSING_CTRL:IDLE, which can only happen after the CROSSING has been passed.

243

8 Application of Verification Techniques - Experiences and Results

is listed for all results referring to assumption ass2 in table 8.20 in the column Trace-length.
Moreover, the table lists the results and run-times for all different combinations with assump-
tions and freezing.

Freezing for all variants of check ’normal run’:

Input Value

TRAIN:CPPOS 150

TIMER_CTRL:V_STILL_SAFE_P true

SYSTEM:V_BRAKE_POINT_P false

SYSTEM:SENSOR_ON false

SYSTEM:RED:ERROR false

SYSTEM:YELLOW_ERR false

SYSTEM_RELEASED_MAN false

SYSTEM:CROSSING_VACATED false

Table 8.18: Freezing for check ’normal run’

The freezing for all variants of check ’normal run’, disable indication of light errors by the free inputs
RED_ERROR and YELLOW_ERR. Furthermore, detection of a TRAIN spontaneously passing CROSSING

is disabled (SENSOR_ON). CROSSING_VACATED and RELEASED_MAN are free inputs aimed at reset-
ting TRAIN and CROSSING after emergency stop and timeouts, respectively. V_STILL_SAFE_P and
V_BRAKE_POINT_P are abstractions from internal computations of TRAIN by inputs, used in the
computation of the braking curve. These freezing are referred to by ’FRZ ’ in table 8.20.

Additional assumptions and freezing for the different variants of check ’normal run’ :

ass1 init_Q_only_after_P_immediate effect:

P= ACTIVATE_CROSSING_CTRL:IDLE do not treat Crossing

Q= ACTIVATE_CROSSING_CTRL:CP_REG_INP Position as ”already regarded”

ass2 inv_P__after_N_steps effect:

P = SYSTEM:D_SPEED==last(SYSTEM:D_SPEED) chose D_SPEED

N = 1 arbitrarily but fixed

frz1 SYSTEM:D_SPEED frozen to 100 for asynchronous models

frz2 SYSTEM:D_SPEED frozen to 18 for synchronous mode

Table 8.19: Assumptions for check ’normal run’

Runs :

For application of bounded model checking to the counter approximation models asynch0-cnt9 and
asynch1-cnt9, the maximal unroll depth has been chosen 200.

244

8.1 Application of Robustness Analyses and Formal Debugging

Model Trace-Length assumptions Time bmc Time inv Model Size

asynch0 92/92 FRZ,ass1, 1h10m 2m30sec 8i/213s

97/n.a. frz1 (k=96:3m30sec)

asynch0 -/94:D_SPEED=15 FRZ,ass1, TO!12h 1h20m 16i/229s

ass2

asynch1 94/92 FRZ,ass1 1h12m 2m 8i/211s

97/n.a. frz1 (k=96:2m)

asynch1 -/94:D_SPEED=15 FRZ,ass1, TO!12h 1h20m 16i/226s

97:D_SPEED=15/n.a. ass2 (k=96:5m)

asynch0-cnt9 191→94/191→95 FRZ,ass1,frz1 30sec 1m45sec 8i/216s

asynch0-cnt9 191→93:D_SPEED=224/ FRZ,ass1, 13m 6m 16i/232s

191→93:D_SPEED=15 ass2

asynch1-cnt-9 191→94/191→95 FRZ,ass1,frz 30sec 1m45sec 8i/214s

asynch1-cnt-9 191→94:D_SPEED=224/ FRZ, ass1,ass2 13m 6m 16i/226s

191→95:D_SPEED=15/n.a.

synch0 44 FRZ,ass1, 30sec 45sec 8i/193s

frz2

synch0 44 FRZ,ass1, 1m 3m 16i/201s

D_SPEED=18/D_SPEED=19 ass2

Table 8.20: Results of check ’normal run’

Check ’normal run’ reveals that invariance checking can sometimes be advantageous over bounded
model checking. When the determination of SYSTEM:D_SPEED has been left to the verification engine,
bounded model checking has been significantly slower than invariance checking and obtained in 2
of 5 cases no result in reasonable time for the first trial. The reason is that only few solutions
exist regarding the involved variables and timing of events for which TRAIN reaches the end of
the track - as can be seen from the results for the counter approximated models. In particular
dynamic stabilization of super-steps obviously aggravates finding a solution. As can be seen from
the results, the shortest witness reflecting a ’normal run’ is of length 92 steps. Hence, the bounded
model checker has to unroll the transition relation of the system-model 92 times in order to obtain
a solution. The situation looks different if bounded model checking is applied with an already 96
times unrolled model. In this case a solution has been found within a time comparable to invariance
checking (rows 1,3,4 of table 8.20).

8.1.6 Summary of the Application of Formal Debugging

Application of formal debugging proved to be a powerful technique in order to obtain witnesses
and simulations driving the system into specific situations of interest. In most cases, application
of bounded model checking has been successful, whereas invariance checking often suffered from
complexity. Precisely because formal debugging checks are in general expected to reach the specified
situation and to obtain a witness, bounded model checking is the recommended technique.

It has been presented, how formal debugging checks can be applied to examine scenarios leading
to particular situations in a protocol. The results bear evidence for reachability of the specified
system states. Application of formal debugging obtained in all cases ’high quality custom-specific’

245

8 Application of Verification Techniques - Experiences and Results

simulations, driving the system to user-defined configurations of the system. Creating such simula-
tions by interactive simulation would require a considerable effort, because in interactive simulation
the user has to provide the system with the appropriate inputs exactly at the right instances of
time, even if events are involved, which are visible only for one step.

8.2 Application of Verification using Observer Pattern

In this section, we present briefly the application of verification using predefined observer pattern,
as offered by the STVE. The requirements, for which verification has been performed, have been
taken from [DK01]. There, 5 sample requirement specifications have been listed :

P1 : The train only passes a secured railway crossing

P2 : The barrier is only opened after the train has passed the crossing.

P3 : The yellow light is only activated after the traffic lights have been switched on.

P4 : The red light is only activated after the yellow light.

P5 : The minimum green time is respected.

In [DK01], the requirements are formalized using symbolic timing diagrams, for which temporal
logic formulae have been generated. Verification has been applied to the sub-activities, which are
responsible for the realization of the respective requirement. In contrast, we applied all verification
tasks also to the system-model. Therefore, two variants of propositional abstraction have been em-
ployed: First, ’automatic propositional abstraction’ as presented in [Bie03], which is a comfortable
method that does not require any expert knowledge. In the second variant of propositional abstrac-
tion the user is prompted for selection of local variables to be treated abstractly. In all proofs it has
been abstracted (by syntactic existential quantification) from all user-defined local variables except
for the variables referred to by the pattern.

P2 is a requirement regarding activity CROSSING, which has been checked once for the activity
in isolation and also for the entire system-model.

The verification tasks for requirements P3, P4 and P5 have been applied to CROSSING instead
of only to CROSSING’s sub-activity LIGHTS_CONTROL_CTRL. Finally P1 has been checked for activity
TRAIN as well as for SYSTEM.

Regarding the synchronous variant of the case-study, the execution-times for verification are
comparable to the results of [DK01]. Since the focus of this work is put on the asynchronous
execution semantices, we furthermore present verification results for the more complex super-step
variant of the case-study.

As there exists no system-wide indication of ”train passing the crossing”, requirement P1 can
only be formalized referring to the perception of TRAIN4. If we would refer to CROSSING:PASSED

we would have to take SYSTEM:SENSOR_ON into consideration (SYSTEM:SENSOR_ON is a free input
which must appropriately set by the environment!). Correct functionality for SYSTEM:SENSOR_ON

can only be established at the costs of a highly non-trivial assumption. In this case we would have
mainly verified the assumption but not considered reactions of the model. On the other hand, if
SYSTEM:PASSED_XING is referred to as indication, the specification captures only the perception of
TRAIN.

4We refer the reader to section 3.3 for the explanation of the model.

246

8.2 Application of Verification using Observer Pattern

Formalisation of the Requirements

Requirements P1-P4 are already formulated in the form ’event A may happen only after event B’.
Hence, an appropriate formalization can make use of a predefined ’Q_onlyafter_P’ pattern.

0 not(P) and not(Q)

1

 (P) and not(Q)

3

 Q

 not(Q)

2

 Q

true not(Q) and not(P)

 not(Q) and (P)

 Q

Figure 8.3: Pattern iter_Q_onlyafter_P__immediate

P5 does not require a relationship of events, but is an invariant, which is required to hold always
for all computations of the model. Hence, an appropriate pattern is ’inv_P_immediate’:

0 P

1

 not(P)

true

Figure 8.4: Pattern inv_P__immediate

In the tables below, the columns are marked as follows:

I denotes application of ’automatic propositional abstraction’ [Bie03]

II denotes user defined propositional abstraction (cf. section 7.2).

III denotes verification without propositional abstraction; verification has been applied only with
COI computation

All proofs were performed on two dual processor SunOS 5.8 Blade 1000 work stations, with each
2GB memory and 900MHz SPARC processors. All applications of the automatic propositional
abstraction succeeded in first iteration.

247

8 Application of Verification Techniques - Experiences and Results

P1: The train only passes a secured railway crossing

p1_pattern = iter_Q_onlyafter_P__immediate

prop P : (SYSTEM:RELEASED_MAN) or (SYSTEM:CROSSING_SAFE_REC);

prop Q : (SYSTEM:PASSED_XING);

SYSTEM:RELEASED_MANis an input of SYSTEM, which enables TRAIN to pass a CROSSING that
did not answer a status request from TRAIN. In this case TRAIN treats the CROSSING as being
faulty, stops before CROSSING and can only pass after manual release. SYSTEM:CROSSING_-

SAFE_REC is the expected normal reaction of CROSSING to a status request of TRAIN. If after
activation of CROSSING securing is completed, CROSSING emits event CROSSING_SAFE_SND to
COMMUNICATION, which transmits the information by emitting CROSSING_SAFE_REC to TRAIN.
SYSTEM:PASSED_XING is an output of TRAIN. Using this event, TRAIN indicates that a CROSSING

position according to the track data has been passed.
On page 229 we have described the back-door effect regarding the input ACTIVATE_CROS-

SING_CTRL:CP_REG_INP, which lets TRAIN consider CROSSING as already regarded. The authors
of [DK01] did not state an assumption regarding ACTIVATE_CROSSING_CTRL:CP_REG_INP. In
contrast, for verification P1 we have applied a freezing ACTIVATE_CROSSING_CTRL:CP_REG_INP

to false. Nonetheless, P1 only specifies the local perception of TRAIN. In order to specify the sit-
uation of TRAIN only passing a secured CROSSING more appropriately, the specification should
state that SYSTEM:PASSED_XING is only possible after CROSSING:IN_SAFE, as it is proved by
the example for compositional verification using STDx in section 8.3.3. Verification of such a
pattern - under the assumption that SYSTEM:RELEASED_MAN and ACTIVATE_CROSSING_CTRL:-

CP_REG_INP are false forever - suffers from complexity, even for application of automatic
abstraction refinement.

asynch0 I Time ModelSize II Time ModelSize III Time ModelSize

System 2sec 35i/17s 2sec 10i/27s TO!12h 31i/264s
Train 1sec 32i/13s 1sec 8i/19s TO!12h 24i/144s

Table 8.21: Verification of P1 for Asynchronous Model

synch0 I Time ModelSize II Time ModelSize III Time ModelSize

System 1sec 34i/12s 220sec 30i/95s TO!12h 31i/218s
Train 1sec 31i/14s 40sec 28i/88s TO!12h 24i/117s

Table 8.22: Verification of P1 for Synchronous Model

P2: The barrier is only opened after the train has passed the crossing

p2_pattern = iter_Q_onlyafter_P__immediate

prop P : (SYSTEM:CROSSING_FREE_REC) or (CROSSING:PASSED) or (SYSTEM:CROSSING_VACATED);

prop Q : (CROSSING_CTRL:OPENING_GATES);

CROSSING:PASSED is a local event of activity CROSSING, which is emitted by the sensor control
activity according to a falling edge of input condition SENSOR_ON, where SENSOR_ON represents
a way-side sensor. SYSTEM:CROSSING_VACATED is a free input of the system, which can be
used to reset CROSSING. Finally SYSTEM:CROSSING_FREE_REC is the transmission event from

248

8.2 Application of Verification using Observer Pattern

COMMUNICATION which is emitted in reaction to SYSTEM:CROSSING_FREE_SND from TRAIN. The
formal parameter Q of the pattern is mapped to CROSSING_CTRL:OPENING_GATES, which is a
basic state of the crossing controller. At all transitions entering this state event OPEN_BARRIER
is emitted to the barrier control, which controls the physical barriers .

asynch0 I Time ModelSize II Time ModelSize III Time ModelSize

System 1sec 14i/23s 5sec 11i/35s TO!12h 31i/263s
Crossing 1sec 11i/19s n.a. n.a. 450sec 12i/99s

Table 8.23: Verification of P2 for Asynchronous Model

synch0 I Time ModelSize II Time ModelSize III Time ModelSize

System 1sec 12i/27s 2sec 11i/26s TO!12h 31i/217s
Crossing 1sec 10i/19s n.a. n.a. 10sec 12i/78s

Table 8.24: Verification of P2 for Synchronous Model

P3: The yellow light is only activated after the traffic lights have been switched on

p3_pattern = iter_Q_onlyafter_P__immediate

prop P : (CROSSING:TURN_LIGHTS_ON);

prop Q : (SYSTEM:SWITCH_ON);

CROSSING:TURN_LIGHTS_ON is a local event of CROSSING, which is used in the communication
between activity CROSSING_CTRL and LIGHTS_CONTROL_CTRL, while SYSTEM:SWITCH_ON is an
output, which has been added only for external observability.

asynch0 I Time ModelSize II Time ModelSize III Time ModelSize

System 1sec 20i/33s 10sec 34i/45s TO!12h 31i/264s
Crossing 2sec 33i/20s n.a. n.a. 240sec 12i/99s

Table 8.25: Verification of P3 for Asynchronous Model

synch0 I Time ModelSize II Time ModelSize III Time ModelSize

System 1sec 28i/21s 2sec 14i/21s TO!12h 31i/218s
Crossing 2sec 28i/21s n.a. n.a. 12sec 12i/79s

Table 8.26: Verification of P3 for Synchronous Model

249

8 Application of Verification Techniques - Experiences and Results

P4: The red light is only activated after the yellow light

p4_pattern = iter_Q_onlyafter_P__immediate

prop P : (SYSTEM:SWITCH_ON);

prop Q : (SYSTEM:SWITCH_OVER);

Both, SYSTEM:SWITCH_ON and SYSTEM:SWITCH_OVER are output events, which have been added
for external observation.

asynch0 I Time ModelSize II Time ModelSize III Time ModelSize

System 1sec 24i/11s 2sec 14i/27s TO!12h 31i/264s
Crossing 1sec 24i/11s n.a. n.a. 306sec 12i/99s

Table 8.27: Verification of P4 for Asynchronous Model

synch0 I Time ModelSize II Time ModelSize III Time ModelSize

System 1sec 20i/7s 1sec 11i/10s TO!12h 31i/218s
Crossing 1sec 20i/7s n.a. n.a. 8sec 12i/79s

Table 8.28: Verification of P4 for Synchronous Model

P5: The minimum green time is respected

p5_pattern = inv_P__immediate

prop P : not(SYSTEM:SWITCH_ON and LIGHTS_CONTROL_CTRL:GT < LIGHTS_CONTROL_CTRL_DD_MGT);

Again, SYSTEM:SWITCH_ON is an output, which has been added for external observation. This
event is emitted at a transition in activity LIGHTS_CONTROL_CTRL. LIGHTS_CONTROL_CTRL:GT is
a counter, which reflects the duration of the current green time, which LIGHTS_CONTROL_CTRL_DD_MGT

is a constant.

asynch0 I Time ModelSize II Time ModelSize III Time ModelSize

System 1sec 16i/18s 2sec 12i/35s TO!12h 31i/264s
Crossing 1sec 16i/18s n.a. n.a. 400sec 12i/99s

Table 8.29: Verification of P5 for Asynchronous Model

synch0 I Time ModelSize II Time ModelSize III Time ModelSize

System 1sec 12i/20s 1sec 11i/24s TO!12h 31i/218s
Crossing 1sec 12i/20s n.a. n.a. 15sec 12i/79s

Table 8.30: Verification of P5 for Synchronous Model

250

8.3 Application of Verification using Symbolic Timing Diagrams

8.2.1 Summary of Application of Observer Pattern Verification

The example applications of pattern based verifcation demonstrate that important requirements
can be captured using observer pattern and that verification for these specifications can be applied
efficiently. In particular, using the automatic propositional abstraction refinement [Bie03] capability
of the STVE obtained optimal results for all of the requirements. An advantage of this technique
is that the user does not need to have any knowledge about the technique and that the used needs
not to choose variables for abstraction. The only expert knowledge in pattern based verification is
required for selection of the appropriate pattern and mapping of concrete expressions to the formal
parameters of the selected pattern.

Of course, not all specifications of interest can be formalized using observer pattern, even though
additional specific observer pattern can be added (and have been added during the time of writing)
to the pattern library. But there are still limitations for this approach, like the amount of formal
parameters in the pattern definition or the flexibility with which pattern can specify real-time
requirements. Experiences have shown that nearly all safety-critical requirements for a large amount
of models from project-partners and customers can be captured by the offered pattern library, while
only about maximal 50% of the functional requirements could be specified using pattern [Hol05].

8.3 Application of Verification using Symbolic Timing Diagrams

In this section, we illustrate the application of verification using Symbolic Timing Diagrams with
three examples. The first example is a component proof for activity ACTIVATE_CROSSING_CTRL of
activity TRAIN. This example demonstrates the combined usage of step and super-step constraints
within one specification.

The second application example demonstrates compositional verification of a real-time property
of activity CROSSING. It is shown that CROSSING always will report itself safe, if the status request is
received within a certain time-interval after activating CROSSING and provided that hardware errors
are absent and that neither the train nor the environment aborts the securing process.

Finally, the third application example demonstrates a typical use-case of compositional verifi-
cation for pure safety properties. Using a series of un-timed specifications regarding the order of
events, it is proved by compositional reasoning from specifications of the sub-activities of SYSTEM,
that TRAIN can never pass an unsecured CROSSING.

In order to ease the understanding of the presented diagrams, we have replicated some screen-
shots of the specified activities. For a more detailed explanation regarding the depicted activities,
the reader is referred to section 3.3 for explanations regarding the illustrations.

Remark 8.1

In the diagrams presented in this sections, the names of Statemate-variables appear with the
suffixes ’_F’ and ’_IN_S’, respectively. This is due to the interface representations using SSL, where
fast interface objects (inputs as well as outputs) are marked with suffix ’_F’, while slow inputs from
the environment are marked with the suffix ’_IN_S’, in order to emphasize the origin of the respective
observable.

�

251

8 Application of Verification Techniques - Experiences and Results

8.3.1 Component Proof for ACTIVATE_CROSSING_CTRL

Figure 8.5: Activity TRAIN

Figure 8.6: Statecharts ACTIVATE_CROSSING_CTRL and WF_CROSSING_SAFE

Activity ACTIVATE_CROSSING_CTRL is an inner activity of TRAIN which is responsible for establishing
of the communication link and activation of CROSSING. Once an activation point has been signalized,
statechart WF_CROSSING_SAFE is entered and ST_COMMUNICATION is sent to COMMUNICATION. After
COMMUNICATION indicates an established radio link, CROSSING is activated and CCT (=8) time units
after receipt of the corresponding acknowledge, a status request is sent to CROSSING. The entire
securing process is aborted if the sibling activity SPEED_CONTROL_CTRL emits a STPPED event indi-

252

8.3 Application of Verification using Symbolic Timing Diagrams

cating an emergency break. Hence, provided that no emergency break stops the train and provided
that COMMUNICATION and CROSSING react appropriately, a status request has to be send exactly 8
super-steps after receipt of ACK_REC. Correct behavior of ACTIVATE_CROSSING_CTRL according to
this scenario is specified by commitment snd_st_rq_after_act (cf. figure 8.7).

Figure 8.7: ACTIVATE_CROSSING_CTRL : Commitment snd_st_rq_after_act

Commitment snd_st_rq_after_act specifies an ordered and timed sequence of events with which
ACTIVATE_CROSSING_CTRL reacts to setting of an activation point by the environment. The diagram
illustrates the necessity of combining step and super-step constraints in the specification of sub-
systems.

It is committed that ACTIVATE_CROSSING_CTRL reacts on V_ACTIVATION_POINT_P_IN_S by emit-
ting event ST_COMMUNICATION_F to activity COMMUNICATION in the subsequent step. In order to
provide the diagram unwinding algorithm with an ordering information and this way to avoid cre-
ation of all possible combinational paths in the TSA representation, possible constraints are used
in the diagram, e.g. to capture the expectation about that COMMUNICATION_ESTABLISHED_F will be
observed only after emission of ST_COMMUNICATION_F.

Once the communication link is established snd_st_rq_after_act guarantees that in the subse-
quent step ACTIVATE_CROSSING_SND_F is emitted - which is translated into ACTIVATE_CROSSING_-

REC_F by COMMUNICATION and communicated to CROSSING.

Adherence to the specified sequence of events depends on five assumptions, which are documented
on the following pages.

Assumption ass_comm (figure 8.8) captures the assumption that COMMUNICATION will react on
this event with event COMMUNICATION_ESTABLISHED_F within the subsequent super-step. The as-
sumption reflects the fact that the reaction of COMMUNICATION takes place in the action part of a
timeout-triggered transition (with constant ELT=1, cf. figure 8.65).

253

8 Application of Verification Techniques - Experiences and Results

Figure 8.8: ACTIVATE_CROSSING_CTRL : Assumption ass_comm

Since COMMUNICATION reacts on ST_COMMUNICATION_F by entering state WAIT_FOR_CONNECTION

(which is left by timeout ELT=1 after entering the state with reaction COMMUNICATION_ESTABLISHED_F),
we can safely assume that COMMUNICATION reacts on the first ST_COMMUNICATION_F with emitting
COMMUNICATION_ESTABLISHED_F in the next super-step.

In order to guarantee sending a STATUS_RQ_SND_F it is assumed that CROSSING reacts on ACTI-

VATE_CROSSING_REC_F by emitting ACK_SND_F in the subsequent step (which again is translated into
ACK_REC_F by COMMUNICATION and communicated to ACTIVATE_CROSSING_CTRL). This assumption
about COMMUNICATION and CROSSING is captured by assumption ass_cross_and_comm (cf. figure
8.9). Since forward and backward translation and communication is performed using fast commu-
nication once the communication link has been established, this entire portion of the protocol takes
place within one super-step. COMMUNICATION will take one step to emit ACTIVATE_CROSSING_REC_F,
CROSSING will take one step to react on ACTIVATE_CROSSING_REC_F by emitting ACK_SND_F and
again COMMUNICATION will need one step to emit ACK_REC_F as reaction. Hence, we assume that the
appropriate reaction on ACTIVATE_CROSSING_SND_F will be received 3 steps after emission of the
event.

Figure 8.9: ACTIVATE_CROSSING_CTRL : Assumption ass_cross_and_comm

ass_cross_and_comm specifies the assumption that COMMUNICATION as well as CROSSING and again
COMMUNICATION will react as expected after the communication link is established. Obviously, this
assumption is critical for the presented component proof and only a compositional proof could
establish validity of this assumption. In the context of this work, we rely on the validity of this
assumption and confide in critical inspection of COMMUNICATION and CROSSING.

Figure 8.10: ACTIVATE_CROSSING_CTRL : Assumption ass_ext

254

8.3 Application of Verification using Symbolic Timing Diagrams

Assumption ass_ext is required only for enabling the activation condition of
snd_st_rq_after_act, because receipt of V_ACTIVATION_POINT_P_IN_S in step 0, would violate
the activation condition of commitment snd_st_rq_after_act.

Figure 8.11: ACTIVATE_CROSSING_CTRL : Assumption crossing_safe

Since nothing concrete is known about the environment form the perspective of activity ACTIVATE_-

CROSSING_CTRL, CROSSING_SAFE_SND_F can be emitted by the environment spontaneously without
any correspondence to the expected protocol. From inspection of the model, it can be put as fact that
CROSSING_SAFE_REC_F can only be observed if WF_CROSSING_SAFE has emitted STATUS_RQ_SND_F

first (provided that COMMUNICATION does not produce arbitrary events - which would be an unfore-
seen error-mode of the model) .

Figure 8.12: ACTIVATE_CROSSING_CTRL : Assumption stpped_fals

In order to focus on the scenario that ACTIVATE_CROSSING_CTRL is not interrupted by an emer-
gency break before sending a status request, it has to be assumed that no STPPED_F aborts waiting
for the status report from CROSSING. Notice, that STPPED_F is a free and unrestricted input from
the perspective of ACTIVATE_CROSSING_CTRL.

Component-Proof of snd_st_rq_after_act of ACTIVATE_CROSSING_CTRL

The following table shows the size of the model, and the sizes of the assumption and the commitment
observer modules in terms of input and state bits as well as the time needed for performing invariance
checking on the parallel composition of the model with the observer modules. In this and the
following tables of this section, BDD-Nodes denotes the size of the transition relation for forward
image computation. Image-Comps denotes the number of image computations performed by the
VIS model checker for specification verification using invariance checking.

Model Assumption Commitment Time BDD-Nodes Image-Comps

71i/38s 15i/34s 13i/19s 50sec 13516 62

Specified by snd_st_rq_after_act and proved to be true is the fact that ACTIVATE_CROSSING_CTRL
(and hence activity TRAIN) always sends a STATUS_RQ_REC_F 8 time units (super-steps) after receipt
of an acknowledge for activation from CROSSING, provided that no emergency break interrupts the

255

8 Application of Verification Techniques - Experiences and Results

activation of CROSSING by ACTIVATE_CROSSING_CTRL.According to [KT00], “the train sends the
status request after waiting an amount of time which corresponds to the time needed for crossing
to carry out the securing procedure.” In contrast to this textual specification, CCT only captures a
mean closing time.

It will turn out in the subsequent example that CROSSING guarantees a safe-report only if STATUS_RQ_REC_F
is received at least 13 time units (super-steps) after receipt of ACTIVATE_CROSSING_REC_F. Even
though CROSSING may react also on earlier status requests, the maximal duration of the securing
procedure amounts to 13 super-steps after which a safe-report can be guaranteed (under the as-
sumptions explained below) . Hence, the proof of snd_st_rq_after_act in combination with the
following compositional proof for CROSSING reveals that timer constant CCT has been chosen too
small in order to guarantee that CROSSING can always appropriately react on STATUS_RQ_SND_F.

8.3.2 Compositional Verification of CROSSING

The compositional proof presented in the sequel guarantees that CROSSING will - under particular
circumstances - always report itself safe, if TRAIN sends its status request within a particular time-
interval after activation of CROSSING. In order to establish this guarantee, it is assumed that :

• no hardware mal-function detains CROSSING from normal reaction, i.e.

– no light is defect,

– the barrier closes within a specified time-interval after receiving a lower-command, and

– the sensor does not indicate an error.

• neither the sensor indicates a passed train spontaneously, nor TRAIN aborts the securing process
spontaneously by sending a crossing-free signal until the maximal relevant point in time.

Provided that these assumptions hold, CROSSING will report itself safe, if a status request is received
at earliest 13 time units after receipt of an activation request and latest 45 time units after acti-
vation, where 13 time units is the maximum sum of all delays in activity LIGHTS_CONTROL_CTRL

plus the maximum delay between a close-barrier command from CROSSING_CTRL and the input
CLOSED_IN_S indicating the physical barriers closed. The maximum of 45 time-units originates from
the minimal sum of these delays plus the time triggered transition exiting state BARRIER_CLOSED in
CROSSING_CTRL indicating a timeout from the operation center.

256

8.3 Application of Verification using Symbolic Timing Diagrams

Specification of Activity CROSSING

SUPER_SYNC_MONITOR
Commitment: all_the_same Synchronization of sub−component−SUPER_SYNC_F

with global SUPER_SYNC_F
Commitment: toggle Decoupling of Step− and Super−step Clocks

Commitment: cr_safe_react_on_act

Commitment: lon_after_tlon
Assumptions:

no_red_err
no_yelloerr
tloff_false_unl_lon
tlon_init_false

Commitment: no_err
Assumption :

cl_after_cb

Commitment: react_on_close_barr
Assumption :

cl_after_cb

Commitment: never_passed
Assumption:

never_sens

Assumptions:
Commitment: react

barcl_oa_clb
lon_oa_tlon_live
no_barr_err
not_hw_trouble
not_passed_or_free

BARRIER_CONTROL_CTRL

SENSOR_CONTROL_CTRL

CROSSING_CTRL

CROSSING

Assumptions:
cl_after_cb
no_hw_trouble
not_passed_or_free
st_rq_xxxxtimes_after_act

Commitment: sec_cmds
Assumptions:

barcl_oa_clb
lon_oa_tlon_live
no_barr_err
not_hw_trouble

Commitment: tloff_true_oa_lon
Assumptions :

lo_init_false
no_red_err

clb_init

LIGHTS_CONTROL_CTRL

Commitment: init_comm_lights

not_passed_or_free

Commitment: init_comm

st_rq_rec_xxxxtimes_after_act

Figure 8.13: CROSSING: Dependences in Compositional Proof

Figure 8.13 gives an overview of the dependences among the specifications in the compositional
proof, where the lines denote dependences of local assumptions on local commitments and top-level
assumptions, respectively: For example, assumption barcl_oa_clb of commitment react is implied
by commitment react_on_close_barr of activity BARRIER_CONTROL_CTRL. Accordingly, the depen-
dences between local assumptions and component commitments and an top-level assumptions form
the network of inter-dependences as shown in the figure. In order to prove that the implication of
cr_safe_react_on_act by the conjunction of all sub-component specifications is a tautology, all
the dependences in this network have to be satisfied, i.e. all local assumptions of sub-component
specifications have to be fulfilled by either some sub-component commitments or by top-level as-
sumptions.

257

8 Application of Verification Techniques - Experiences and Results

CROSSING_CTRL LIGHTS_CONTROL_CTRLENV BARRIER_CONTROL_CTRL

[1,1]

[1,1]

[1,2]

+ TURN_LIGHTS_OFF_F
only after LIGHTS_ON_F

ACTIVATE_CROSSING_REC_F
TURN_LIGHTS_ON_F

LIGHTS_ON_F

CLOSE_BARRIER_F

LOWER_F

CLOSED_IN_S

BARRIER_CLOSED_F

STATUS_RQ_REC_F

CROSSING_SAFE_SND_F

[1,1]

[1,1]

[5,10]

[13,45]

[1,1]

Assumptions : never (RED_ERR_IN_S or YELLOW_ERR_IN_S or SENSOR_ERR_IN_S)
 + never (SENSOR_ON_IN_S or CROSSING_FREE_REC_F)

Figure 8.14: Principle Ordering and Timing of the Events contributing to the Verified Protocol

Figure 8.14 illustrates the ordering and timing of the events contributing to the compositional
proof using a pseudo-Live Sequence Chart [DH99, Klo03, KW01]. The displayed chart does not
strictly adhere to the formal semantics - as defined in [Klo03] - but serves only for documenta-
tion purposes. Anyhow, let sending and receiving of events (messages) along solid instance lines
(the vertical lines denoting the environment of CROSSING and the sub-components CROSSING_CTRL,
LIGHTS_CONTROL_CTRL and BARRIER_CONTROL_CTRL respectively) denote mandatory occurrences,
where all such events along an instance line are totally ordered from top to bottom. Since messages
in the chart correspond to emitting events, sending and receiving have to be interpreted as simultane-
ous occurrences. SENSOR_CONTROL_CTRL is omitted in figure 8.14, because SENSOR_CONTROL_CTRL

contributes to the protocol only by guaranteeing that never a PASSED_F event is emitted, which
would end the desired behavior of CROSSING_CTRL. Also the assumptions regarding inputs indicat-
ing hardware errors are not incorporated graphically but only textual. This also counts for the
assumption that never a CROSSING_FREE_REC_F will be observed. Let timing intervals written in
thin letters denote step intervals, whereas intervals typed in bold letters denote super-step intervals.

Compositional Proof of Commitment cr_safe_react_on_act of CROSSING

Size of parallel composition of all observers: 85i/216s (according to the construction explained in
section 7.4)
Involved Diagrams: 37 (9 Sub-component commitments plus 2 commitments for monitor)

258

8.3 Application of Verification using Symbolic Timing Diagrams

Variant # Impli- time time BDD-Nodes Image-
cations Implications Proof Comps

subst. 21 7600sec 800sec 19598/17014 54/99
naive - - TO!24h - -

proposed 330 43888sec - 24106 99
implications (26 True)

The compositional verification task has been executed in two variants, a naive one and an op-
timized variant. In the naive variant all sub-component specifications are referred to as they are
used for component verification without any modification. The naive variant suffers from the com-
plexity of the involved specifications. In the optimized variant all sub-component assumptions have
been substituted by either assumptions of CROSSING or by commitments of other sub-components
according to the dependences shown in figure 8.13 below. The optimized proof task employing
substitutions consists of two parts: First all substitutions provided for optimization are checked. In
particular, it is checked whether fulfillment of the local assumptions to be substituted by the local
commitments provided as substitution is a tautology. Hence checking the provided 21 substitution
rules consists of 21 tautology checks. Afterwards the substituted proof-obligation for establishing
the top-level commitment by tautology checking is proved.

As described in section 7.3, compositional proof-obligation construction optionally provides the
user with a list of possible substitutions5. The proof-obligation generator constructed 330 proof-
obligations for possible substitutions, of which 26 turned out to be useful substitutions. The last
row of the table documents the effort to check all proposed possible implications.

In the following, we document the individual diagrams of the specifications involved in the tau-
tology proof-obligation as well as the complexity results of the sub-component proofs establishing
the compositional conclusion.

5By brute-force construction of all possible implications for local assumptions with local commitments of the other
components and top-level assumptions as premises.

259

8 Application of Verification Techniques - Experiences and Results

Assumptions for Activity CROSSING (Top-level Assumptions)

Figure 8.15: Activity CROSSING

Figure 8.16: CROSSING : Assumption no_hw_trouble

The error-indicators (free inputs of SYSTEM) are assumed to be false initially and to remain false

forever. Assumption no_hw_trouble is only satisfied if for all regarded runs of CROSSING the initial
trigger predicate holds forever. Otherwise, the environment would have to finally satisfy false,
which is impossible except for the case that the environment is restricted in a way that no run is
possible at all.

Figure 8.17: CROSSING : Assumption not_passed_or_free

Assumption not_passed_or_free disables the indication of a spontaneously passed train, as well
as the indication that TRAIN has decided to abort the securing process due to an internal timeout.

260

8.3 Application of Verification using Symbolic Timing Diagrams

Figure 8.18: CROSSING : Assumption cl_after_cb

The reaction of the physical barriers on LOWER_F is only modeled by a free input of the SYSTEM.
Hence, in order to adhere to the time-limits imposed by BARRIER_CONTROL_CTRL for the detection
of physical barrier mal-functions, we have to assume that the physical barriers will definitely be
closed in the super-step after the LOWER_F command. Otherwise, BARRIER_CONTROL_CTRL would
set its BARRIER_ERR_F condition indicating an error of the physical barriers. Notice, that since
CLOSED_IN_S is a slow input from outside the system, we have to use a super-step constraint to
express the expectation, that regardless of the amount of steps between emitting LOWER_F and
observing CLOSED_IN_S, we expect to observe CLOSED_IN_S - simultaneous with SUPER_SYNC_F - in
the next stable-state.

Figure 8.19: CROSSING : Assumption st_rq_xxxxtimes_after_act

Assumption st_rq_xxxxtimes_after_act (Figure 8.19) is the central assumption of the composi-
tional proof. CROSSING will guarantee a CROSSING_SAFE_SND_F reaction one step after STATUS_RQ_REC_F
only if - under the listed assumptions - a status request is received at earliest 13 time units and latest
45 time units after receipt of the ACTIVATE_CROSSING_REC_F signal. Under certain circumstances,
CROSSING can also send a safe report even if the status request is received earlier, but for these cases a
safe report can not be guaranteed (cf. specifications of CROSSING_CTRL and LIGHTS_CONTROL_CTRL).

261

8 Application of Verification Techniques - Experiences and Results

Commitment cr_safe_react_on_act of Activity CROSSING

Figure 8.20: CROSSING : Commitment cr_safe_react_on_act

Under the assumptions listed above, cr_safe_react_on_act commits that a status request is an-
swered with a safe-report in the next step.

Component-Proof of CROSSING

For the example considered here, it turned out that also component verification is applicable. Recall,
that the complexity results for checking the implication of cr_safe_react_on_act by the sub-
component specifications to be a tautology and establishing the commitment by a component proof
are not comparable, because the complexity of tautology checking only depends on the complexity
of the involved specifications. Nonetheless, for reasons of completeness, the following table lists
model size as well as the sizes of assumption and commitment observers in terms of input and
state bits. The fourth column shows the time needed for performing the component proof for
cr_safe_react_on_act. BDD-Nodes denotes the size of the transition relation for forward image
computation. Image-Comps denotes the number of image computations performed by the VIS
model checker for specification verification using invariance checking.

Model Assumption Commitment Time BDD-Nodes Image-Comps

13i/100s 11i/29s 4i/9s 5131sec 16630 231

262

8.3 Application of Verification using Symbolic Timing Diagrams

Specification of Activity CROSSING_CTRL

Figure 8.21: Statechart CROSSING_CTRL (with MBCT=40)

Assumptions for Activity CROSSING_CTRL :

Assumption st_rq_xxxxtimes_after_act of CROSSING_CTRL is simply a replication of assumption
st_rq_xxxxtimes_after_act of CROSSING (figure 8.19). Since CROSSING_CTRL is the responsible
sub-activity of CROSSING for answering a STATUS_RQ_REC_F, the protocols between CROSSING_CTRL

and its sibling activities determine the time interval between activation and a status request that
has to be assumed for CROSSING in order to guarantee answering a status request with a safe report.

Figure 8.22: CROSSING_CTRL: Assumption barcl_oa_clb

Diagram barcl_oa_clb is an assumption about BARRIER_CONTROL_CTRL as well as about the envi-
ronment of CROSSING: CROSSING_CTRL emits a CLOSE_BARRIER_F event to BARRIER_CONTROL_CTRL

which in the next step reacts on CLOSE_BARRIER_F with a LOWER_F event. For CROSSING we have
already assumed that LOWER_F is answered with CLOSED_IN_S by the environment in the next stable
state. On CLOSED_IN_S again BARRIER_CONTROL_CTRL reacts with BARRIER_CLOSED_F in the next
step. Hence, CROSSING_CTRL will observe a reaction to CLOSE_BARRIER_F within an interval of 1
to 2 time units (super-steps). Notice, that in the time interval [1,2] also step constraints are
summarized.

263

8 Application of Verification Techniques - Experiences and Results

Figure 8.23: CROSSING_CTRL: Assumption lon_oa_tlon_live

Assumption lon_oa_tlon_live refers to the reaction of activity LIGHTS_CONTROL_CTRL to a
TURN_LIGHTS_ON_F event. In activity LIGHTS_CONTROL_CTRL, most of the transitions are enabled
only after some time triggered counter operations have been performed. The earliest point in time at
which LIGHTS_CONTROL_CTRL will react to a TURN_LIGHTS_ON_F with LIGHTS_ON_F is 5 time units
thereafter, if no TURN_LIGHTS_OFF_F disturbs the internal computations. The maximal time for
emitting a LIGHTS_ON_F is 10 time units after receipt of TURN_LIGHTS_ON_F.

Figure 8.24: CROSSING_CTRL: Assumption no_barr_err

Assumption no_barr_err refers to the condition BARRIER_ERR_F controlled by BARRIER_CONTROL_-

CTRL. This condition will be set to true by BARRIER_CONTROL_CTRL if either CLOSED_IN_S is not
observed within MCT=2 time units after a LOWER_F event or OPENED_IN_S is not observed within
MOT=2 time units after a RAISE_F event. By assumption barcl_oa_clb the former case is disabled
and only the latter case can lead to BARRIER_ERR_F. Hence, BARRIER_CONTROL_CTRL has to guar-
antee that BARRIER_ERR_F can only become true due to a failed opening procedure, which can be
initiated by a RAISE_F event at earliest 3 time units after BARRIER_CLOSED_F (cf. specification of
BARRIER_CONTROL_CTRL).

Figure 8.25: CROSSING_CTRL: Assumption not_hw_trouble

Diagram not_hw_trouble expresses the assumption that never a sensor error or red light error
will occur.

Assumption not_passed_or_free (without illustration) is a repetition of the respective assump-
tion of CROSSING (figure 8.17). The diagram states that never a spontaneous PASSED_F event from

264

8.3 Application of Verification using Symbolic Timing Diagrams

SENSOR_CONTROL_CTRL will be observed. Furthermore, it is assumed that the (external) train does
not indicate abandonment of nearing the crossing by CROSSING_FREE_REC_F.

Commitment react of Activity CROSSING_CTRL:

Figure 8.26: CROSSING_CTRL: Commitment react

Provided that all assumptions (cf. figure 8.13) are satisfied, commitment react of CROSSING_CTRL
guarantees that a STATUS_RQ_REC_F will be answered with a CROSSING_SAFE_SND_F in the next
step. The diagram corresponds to commitment cr_safe_react_on_act of CROSSING (cf. figure
8.20).

Commitment seq_cmds of Activity CROSSING_CTRL:

Figure 8.27: CROSSING_CTRL: Commitment seq_cmds

Provided that the assumptions (cf. figure 8.13) are satisfied seq_cmds guarantees reactions on
ACTIVATE_CROSSING_REC_F from TRAIN and LIGHTS_ON_F from LIGHTS_CONTROL_CTRL, respectively.
In the step after receipt of ACTIVATE_CROSSING_REC_F event TURN_LIGHTS_ON_F will be emitted to
activity LIGHTS_CONTROL_CTRL. The reaction of LIGHTS_CONTROL_CTRL on TURN_LIGHTS_ON_F will
be the event LIGHTS_ON_F within 5 to 10 time units later. CROSSING_CTRL will react on this event
by emitting CLOSE_BARRIER_F to activity BARRIER_CONTROL_CTRL.

265

8 Application of Verification Techniques - Experiences and Results

Commitment tloff_true_oa_lon of Activity CROSSING_CTRL:

Figure 8.28: CROSSING_CTRL: Commitment tloff_true_oa_lon

Provided that LIGHTS_CONTROL_CTRL will not be interrupted once a TURN_LIGHTS_ON_F has been
emitted, tloff_true_oa_lon guarantees that TURN_LIGHTS_OFF_F will be emitted only after LIGHTS_ON_F
has been observed, provided that the following two assumptions are satisfied.

Figure 8.29: CROSSING_CTRL: Assumption lo_init_false

lo_init_false is a sufficient assumption for tloff_true_oa_lon. We prefer to use this simple
assumption, even though lo_init_false is also covered by assumption lon_oa_tlon_live (Fig.
8.23). Using lo_init_false instead of lon_oa_tlon_live avoids circular dependences among
specifications of LIGHTS_CONTROL_CTRL and CROSSING_CTRL.

Figure 8.30: CROSSING_CTRL: Assumption no_red_err

Assumption no_red_err (Fig 8.30) is a necessary assumption in order to prove tloff_true_-

oa_lon. (Fig. 8.25) .

Commitment init_comm of Activity CROSSING_CTRL

Figure 8.31: CROSSING_CTRL: Commitment init_comm

266

8.3 Application of Verification using Symbolic Timing Diagrams

For CROSSING_CTRL it is guaranteed with a separate commitment that none of its controlled events
is emitted in step 0. This commitment is used to break circular dependences in the tautology
proof-obligation.

Component-Proofs of CROSSING_CTRL

The following tables list the results of the component proofs for CROSSING_CTRL.

Model Assumption Commitment Time BDD-Nodes Image-Comps

11i/24s 17i/48s 4i/9s 321sec 9777 174

Commitment: react

Assumptions: barcl_oa_clb, lon_oa_tlon_live, no_barr_err, not_hw_trouble,

not_passed_or_free, st_rq_rec_xxxxtimes_after_act

Model Assumption Commitment Time BDD-Nodes Image-Comps

10i/23s 14i/40s 8i/13s 56sec 13138 110

Commitment: sec_cmds

Assumptions: barcl_oa_clb, lon_oa_tlon_live, no_barr_err, not_hw_trouble,

not_passed_or_free

Model Assumption Commitment Time BDD-Nodes Image-Comps

10i/22s 2i/8s 4i/7s 3sec 4238 98

Commitment: tloff_true_oa_lon

Assumptions: lo_init_false, no_red_err

Model Assumption Commitment Time BDD-Nodes Image-Comps

11i/25s - 1i/4s 1sec 2304 90

Commitment: init_comm

Assumptions: -

267

8 Application of Verification Techniques - Experiences and Results

Specification of Activity LIGHTS_CONTROL_CTRL

Figure 8.32: Statechart LIGHTS_CONTROL_CTRL (with MGT=4,MYT=2,MRTC=4)

Assumptions for Activity LIGHTS_CONTROL_CTRL

no_rederr (not depicted here, cf. figure 8.30) specifies the assumption that never a red-light error
is observed. A red-light error would force an immediate leave of state ON by the higher prioritized
transition to state OFF, which will abort the normal sequence of reactions on TURN_LIGHTS_ON_F.

Assumptions no_yelloerr (also without illustration, similar to no_rederr) and no_rederr could
be grouped together in one assumption. Even though this would reduce the complexity of the
assumption observer a little, we refrain from doing so, since from a logical point of view both
assumptions have very different effects. While no_rederr is necessarily required for finally emitting
LIGHTS_ON_F, no_yelloerr has only an impact on the continuance in states YELLOW and RED,

respectively.

Figure 8.33: LIGHTS_CONTROL_CTRL: Assumption tloff_false_unl_lon

Assumption tloff_false_unl_lon is the dual of commitment tloff_true_oa_lon of activity
CROSSING_CTRL. Since state ON of LIGHTS_CONTROL_CTRL will be left immediately if TURN_LIGHTS_OFF_F
is received, the assumption is necessarily required in order to finally emit LIGHTS_ON_F.

268

8.3 Application of Verification using Symbolic Timing Diagrams

Figure 8.34: LIGHTS_CONTROL_CTRL: Assumption tlon_init_false

TURN_LIGHTS_ON_F has to be false initially in order to match the activation condition of commit-
ment lon_after_tlon.

Commitment lon_after_tlon of Activity LIGHTS_CONTROL_CTRL

Figure 8.35: LIGHTS_CONTROL_CTRL: Commitment lon_after_tlon

Even though SWITCH_ON_F and SWITCH_OVER_F are not referred to by the specification of CROSSING_CTRL,
the overall interval of 5 to 10 time-units between receipt of TURN_LIGHTS_ON_F and LIGHTS_ON_F

can best be specified by referring to the sub-intervals of which it is comprised. SWITCH_ON_F and
SWITCH_OVER_F are not referred to anywhere in SYSTEM, but have been added to make internals of
LIGHTS_CONTROL_CTRL externally observable.

Commitment init_comm_lights of Activity LIGHTS_CONTROL_CTRL

Figure 8.36: LIGHTS_CONTROL_CTRL: Commitment init_comm_lights

Activity LIGHTS_CONTROL_CTRL has to guarantee that the lights are off in step 0. Again this com-
mitment is used to break circular dependences in the tautology proof.

Component-Proofs of LIGHTS_CONTROL_CTRL

The following tables list the results for component verification of LIGHTS_CONTROL_CTRL.

269

8 Application of Verification Techniques - Experiences and Results

Model Assumption Commitment Time BDD-Nodes Image-Comps

4i/44s 7i/19s 9i/17s 13sec 13633 73

Commitment : lon_after_tlon
Assumptions : no_red_err, no_yelloerr, tloff_false_unl_lon, tlon_init_false

Model Assumption Commitment Time BDD-Nodes Image-Comps

4i/43s - 1i/4s 2sec 3670 38

Commitment : init_comm_lights
Assumptions : -

Specification of Activity SENSOR_CONTROL_CTRL

Figure 8.37: Statechart SENSOR_CONTROL_CTRL

Assumption for Activity SENSOR_CONTROL_CTRL

Figure 8.38: SENSOR_CONTROL_CTRL: Assumption never_sens

SENSOR_ON_IN_S is a free input of SYSTEM representing a wayside sensor at the track in front of
CROSSING. SENSOR_ON_IN_S indicates a train passing CROSSING, and is meant to play its role in
the opening procedure after securing. Since the portion of the protocol considered here is only the
securing procedure, we can assume for simplicity SENSOR_ON_IN_S to be false forever .

270

8.3 Application of Verification using Symbolic Timing Diagrams

Commitment never_passed

Figure 8.39: SENSOR_CONTROL_CTRL: Commitment never_passed

If SENSOR_CONTROL_CTRL never receives SENSOR_ON_IN_S, never PASSED_F will be emitted.

Component-Proof of SENSOR_CONTROL_CTRL

Even though, the component proof of never_passed is nearly trivial, we list the results for com-
pleteness in the table below:

Model Assumption Commitment Time BDD-Nodes Image-Comps

2i/10s 1i/4s 1i/4s 0.2sec 419 16

Specification of Activity BARRIER_CONTROL_CTRL

Figure 8.40: Statechart BARRIER_CONTROL_CTRL (with MCT=2,MOT=2)

Assumptions for Activity BARRIER_CONTROL_CTRL

Assumption cl_after_cb (not depicted, cf. figure 8.18) replicates cl_after_cb of CROSSING. By as-
sumption cl_after_cb, a failure of the barrier closing procedure is excluded. Thus, BARRIER_ERR_F
can become true only when barrier opening fails.

271

8 Application of Verification Techniques - Experiences and Results

Figure 8.41: BARRIER_CONTROL_CTRL: Assumption clb_init

CLOSE_BARRIER_F has to be false initially, in order to match the activation condition of the
commitment react_on_close_barr which refers to CLOSE_BARRIER_F.

Commitment no_err of Activity BARRIER_CONTROL_CTRL

Figure 8.42: BARRIER_CONTROL_CTRL: Commitment no_err

Due to assumption cl_after_cb, barrier closing is successful in any case. Hence, the earli-
est point in time for BARRIER_ERR_F to possibly become true is 3 time units after emission of
BARRIER_CLOSED_F, if opening the barriers fails.

Commitment react_on_close_barr of Activity BARRIER_CONTROL_CTRL

Figure 8.43: BARRIER_CONTROL_CTRL: Commitment react_on_close_barr

Commitment react_on_close_barr specifies the reactions on CLOSE_BARRIER_F. In the subsequent
step LOWER_F is emitted. Due to assumption cl_after_cb, the environment reacts on LOWER_F

with CLOSED_IN_S in the following super-step, on which again BARRIER_CONTROL_CTRL reacts with
BARRIER_CLOSED_F within the same super-step.

272

8.3 Application of Verification using Symbolic Timing Diagrams

Component-Proofs of BARRIER_CONTROL_CTRL

We summarize the results of component verification for BARRIER_CONTROL_CTRL in the following
tables:

Model Assumption Commitment Time BDD-Nodes Image-Comps

7i/31s 5i/9s 5i/8s 3sec 7154 23

Commitment: no_err
Assumptions : cl_after_cb

Model Assumption Commitment Time BDD-Nodes Image-Comps

7i/30s 6i/13s 7i/12s 4sec 8881 22

Commitment: react_on_close_barr
Assumptions : cl_after_cb, clb_init

Model Assumption Commitment Time BDD-Nodes Image-Comps

7i/30s - 1i/4s 1sec 4300 13

Commitment: init_comm_barr
Assumptions : -

Specification of SUPER_SYNC_MONITOR

The commitments for SUPER_SYNC_MONITOR need not to be verified. They rather represent axiomatic
invariants of the model representation.

Figure 8.44: Axiom (Commitment) all_the_same of SUPER_SYNC_MONITOR

Since every specification refers to the local SUPER_SYNC_F event of the specified activity, commit-
ment all_the_same relates the local SUPER_SYNC_F events of the sub-activities with the SUPER_SYNC_F
event of the top-level activity to which compositional verification is applied. Recall from chapter
5 that stabilization is a property of the entire model. Hence, either all SUPER_SYNC_F events are
emitted in the same step, or none of them is emitted. Notice, that the translation of Statemate

models to SMI/SSL does neither provide a specification of monitors nor a behavioral description.
It depends on the concrete specifications involved in the compositional verification task, which ax-
ioms regarding a monitor have to be taken into account. A formal characterization of monitors
can be found in [DJHP97]. In practice, it is left to the user to specify monitors in a way that
is compliant with the compositional semantics by providing commitments fitting the needs of the
compositional verification task. In case of the compositional proof for cr_safe_react_on_act of ac-
tivity CROSSING, it is sufficient to guarantee that (1) all SUPER_SYNC_F events of the sub-components

273

8 Application of Verification Techniques - Experiences and Results

are either emitted simultaneously or none of them is emitted, and (2) that steps and super-steps
are at least decoupled as specified by commitment toggle:

Figure 8.45: Axiom (Commitment) toggle of SUPER_SYNC_MONITOR

Since stabilization according to chapter 5 (listing 5.2) always takes at least 2 steps, it can be
stated that either no SUPER_SYNC_F has been emitted in the last step or in the actual step no
SUPER_SYNC_F is emitted. This decouples step and super-step clocks in a sufficient way for the
needs of the presented compositional verification task. Axiom (Commitment) toggle makes use of
a specification variable. In the specification instantiating diagram toggle a declaration

LAST_SUPER_SYNC = last(SUPER_SYNC_F)

introduces a new variable with name LAST_SUPER_SYNC for the verification task, that always keeps
the value of SUPER_SYNC_F of the last step.

8.3.3 Compositional Verification of SYSTEM

The compositional proof for SYSTEM presented in the following proves that train can never pass an
unsecured crossing. Therefore, we assume that:

• neither SENSOR_ON_IN_S indicates spontaneously a passing train, nor CROSSING_VACATED_-

IN_S interrupts CROSSING in its securing procedure.

• CLOSED_IN_S indicates closure of the physical barriers only after LOWER_F has been sent.

• CP_REG_INP_IN_S is always false. CP_REG_INP_IN_S determines that CROSSING has to be
treated as already regarded by TRAIN, which would disable the protocol between TRAIN and
CROSSING.

• RELEASED_MAN_IN_S is always false, and hence TRAIN can never pass a faulty CROSSING after
manual release by the driver.

• V_ACTIVATION_POINT_P_IN_S is initially false. This is required for matching the enabling
conditions of the top-level commitment as well as of specifications of TRAIN.

Provided that these assumption are satisfied, the compositional proof establishes the guarantee that
TRAIN can never pass an unsecured CROSSING.

274

8.3 Application of Verification using Symbolic Timing Diagrams

s_actrec_oa_actsnd
s_ackrec_oa_acksnd
s_strqrec_oa_strqsnd
s_crsafrec_oa_crsafsnd
s_crfrerec_oa_crfre_snd

s_stcomm_oa_v_act_pt
s_snd_oa_commesta
s_strqsnd_oa_ackrec

p_oa_rel_o_saf_init

Commitment : pass_oa_safe_all_io
Assumptions

Commitments :

Assumptions

cp_reg_inp_correct
never_rel_man
v_act_pt_init
s_comm_setup
s_ackreq_oa_actsnd
crsafrec_oa_strqsnd

Commitments :

s_esta_comm

Assumptions :

s_all_init

Commitments :

clb_oa_act
insafe_oa_closed
s_allinocomm

Assumptions :

cl_oa_lower
never_vacated
not_passed

cpreg_inp_correct
never_rel_man
v_act_pt_init
cl_oa_lower
never_vacated
not_passed }

}

{

{
strq_and_act_init
s_crfree_oa_crsaf

SYSTEM

TRAIN CROSSINGCOMMUNICATION

Commitment :
s_crfresnd_oa_crsafrec

crsafe_init

Commitment:

Commitment :

s_all_init

comm_inits

Commitment :
s_allcross_init

Commitment :
s_ack_oa_act

strq_and_act_init

Commitment :

Assumption :
safe_oa_req

Assumption :

Assumption :

st_rq_init_false

Figure 8.46: SYSTEM: Dependences in Compositional Proof

Figure 8.46 shows the dependences among the specifications in the compositional proof: solid lines
depict implications; e.g. assumption never_rel_man of SYSTEM implies assumption never_rel_man

of TRAIN, whereas assumption s_all_init of COMMUNICATION is implied by the conjunction of -
nearly all - commitments of TRAIN as well as commitment s_allinocomm of CROSSING.

Dashed lines in figure 8.46 depict dependences among commitments imposing an ordering of the
events contributing to the protocol. This imposed ordering of events contributing to the protocol
is illustrated in figure 8.47 in a pseudo-live sequence chart notation.

275

8 Application of Verification Techniques - Experiences and Results

COMMUNICATION CROSSING

Assumptions:never(CP_RTEG_INP_IN_S or RELEASED_MAN_IN_S)
 + never(CROSSING_VACATED_IN_S or SENSOR_ON_IN_S)

ENV TRAIN

V_ACTIVATION_POINT_P_IN_S

ST_COMMUNICATION_F

COMMUNICATION_ESTABLISHED_F

ACTIVATE_CROSSING_SND_F
ACTIVATE_CROSSING_REC_F

ACK_REC_F

CROSSING_SAFE_REC_F
IN_SAFE

PASSED_XING_F

STATUS_RQ_SND_F

CLOSED_IN_S

LOWER_F

ACK_SND_F

STATUS_RQ_REC_F

CROSSING_SAFE_SND_F

+ CROSSING_FREE_SND_F
only after
CROSSING_SAFE_REC_F

Figure 8.47: Principle Ordering of Events in the verified Protocol

The dashed instance lines in figure 8.47 reflect the fact that neither progress nor particular
time-limits are captured by the component specifications contributing to the proof. Occurrences
along dashed instance lines have to be interpreted as totally ordered but not necessarily occurring
observations. For example, due to the ordering along instance lines, ST_COMMUNICATION_F may only
be observed after V_ACTIVATION_POINT_P_IN_S but it is not required that ST_COMMUNICATION_F

will be observed at all. This way, the protocol is specified in a pure ’event b may be observed only
after event a’ manner, which can possibly get stuck at every point in time without further progress.
The respective events are allowed only to occur in the specified order - if they occur at all.

The polygon at instance CROSSING represents condition IN_SAFE which is true after receipt of
CLOSED_IN_S and remains true unless a TIMEOUT_OPCENTER_F is received. The same as in the
example above, sequence chart 8.47 is aimed only at illustration purposes without pretension of
being compliant to formal syntax and semantics of live sequence charts.

For the compositional proof presented in the following only an initial activation and securing
is considered. Iterative specifications of the entire protocol among TRAIN, COMMUNICATION and
CROSSING would require much more effort due to the degrees of freedom of the involved compo-
nents. In particular, the interlocking of event communication and TRAIN’s ability to always abort
the entire protocol by emitting an EMERGENCY_STOP_F as well as the chosen representation of mean-
ingful sensors by free inputs aggravates specification of the entire protocol. E.g. specification of
correct closing of the physical barriers involves the events CLOSE_BARRIER_F, LOWER_F , free inputs

276

8.3 Application of Verification using Symbolic Timing Diagrams

CLOSED_IN_S and OPENED_IN_S which have to be assumed to react in a tight timing scheme as
well as the events BARRIER_ERR_F and BARRIER_CLOSED_F. Furthermore, the behavior of free in-
put SENSOR_ON_IN_S representing a passing TRAIN has to be restricted by assumptions accordingly.
Also, missing observability of operation modes at system level makes specification difficult. E.g.
COMMUNICATION is entirely encapsulated in the protocol interlocking, neither the state of the com-
munication link - being established or disabled - nor any of the transmitted events is observable at
system level. Besides inputs, only the outputs

• error indications BARRIERS_DEFECT_F, SENSOR_DEFECT_F, YELLOW_DEFECT_F, RED_DEFECT_F

• barrier commands LOWER_F and RAISE_F,

• light control indicators SWITCH_ON_F and SWITCH_OVER_F,

• a TIMEOUT_OPCENTER_F indication

• TRAIN’s track-position T_F

• and EMERGENCY_STOP_F, IN_SAFE_F, PASSED_XING_F

are observables of the system.
Furthermore, the δ-delays of fast communication impose weaker specifications than desirable. Re-

action to events is not instantaneous: e.g., even though a ST_COMMUNICATION_F may abort the com-
munication link, a pending event as projected in the step before is nonetheless issued to the receiver.
The same way, ACTIVATE_CROSSING_CTRL can in the same step be stopped by EMERGENCY_STOP_F

(respectively STPPED_F) but nonetheless send a STATUS_RQ_SND_F. In case of EMERGENCY_STOP_F,
the communication-link is turned off only after a manual release which is again represented by a
free input.

Even though high degrees of freedom and lack of observability are obstacles in particular for
compositional verification, it can be proved that for all possible initial scenarios the mandatory
ordering of events in the system only allows TRAIN to pass CROSSING after CROSSING has reported
itself safe.

Remark 8.2 Nearly all diagrams involved in the compositional proof are of the forms

• initially Q only after P

• initially P

• forever P

which would strongly suggest the use of three template diagrams with appropriate parameter map-
ping. Unfortunately, STDx-specifications are restricted to refer to only one commitment declaration,
and hence only one parameter mapping can be specified for instances of the template diagrams. In-
stantiating each commitment template within an individual specification would lead to considerable
complexity overhead due to redundant assumption observers. It should hence be an issue for future
extensions of STDx, to allow reference to more than one commitment declaration in specifications.

�

277

8 Application of Verification Techniques - Experiences and Results

Compositional Verification of Commitment pass_oa_safe_all_io of SYSTEM

Model-Size for parallel composition of all observers: 94i/174s
Number of involved diagrams: 41 (19 Sub-component commitments)

Variant # Impli- time time BDD-Nodes Image-
cations Implications Proof Comps

subst. 15 164sec 3680sec 5864/18694 8/15
naive - - TO!24h - -

proposed 375 5144sec - 10893 15
implications (17 True)

Like the compositional proof for CROSSING, also the compositional verification task for SYSTEM

has been executed in two variants, a naive one and an optimized variant. In the naive variant all
sub-component specifications are referred to as they are used for component verification without
any modification. In the optimized variant all those assumptions have been substituted, which
are entirely covered by top-level assumptions or commitment of other components, according to
dependences depicted in figure 8.46 by solid lines. The verification task for the naive variant suffered
from the complexity of the parallel composition of all observers. Even though, the substitution of
local assumptions by local commitments and top-level assumptions has only been applied to the
invariant to be checked, the Cone of Influence Reduction applied by the VIS model checker for the
simplified proof-obligation succeeded. The top-level commitment could be shown to be implied by
the sub-component specifications in about one hour6. Checking validity of the substitutions could
be performed in less than 3 minutes.

Also checking all 375 proof-obligations offered by the proof-obligation generator as possible sub-
stitutions proposal took less than 2 hours.

Assumptions for Activity SYSTEM

Figure 8.48: SYSTEM: Assumption cpreg_inp_correct

It has to be assumed that CP_REG_INP_IN_S is always false, since this input would cause TRAIN to
treat CROSSING as already regarded which would disable the activation and securing protocol.

6cf. pattern proof P1 on SYSTEM of section 8.2: There the size of the un-abstracted model has been 31i/264s. P1
could only be established by applying propositional abstraction.

278

8.3 Application of Verification using Symbolic Timing Diagrams

Figure 8.49: SYSTEM: Assumption never_rel_man

In case of an EMERGENCY_STOP_F, RELEASED_MAN_IN_S allows TRAIN to pass a faulty CROSSING,

which has not reported itself safe (cf. figure 8.15). In order to focus on the activation and securing
protocol, manual release of a faulty CROSSING has to be disabled.

Figure 8.50: SYSTEM: Assumption v_act_pt_init

V_ACTIVATION_POINT_IN_S causes TRAIN to start communication and to activate CROSSING. In or-
der to match the activation conditions of the respective commitments V_ACTIVATION_POINT_P_IN_S
is assumed to be false initially.

Figure 8.51: SYSTEM: Assumption cl_oa_lower

Only an initial securing is considered in the presented compositional proof, without subsequent
re-opening of the barriers Hence, it can be assumed that only after a LOWER_F event a sensor may
indicate closed physical barriers. For simplicity, it is assumed that once the barriers are closed, they
remain closed forever. Alternatively, it could be assumed that the barriers remain closed unless
RAISE_F is observed. This would enforce specification of the entire opening procedure after TRAIN

has passed CROSSING and hence would complicate significantly.

Figure 8.52: SYSTEM: Assumption never_vacated

CROSSING_VACATED_IN_S triggers CROSSING to proceed the barrier opening procedure after TIME-

279

8 Application of Verification Techniques - Experiences and Results

OUT_OPCENTER_F (in particular CROSSING_CTRL, cf figure 8.21). In order to focus on normal reaction
of CROSSING on a STATUS_RQ_REC_F from TRAIN, it is assumed that CROSSING_VACATED_IN_S is never
observed.

Figure 8.53: SYSTEM: Assumption not_passed

SENSOR_ON_IN_S represents a TRAIN passing a wayside sensor in front of CROSSING. Assuming
SENSOR_ON_IN_S to be always false, disables spontaneous perception of a passing TRAIN and disabling
the securing process.

Commitment pass_oa_safe_all_io of Activity SYSTEM

Figure 8.54: SYSTEM: Commitment pass_oa_safe_all_io

Commitment pass_oa_safe_all_io is the formalization of the overall safety property, that TRAIN
can only pass CROSSING after CROSSING has been entirely secured. IN_SAFE_F is a condition set by
statechart CROSSING_CTRL of CROSSING, whereas PASSED_XING_F is an event emitted by statechart
ACTIVATE_CROSSING_CTRL of TRAIN.

Specification of Activity TRAIN

Figures 8.5 and 8.6 show activity TRAIN and statecharts ACTIVATE_CROSSING_CTRL and its sub-chart
WF_CROSSING_SAFE, respectively. Activity TRAIN is too complex for the application of component
verification without abstraction. Since we are only interested in TRAIN’s contribution to the commu-
nication protocol with CROSSING via COMMUNICATION, we abstract from the activities SPEED_CONTROL
and ODOMETER by applying propositional abstraction to the data-items SPEED_CONTROL_CTRL:NO-

MINAL_SPEED and TRAIN:ODATA. Recall from section 3.3 that SPEED_CONTROL controls a braking
curve of TRAIN and emits a STPPED_F event dependent on SPEED_CONTROL_CTRL:NOMINAL_SPEED

and TRAIN:ODATA if TRAIN has reached a critical distance from a not-yet secured CROSSING. By
propositional abstraction (strong) of SPEED_CONTROL_CTRL:NOMINAL_SPEED and TRAIN:ODATA we
abstract from the concrete computations that may potentially cause STPPED_F. The price to be
paid is that STPPEP_F can now non-deterministically be emitted in the abstract model.

280

8.3 Application of Verification using Symbolic Timing Diagrams

Assumptions for Activity TRAIN

Assumptions cp_reg_inp_correct, never_rel_man and v_act_pt_init are replications of the re-
spective assumptions at system-level (cf. figure 8.47; the individual diagrams are depicted in figures
8.48,8.49, and 8.50, respectively).

Figure 8.55: TRAIN: Assumption crsafrec_oa_strqsnd

Diagram crsafrec_oa_strqsnd formalizes the assumption that CROSSING_SAFE_REC_F can be re-
ceived only after a STATUS_RQ_SND_F has been emitted. This is an assumption regarding COMMUNICATION

as well as regarding CROSSING.

Figure 8.56: TRAIN: Assumption s_ackrec_oa_actsnd

Also s_ackrec_oa_actsnd is an assumption regarding COMMUNICATION as well as regarding CROSSING.
ACK_REC_F from CROSSING is expected to be observed only after ACTIVATE_CROSSING_SND_F has been
sent to CROSSING via the communication link.

Figure 8.57: TRAIN: Assumption s_comm_setup

Before any communication with CROSSING can be performed, COMMUNICATION has to be started.
It is assumed by s_comm_setup that COMMUNICATION emits COMMUNICATION_ESTABLISHED_F only
after ST_COMMUNICATION_F has been sent to COMMUNICATION.

281

8 Application of Verification Techniques - Experiences and Results

Figure 8.58: TRAIN: Assumption crsafe_init

It is assumed in a separate assumption, that CROSSING_SAFE_REC_F is initially not set.

Commitments for Activity TRAIN

Figure 8.59: TRAIN: Commitment p_oa_rel_o_saf_init

p_oa_rel_o_saf_init is one of the basic component commitments of the compositional proof.
TRAIN has to guarantee that CROSSING can only be passed if either (a faulty) CROSSING has been
released manually (this case is excluded by assumption never_rel_man) or after CROSSING has
reported itself safe.

Figure 8.60: TRAIN: Commitment s_crfresnd_oa_crsafrec

It is committed that CROSSING_FREE_SND_F is not issued spontaneously - aborting CROSSING’s
securing procedure - but only after a CROSSING_SAFE_REC_F has been received from CROSSING.
CROSSING_FREE_SND_F could also be sent after a manual release, which is disabled due to assumption
never_rel_man.

Figure 8.61: TRAIN: Commitment s_stcomm_oa_v_act_pt

282

8.3 Application of Verification using Symbolic Timing Diagrams

The first action of TRAIN after V_ACTIVATION_POINT_P_IN_S has become true has to be the
initialization of a communication link. The diagram commits that ST_COMMUNICATION_F is emitted
only after V_ACTIVATION_POINT_P_IN_S.

Figure 8.62: TRAIN: Commitment s_snd_oa_commesta

s_snd_oa_commesta guarantees that TRAIN will not send an activation or status-request to CROSSING
before COMMUNICATION indicates an established communication link.

Figure 8.63: TRAIN: Commitment s_strqs_nd_oa_ackrec

TRAIN will send a status request only after receipt of an acknowledge for activation from CROSSING.

Figure 8.64: TRAIN: Commitment s_all_init

s_all_init commits, that all relevant events are initially not emitted.
The interlocking with the commitments of COMMUNICATION and CROSSING, imposes an ordering of

the event receipts and emissions by TRAIN. The only possible order of received and emitted events
conforming to the assumption and commitments of TRAIN’s specification is compliant with the
messages received and sent by instance line TRAIN in figure 8.47.

Component-Proofs of TRAIN (using propositional abstraction of
SPEED_CONTROL_CTRL:NOMINAL_SPEED and TRAIN:ODATA)

Model Assumption Commitment Time BDD-Nodes Image-Comps

13i/39s 15i/33s 16i/27s 118sec 8588 57

Commitments: p_oa_rel_saf_o_saf_init, s_stcomm_oa_v_act_pt,

s_snd_oa_commesta, s_strqsnd_oa_ackrec

283

8 Application of Verification Techniques - Experiences and Results

Assumptions: cp_reg_inp_correct, never_rel_man, v_act_pt_init,

s_comm_setup, s_ackreq_oa_actsnd, crsafrex_oa_strqsnd

Model Assumption Commitment Time BDD-Nodes Image-Comps

12i/35s 1i/4s 4i/7s 4sec 6099 56

Commitment: s_crfesnd_oa_crsafrec
Assumption: crsafe_init

Model Assumption Commitment Time BDD-Nodes Image-Comps

12i/38s - 1i/4s 3sec 5900 30

Commitment: s_all_init
Assumption: -

Specification of Activity COMMUNICATION

Figure 8.65: Statechart COMMUNICATION_CTRL(ELT=1)

Assumption for Activity COMMUNICATION

Figure 8.66: COMMUNICATION: Assumption s_all_init

The only assumption for activity COMMUNICATION regards the initial values of the input events from
TRAIN and CROSSING. All events are expected to be initially absent.

284

8.3 Application of Verification using Symbolic Timing Diagrams

Commitments for Activity COMMUNICATION

Figure 8.67: COMMUNICATION: Commitment s_esta_comm

COMMUNICATION has to guarantee that COMMUNICATION_ESTABLISHED_F will not spontaneously be
emitted to TRAIN, but only after TRAIN has sent ST_COMMUNICATION_F.

For each of the events which are transmitted by COMMUNICATION a commitment guarantees that
the respective receive-event is emitted only after receipt of its corresponding send-event.

Figure 8.68: COMMUNICATION: Commitment s_ackrec_oa_acksnd

Figure 8.69: COMMUNICATION: Commitment s_actrec_oa_actsnd

Figure 8.70: COMMUNICATION: Commitment s_crfrerec_oa_crfre_snd

285

8 Application of Verification Techniques - Experiences and Results

Figure 8.71: COMMUNICATION: Commitment s_crsafrec_oa_crsafsnd

Figure 8.72: COMMUNICATION: Commitment s_strqrec_oa_strqsnd

Figure 8.73: COMMUNICATION: Commitment comm_inits

In a special commitment, it is committed that activity COMMUNICATION emits no event in step 0.

Component-Proofs of COMMUNICATION

Model Assumption Commitment Time BDD-Nodes Image-Comps

7i/16s 1i/4s 24i/37s 3sec 3459 12

Commitments: s_esta_comm, s_actrec_oa_actsnd, s_ackrec_oa_acksnd,

s_strqrec_oa_strqsnd, s_crsafrec_oa_crsafsnd, s_crfrerec_oa_crfre_snd

Assumptions: s_all_init

Model Assumption Commitment Time BDD-Nodes Image-Comps

7i/15s - 1i/4s 1sec 482 7

Commitments: comm_inits
Assumptions: -

Specification of Activity CROSSING

For figures of CROSSING and its sub-charts, the reader is referred to figures 8.15, 8.21, 8.32, 8.37,
and 8.40.

286

8.3 Application of Verification using Symbolic Timing Diagrams

Assumptions for Activity CROSSING

Assumptions cl_oa_lower, never_vacated and not_passed are replications of the respective as-
sumptions at system-level (according to figure 8.46; the individual diagrams are depicted in figures
8.51, 8.52, and 8.53, respectively).

Figure 8.74: CROSSING: Assumption s_crfree_oa_crsaf

CROSSING_FREE_REC_F means abortion of CROSSING’s securing procedure by TRAIN due to a time-
out of TRAIN’s internal timer. Even though, CROSSING_FREE_REC_F is not entirely excluded from the
considered protocol, by disabling RELEASED_MAN_IN_S for TRAIN (assumption never_rel_man, cf.
figure 8.6 illustrating ACTIVATE_CROSSING_CTRL), CROSSING_FREE_REC_F (translation of TRAIN’s
CROSSING_FREE_SND_F) can only be received after emitting CROSSING_SAFE_SND_F. Notice, that
assumption s_crfree_oa_crsaf involves reactions of TRAIN as well as of COMMUNICATION.

Figure 8.75: CROSSING: Assumption strq_and_act_init

Assumption strq_and_act_init formalizes the expectation that events STATUS_RQ_REC_F and
ACTIVATE_CROSSING_REC_F are initially absent.

Commitments for Activity CROSSING

Figure 8.76: CROSSING: Commitment s_all_cross_init

Activity CROSSING has to guarantee that CROSSING_SAFE_SND_F and ACK_SND_F are not emitted in
step 0.

287

8 Application of Verification Techniques - Experiences and Results

Figure 8.77: CROSSING: Commitment s_ack_oa_act

An ACK_SND_F event can only be emitted after receipt of ACTIVATE_CROSSING_REC_F.

Figure 8.78: CROSSING: Commitment safe_oa_req

CROSSING has to guarantee that CROSSING_SAFE_SND_F will be emitted only after STATUS_-

RQ_REC_F.

Figure 8.79: CROSSING: Commitment clb_oa_act

clb_oa_act commits that LOWER_F will be sent to the physical barriers only after activation by
TRAIN.

Figure 8.80: CROSSING: Commitment insafe_oa_closed

CROSSING will only enter its state BARRIER_CLOSED and on entering set IN_SAFE_F to true after
the physical barriers are sensed to be closed.
CROSSING’s central commitment s_allinocomm - committing reaction on a status-request from

TRAIN - is a bit too large to be presented as screen-shot. For reasons of limited space, figure 8.81

288

8.3 Application of Verification using Symbolic Timing Diagrams

illustrates a variant of the diagram, for which parameters have been used and the mapping of the
parameters to concrete expressions is given below the figure. Since the compositional proof is aimed
at establishing an overall safety property no hardware error is disabled by any assumption. Light
defects, barrier defects, as well as sensor defects and also a timeout from the operation center can
arbitrarily interfere with CROSSING’s securing process. Due to this high degree of freedom imposed
by possible errors and free inputs modeling the controlled physical components the formalization of
commitment s_allinocomm is a bit tricky:

Figure 8.81: CROSSING: Commitment s_allinocomm

The parameters in diagram s_allinocomm are mapped to expressions, according to the mapping:
P ⇒not(CROSSING_SAFE_SND_F or IN_SAFE_F) and not(TIMEOUT_OPCENTER_F)

Q ⇒not(CROSSING_SAFE_SND_F) and IN_SAFE_F and not(TIMEOUT_OPCENTER_F)

R ⇒(not(CROSSING_SAFE_SND_F) and not(IN_SAFE_F) and TIMEOUT_OPCENTER_F)

S ⇒(LAST_STRQ and CROSSING_SAFE_SND_F and IN_SAFE_F)

T ⇒(not(CROSSING_SAFE_SND_F) and not(IN_SAFE_F) and not(TIMEOUT_OPCENTER_F))

CROSSING only answers STATUS_RQ_REC_F from TRAIN by CROSSING_SAFE_SND_F, if CROSSING is
entirely secured (IN_SAFE_F=true) and if not yet a timeout has occured (which happens MBCT=40

time-units after entering BARRIER_CLOSED). Only after having sent ACK_SND_F to TRAIN, CROSSING
can enter state BARRIER_CLOSED (cf. figure 8.21). On entering this state, condition IN_SAFE_F

is set to true indicating a secured status. If neither PASSED_F nor CROSSING_FREE_REC_F is re-
ceived within MBCT=40 time-units after entering BARRIER_CLOSED a timeout occurs, the state is
left and TIMEOUT_OPCENTER_F is emitted, IN_SAFE_F is set to false and remains false unless CROS-

SING_VACATED_IN_S is received from the environment. Because assumption never_vacated disables
CROSSING_VACATED_IN_S, IN_SAFE_F will remain false forever after a timeout. If no STATUS_RQ_REC_F
has been received before the timeout, CROSSING_SAFE_SND_F will never be sent7. Only if af-
ter ’not(CROSSING_SAFE_SND_F) and IN_SAFE_F and not(TIMEOUT_OPCENTER_F)’ (Parameter Q)
not yet a timeout has occurred and STATUS_RQ_REC_F has been received in the last step, the exit
condition mapped to parameter S requires sending of CROSSING_SAFE_SND_F in order to fulfill com-
mitment s_allinocomm by prematurely exiting the diagram. If ’¬Q and ¬R and S’ holds after Q,

7Due to assumptions not_passed never a PASSED_F event will be received by CROSSING. Note, that PASSED_F is
controlled by SENSOR_CONTROL_CTRL and depends on the free input SENSOR_ON_IN_S. Hence, if it were not disabled
by assumptions, indication of a train passing the crossing would occur spontaneously and without correspondence
to the perception of TRAIN. In order to only allow meaningful occurences of PASSED_F, assumptions could be
formulated, restricting input SENSOR_ON_IN_S in such a way, that PASSED_F can only occur after TRAIN has emitted
a PASSED_XING_F. For the compositional proof presented here entirely disabling SENSOR_ON_IN_S is appropriate,
because the behavior of CROSSING is regarded only unless a CROSSING_SAFE_SND_F is emitted

289

8 Application of Verification Techniques - Experiences and Results

s_allinocomm is prematurely exited in a satisfied status. Notice, that LAST_STRQ in the expression
for exit condition S refers to a last-variable declaration of the specification:
LAST_STRQ = last(STATUS_RQ_REC_F);

Component-Proofs of CROSSING

Model Assumption Commitment Time BDD-Nodes Image-Comps

13i//104s 11i/26s 15i/24s 2125sec 17109 275

Commitments: clb_oa_act, insafe_oa_closed, s_allinocomm
Assumptions: cl_oa_lower, never_vacated, not_passed, strq_and_act_init,

s_crfree_oa_crsaf

Model Assumption Commitment Time BDD-Nodes Image-Comps

13i/100s - 1i/4s 250sec 15846 132

Commitments: s_allcross_init
Assumptions: -

Model Assumption Commitment Time BDD-Nodes Image-Comps

13i/99s 1i/4s 4i/7s 130sec 19176 132

Commitments: s_ack_oa_act
Assumptions: strq_and_act_init

Model Assumption Commitment Time BDD-Nodes Image-Comps

13i/99s 1i/4s 4i/7s 522sec 12208 134

Commitments: safe_oa_req
Assumptions: st_rq_init_false

8.3.4 Summary of the Application of STDx Verification

The application examples demonstrate the necessity of combining step and super-step constraints
in STDx-specifications. The proof for crossing illustrates compositional verification of real-time
requirements using compositional verification, while the proof for system establishes a safety critical
system-requirement.

By the real-time proofs of ACTIVATE_CROSSING_CTRL and CROSSING it could be shown that the
constant capturing the crossing closing time (CCT) does not always allow crossing to complete its
securing procedure, before train emits a status request. CCT determines the time to wait by train
between receipt of acknowledge and sending a status request. Therefore, the constant should capture
the maximal crossing closing time instead of only a mean crossing closing time, as it is the case in
the example.

For both presented compositional proofs manual interaction has been necessary in order to reduce
the complexity of the respective verification task. The proof-obligation generator supports the
user with a proposal of possible implications, which can automatically be verified to determine
a set of implications can be applied for assumption substitution. Unfortunately, selection of valid

290

8.3 Application of Verification using Symbolic Timing Diagrams

implications for assumption substitution is not yet guided by the graphical user interface and should
be supported by a more comfortable selection mechanism in the future.

Complexity of compositional verification only indirectly depends on modeling style and modu-
larity of a Statemate design. The less inter-dependences between the considered activities of a
design exist, the less specifications have to be regarded in a compositional proof. Since complexity
of a compositional proof depends on the specifications involved in the implication of the top-level
commitment, compositional verification benefits from a clear localization of functionality and a
loosely coupled communication structure. Even though no scheduling of controlled activities has
to be considered in case of the case-study, there are some aspects of the design that aggravate
compositional verification:

• Nearly all communication between the activities of the case-study is realized using events,
which are visible only one step. Very few indications of the respective local status of the
activities are observable at system-level. E.g. communication only indicates an established
connection by sending an event to train, the status of communication is not indicated at
system-level. The lack of status information available in the interfaces of the activities and the
momentariness of event communication aggravates specification of useful activation conditions
for iterative STDx-specifications.
Due to the synchronous parallel composition of the Statemate semantics and the event-based
communication, the timing of the protocol is very strict. It seems rather unrealistic to us
for modeling such an interaction of such autonomous components that train, communication
and crossing communicate step-synchronously with each other instead of using at least a
communication using conditions, which would store their values for several steps and thus
fit better to a protocol between such independent sub-systems, by allowing a more loosely
coupling of triggers and reactions.

• The behavior of the system involves a high degree of freedom. Important parts of the system
are modeled using free inputs of the design, such as for example the controlled physical barriers.
Assumption have to suppose correct response to lower and raise commands within strict time
limits. Also light and sensor errors have to be excluded from consideration by assumptions in
order to focus on the normal operation of crossing.
The components of the design do not share their perception. Train determines passing the
crossing according to a position which is not known by crossing, while the perception of
crossing of a passing train is modeled using a free input which has no correspondence to the
actual position or speed of the train. Hence, the crossing can perceive a train passing, even
though the train has been stopped due to an emergency stop.

• The activities of the design interact very closely. All communication between train and cross-
ing takes place via activity communication, which is activated and deactivated by train. Train
and crossing both react on events delivered by communication with emission of events to com-
munication. All these triggers and reactions are hidden from the system-level view-point and
can hence not be referred to in the specification of the system. The securing protocol involves
circular dependence of the behaviors of crossing and train.
Also the sub-activities of crossing communicate in a very close cooperation, as can be seen
in the dependence graph (figure 8.13) for the compositional proof of crossing. In particu-
lar communication of CROSSING_CTRL with its sibling activities involves mutual triggering of
transitions by events.

291

8 Application of Verification Techniques - Experiences and Results

• The behavior of train depends on the computation of speed and position. Thus, control
depends on complex arithmetic computations of data. In order to verify the contribution of
train to the securing protocol, propositional abstraction from these computations has to be
applied, because otherwise train is too complex for verification. This way, being stopped by
an emergency stop appears to be a non-deterministic event after application of propositional
abstraction. On the other hand, the interaction of sub-activities of train is too close and
data-dependent to apply compositional verification.

Compositional verification using STDx-specifications is in principle independent from model com-
plexity and thus scales up also to very large systems. For example, if the computation of the breaking
curve in TRAIN was replaced by a quite more complicated and concrete function, the verification
complexity for the compositional proof for SYSTEM would not be affected. Moreover, compositional
verification provides a valuable enhancement of the repertoire of assessment techniques for quality
assurance in a model-development process. Both presented compositional proofs demonstrate that
compositional verification provides a deep insight into activity interaction and dependences among
activities in a design. Only if this interaction is entirely captured by specifications for the involved
activities, fulfillment of a top-level requirement specification can successfully be concluded from local
specifications. This way, compositional verification provides also a measure for the completeness of
requirement specifications. All conditions for correct behavior of the sub-activities of a design have
to be explicitely considered and formalized. The allowed and required activity interaction has to be
explicitely specified in order to establish a system requirement using compositional verification.

292

9 Conclusion and Outlook

In this work, we have presented the Statemate Verification Environment (STVE). The STVE
aims at supporting a model based development process of safety critical embedded systems with
formal verification techniques. Overall product quality is critically dependent on the familiarity
of system and software designers with the established process, and any change, in particular the
introduction of a technology completely novel to designers, can potentially cause significant process
degradation. It is thus essential to tune the handling to use-cases well understood and easily
appreciated by designers. Robustness analyses and formal debugging offered by the STVE are
powerful, easy to handle and push-button techniques which do not confront the developer with the
underlying mathematical verification technology. Application of robustness analyses already during
development increases the overall product quality by revealing conflicts in the model early in the
design of a reference model. Formal debugging supports the developer in examining the behavior
of the model. Witness paths found by robustness analyses and formal debugging are translated
into simulation control programs, which can be used to drive the Statemate simulator. We have
presented the realization and the integration of analyses and formal debugging with the STVE and
demonstrated their application for the case-study of a radio based signaling system.

For verification of basic safety requirements, specification patterns are offered which can easily
be instantiated by providing a mapping of the formal parameters of the pattern to user defined
expressions. Creation of proof-obligations and execution of proof tasks is integrated with a graphical
user interface that hides away all control aspects of verification from the developer. All verification
related activities including application of several abstraction techniques can be initiated directly
from appropriate icons. Verification using observer-pattern has been demonstrated for the case-
study.

Verification of functional and safety properties of the design under consideration is supported
using the intuitive graphical specification formalism of Symbolic Timing Diagrams (STDx). We
have presented and explained the constructs and features of STDx and enhanced the formalism to
be capable of real-time specifications in terms of the super-step semantics of Statemate models.
Specifications can quantitatively refer to steps as well as to the virtual time of super-step execution.
As common semantical basis of observer pattern and STDx verification we have presented a class
of discrete-timed symbolic automata and their representation by observer modules for application
of verification. A sub-class of these automata has been identified for which the acceptance criterion
can be captured by a invariant. For this relevant sub-class of timed automata it has been shown
that efficient verification using invariance checking is applicable.

We have defined a formal semantics of STDx-diagrams in a constructive way by unwinding into
timed symbolic automata. Only few restrictions have to be adhered to, in order to translate STDx-
diagrams into observer modules with invariant acceptance condition, s.t. invariance checking is ap-
plicable to the verification of STDX-specifications. Application of verification of STDx-specifications
has been demonstrated for components of the case study with a set of component proofs.

293

9 Conclusion and Outlook

Compositional verification of STDx-specifications as supported by the STVE has been formally
described and has been illustrated by two compositional proofs regarding the case-study. One of
the compositional proofs demonstrates verification of a real-time specification for a sub-component
of the case-study, while the other one establishes a safety critical requirement for the entire system.

Part of the STVE is a proof-manager that offers proof-obligation construction and proof task
execution by simple graphical operations. The management of proof-results as provided by the
proof-manager has been formally defined. The proof-manager keeps track of the verification results
and provides an overview of the proof-state of the design at every time. It has been explained how
proof-results are automatically invalidated according to changes in the design or modifications of
the requirement specifications. Proofs can be established again w.r.t. the changes by re-executing
the affected proof-tasks.

Although compositional reasoning and hierarchical conclusions are offered as a fully automated
technique, compositional verification remains a difficult task that requires significantly more ex-
pert knowledge than the pure push-button techniques offered by the STVE. Decomposition of a
system requirement specification into requirement specifications of its sub-components can not be
automated and thus remains a creative task.

Because complexity of compositional verification only depends on the number and complexity
of the involved specifications but not on the complexity of the model, compositional verification
can in principle be applied to arbitrarily large models. It only depends on the modularity of the
system, how many and how complex specifications are required in order to establish a top-level
requirement by compositional verification. Close interaction of the sub-components of a design
may involve circular dependencies between specifications and lead to reasonable complexity of the
compositional proof task. As a solution for the complexity issues of compositional verification
substituting local assumptions by local commitments and top-level assumptions, respectively, has
been integrated with the proof-obligation generation. Assumption substitution has been applied to
both compositional proofs presented in this work.

Besides being a technique for complexity reduction for specification verification, compositional
verification also provides a deep insight into activity interaction of a system. Only if the con-
tributions and conditions of all considered sub-components are explicitely specified, requirements
regarding their interaction can be verified using compositional verification. This involves intensive
examination and requires unambiguous specifications of the behavior of sub-components, as observ-
able at their interfaces. Hence, compositional verification using STDx-specifications is a valuable
technique for quality assurance in a model-based development process.

9.1 Outlook

Currently no automatic techniques support the complexity reduction for the stabilization bound
analysis integrated with the STVE. Since neither RCOI reduction nor propositional abstraction
are applicable because both abstraction techniques do not preserve the stabilization properties of
the design, future work should identify abstraction techniques applicable for this use-case. We feel
that the presented hand-abstraction of action parts of time triggered transitions by slow inputs is
a promising direction for future work.

Even though the formalism STDx has been proven to be successful applicable for specification
verification of embedded systems, there are still some directions for future improvements. In section
7.4 we have pointed out that the limitation of referring only one commitment declaration in STDx-

294

9.1 Outlook

specification limits the use of parameterized diagram templates. By abolishing this limitation re-use
of diagrams could be improved, and capturing requirement specifications could be made easier by
offering specific diagram template libraries. In order to improve use of diagram templates not only
the annotations of symbolic events should be parameterizable, but also the time-interval annotation
of constraints in the templates, which is currently not supported. We expect that offering libraries
of predefined diagram templates of which event annotations and constraint intervals can be mapped
to user-defined expressions and values, respectively, will ease formalization of requirements and
contribute to the intuitiveness of the formalism.

Regarding component verification using STDx, integration with abstraction techniques should
be improved. Currently STDx verification is integrated only with manual selection of variables
for propositional abstraction. The promising results of automatic abstraction refinement [Bie03]
for pattern verification strongly suggest application also in the context of verification using STDx.
Besides targeting maximal complexity reductions for verification, integration of STDx verification
with automatic abstraction refinement could significantly increase user-friendliness.

Concerning the support of compositional verification using STDx specifications, future work
should improve the application and handling of assumption substitution. Although assumption
substitution is already integrated with the proof-obligation generation, a list of substitutions has to
be provided, which is not yet guided by the graphical user-interface.

An interesting approach to improve the applicanility of compositional verification could be the
support of mixed proof-obligations, where parts of the composition are represented by specifications
and other parts are represented by sub-component behavior representations. This could permit
compositional derivation of specifications, from a parallel composition of the less complex compo-
nents of a design with observers replacing complex components by their specification. Even though
we can not forecast the verification complexity of such an approach, we expect that the effort spent
for specification verification for all involved sub-component can be reduced significantly.

Another direction of further work concerns the integration of alternative and complementary
specification formalisms. Live Sequence Charts (LSC) [DH99, Klo03] are already integrated with
the proof-manager in a prototypical way. Combining the graphical formalisms STDx and LSC is
interesting in more than one way. First, compositional derivation of LSC-specifications from STDx-
specifications of a decomposed view and derivation of black-box STDx-specifications of the top-level
from grey-box LSC specifications extend the richness of the available repertoire of offered specifica-
tion formalisms and verification techniques. Second, LSC specifications could be decomposed into
sub-component STDx-specifications and this way be used to define compositional proof-obligations.
Since LSCs are used to specify the interaction of components, while STDx is used to specify the
interface behavior of activities, both specification formalisms are in a way complementary. It seems
a promising approach, to automatically decompose protocol specifications given by LSCs into sub-
component specifications for the involved components. STDx-diagrams could be derived from the
instances of LSCs and be offered to the user, this way utilizing LSCs for the definition of composi-
tional proof-obligations.

295

9 Conclusion and Outlook

296

Bibliography

[ABC+99] A. Allara, M. Bombana, S. Comai, B. Josko, R. Schlör, and D. Sciuto. Specification
of embedded monitors for property checking. In 2nd Forum on Design Languages,
FDL’99, Lyon, pages 117–126, 1999.

[AD91] R. Alur and D. Dill. The Theory of Timed Automata. In de Bakker, Henzinger, and
de Roever, editors, Real Time : Theory in Practice, Proceedings of Rex 1991, number
600 in LNCS, pages 45–73, 1991.

[AdAG+01] R. Alur, L. de Alfaro, R. Grosu, T. Henzinger, M. Kang, R. Majumdar, F. Mang,
C. Kirsch, and B. Wang. Mocha: A model checking tool that exploits design structure,
2001.

[AEKN00] Nina Amla, E. Allen Emerson, Robert P. Kurshan, and Kedar S. Namjoshi. Model
checking synchronous timing diagrams. In Formal Methods in Computer-Aided Design,
pages 283–298, 2000.

[AEN99] Nina Amla, E. Allen Emerson, and Kedar S. Namjoshi. Efficient decompositional model
checking for regular timing diagrams. In Conference on Correct Hardware Design and
Verification Methods, pages 67–81, 1999.

[AFF+02] Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg, Tomer Kanza,
Avner Landver, Sela Mador-Haim, Eli Singerman, Andreas Tiemeyer, Moshe Y. Vardi,
and Yael Zbar. The forspec temporal logic: A new temporal property-specification
language. In Tools and Algorithms for Construction and Analysis of Systems, pages
296–211, 2002.

[AH89] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. In IEEE Symposium
on Foundations of Computer Science, pages 164–169, 1989.

[AHM+98] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sriram K.
Rajamani, and Serdar Tasiran. MOCHA: Modularity in model checking. In Computer
Aided Verification, pages 521–525, 1998.

[Alu98] R. Alur. Timed Automata, In NATO-ASI 1998 Summer School on Verification of
Digital and Hybrid Systems, 1998.

[BB91] Gerard Berry and Albert Beneviste. The synchronous approach to reactive and real-
time systems. In Another Look at Real Time Programming, Proceedings of the IEEE,79,
pages 1270–1282, 1991.

297

Bibliography

[BBD+99] Tom Bienmüller, Udo Brockmeyer, Werner Damm, Gert Döhmen, Claus Eßmann,
Hans-Jürgen Holberg, Hardi Hungar, Bernhard Josko, Rainer Schlör, Gunnar Wit-
tich, Hartmut Wittke, Geoffrey Clements, John Rowlands, and Eric Sefton. Formal
Verification of an Avionics Application using Abstraction and Symbolic Model Check-
ing. In Felix Redmill and Tom Anderson, editors, Towards System Safety – Proceedings
of the Seventh Safety-critical Systems Symposium, Huntingdon, UK, pages 150–173.
Safety-Critical Systems Club, Springer Verlag, 1999.

[BBEH99] Jürgen Bohn, Udo Brockmeyer, Claus Essmann, and Hardi Hungar. SMI – system
modelling interface, draft version 0.1. Technical report, Kuratorium OFFIS, e.V., Old-
enburg, 1999.

[BBEW98] Jürgen Bohn, Udo Brockmeyer, Claus Essmann, and Gunnar Wittich. SMI – system
modelling interface, technical report. Technical report, Universität Oldenburg, 1998.

[BCC+99] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic Model Checking
without BDDs. In TACAS 99, LNCS. Springer, 1999.

[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. In Proceedings, Fifth Annual IEEE Symposium on
Logic in Computer Science, pages 428–439, Philadelphia, Pennsylvania, 4–7 June 1990.
IEEE Computer Society Press.

[BDW00] Tom Bienmüller, Werner Damm, and Hartmut Wittke. The STATEMATE Verification
Environment – Making it real. In E. Allen Emerson and A. Prasad Sistla, editors, 12th
international Conference on Computer Aided Verification, CAV, number 1855 in LNCS,
pages 561–567. Springer Verlag, 2000.

[Bec99] Peter Bechberger. Model-Based Software Development for Electronic Control Units
(ECUs). ATZ/MTZ, Special Issue ’Automotive Electronics’:2–7, 1999.

[Bie03] Tom Bienmüller. Reducing Complexity for the Verification of Statemate Designs. PhD
thesis, Carl von Ossietzky Universität/OFFIS Oldenburg, 2003.

[Bit00] F. Bitsch. Classification of safety requirements for formal verification of software models
of industrial automation systems. In 13th Conference on Software & Systems Engineer-
ing and their Applications - ICSSEA 2000, Paris, 2000.

[Bit01] F. Bitsch. Safety-patterns - the key to formal specification of safety-requirements.
In SAFECOMP 2001 - Computer Safety, Reliability and Security, 20th International
Conference. Springer-Verlag, 2001.

[BPR98] Juergen Broede, Hugo Pfoertner, and Klaus Richter. The Importance of Testing for
Successful Life Usage Monitoring Systems. In 19th International Symposium on Aircraft
Integrated Monitoring Systems (AIMS98), Garmisch-Partenkirchen, Germany, 1998.

[Bro99] Udo Brockmeyer. Verifikation von Statemate Designs. PhD thesis, Carl von Ossiet-
zky Universität Oldenburg, December 1999.

[Bry92] Randal E. Bryant. Symbolic boolean Manipulation with ordered Binary-Decision Dia-
grams. ACM Comp. Surveys, ??(24):293–318, 1992.

298

Bibliography

[CBRZ01] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model
checking using satisfiability solving. Formal Methods in System Design, 19(1):7–34,
2001.

[CES83] Edmund M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite
state concurrent systems using temporal logic specifications: A practical approach. In
Procceedings of the 10th ACM Symposium on Principles of Programming Languages,
pages 117–126, 1983.

[CGH97] E. Clarke, O. Grumberg, and K. Hamaguchi. Another Look at LTL Model Checking.
Formal Methods in System Design, 10(1):47–71, February 1997.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press,Cambridge, Massachusets, London, England, 1999.

[CLM89] E. Clarke, D. Long, and K. McMillan. Compositional model checking. In Proceedings
of the Fourth Annual Symposium on Logic in computer science, pages 353–362. IEEE
Press, 1989.

[CM81] K. Mani Chandy and Jayadev Misra. Proofs of networks of processes. In IEEE Trans-
action on Software Engineering, volume 7(4), pages 417–426, 1981.

[CWA+96] Edmund M. Clarke, Jeannette M. Wing, Rajeev Alur, Rance Cleaveland, David Dill,
Allen Emerson, Stephen Garland, Steven German, John Guttag, Anthony Hall, Thomas
Henzinger, Gerard Holzmann, Cliff Jones, Robert Kurshan, Nancy Leveson, Kenneth
McMillan, J. Moore, Doron Peled, Amir Pnueli, John Rushby, Natarajan Shankar,
Joseph Sifakis, Prasad Sistla, Bernhard Steffen, Pierre Wolper, Jim Woodcock, and
Pamela Zave. Formal methods: state of the art and future directions. ACM Computing
Surveys, 28(4):626–643, 1996.

[DAC98a] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for
finite-state verification. Technical Report UM-CS-1998-035, AUTHORS: Matthew B.
Dwyer (1), George S. Avrunin (2) and James C. Corbett (3) AFFILIATIONS: Depart-
ment of Computing and Information Sciences (1) Kansas State University Department
of Mathematics and Statistics (2) University of Massachusetts Department of Informa-
tion and Computer Science (3) University of Hawai‘i, , 1998.

[DAC98b] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property specification
patterns for finite-state verification. In Mark Ardis, editor, Proc. 2nd Workshop on
Formal Methods in Software Practice (FMSP-98), pages 7–15, New York, 1998. ACM
Press.

[DC01] Werner Damm and Moshe Cohen. Formal checker verifies software, June 2001.

[DD97] H. Dierks and C. Dietz. Graphical Specification and Reasoning: Case Study Generalized
Railroad Crossing. In J. Fitzgerald, C.B. Jones, and P. Lucas, editors, FME’97, volume
1313 of LNCS, pages 20–39. Springer, 1997.

[DH99] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. In
FMOODS’99 IFIP TC6/WG6.1 Third International Conference on Formal Methods
for Open Object-Based Distributed Systems, 1999.

299

Bibliography

[Die96] Cheryl Dietz. Graphical formalization of real-time requirements. In FTRTFT, pages
366–384, 1996.

[DJHP97] Werner Damm, Bernhard Josko, Hardi Hungar, and Amir Pnueli. A compositional real-
time semantics of STATEMATE designs. In COMPOS, Copositionality: The Significant
Difference, International Symposium COMPOS’97, edt. H.Langmaack, A. Pnueli and
W.-P. de Roever, LNCS 1536, Springer-Verlag, pages 186–238, 1997.

[DJS95] W. Damm, B. Josko, and R. Schlör. Specification and verification of VHDL-based
system-level hardware designs. In E. Börger, editor, Specification and Validation Meth-
ods, pages 331–410. Oxford Univ. Press, 1995.

[DK01] Werner Damm and Jochen Klose. Verification of a radio-based signaling system us-
ing the STATEMATE verification environment. Formal Methods in System Design,
19(2):121–141, 2001.

[DL02] Henning Dierks and Marc Lettrari. Constructing test automata from graphical real-
time requirements. In FTRTFT ’02: Proceedings of the 7th International Symposium on
Formal Techniques in Real-Time and Fault-Tolerant Systems, pages 433–454, London,
UK, 2002. Springer-Verlag.

[DS93] W. Damm and R. Schlör. Specification and verification of system-level hardware designs
using timing diagrams. In The European Conference on Design Automation, Paris,
France, pages 518–524. IEEE Computer Society Press, 1993.

[EMSS90] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal
reasoning. In Proc. 2nd International Computer Aided Verification Conference, pages
136–145, 1990.

[EOKX95] E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao. Efficient Generation of Coun-
terexamples and Witnesses in Symbolic Model Checking. In 32nd Design Automation
Conference (DAC 95), pages 427–432, San Francisco, CA, USA, 1995.

[ESt97] Bundesministerium des Inneren EStdIT. V-Model, Development Standard for IT-
Systems of the federal Republic of Germany, 1997.

[fEA01] ITEA Information Technology for European Advance. Guideline for Validation and
Verification Real-Time Embedded Software Systems - Software Development Process
for Real-Time Embedded Systems (dess), Dec 2001.

[fES97] European Committee for Electronical Standardization. Railway Applications: Software
for Railway Control and Protection Systems, EN 50128, 1997.

[Fey96] Konrad Feyerabend. Real time Symbolic Timing Diagrams - Technical Report, 1996.

[Fis96] Kathryn Fisler. A Unified Approach to Hardware Verification through heterogeneous
Logic of Design Diagrams. PhD thesis, Department of Computer Science, Indiana
University, August 1996.

[Fis00] K. Fisler. On tableau constructions for timing diagrams, 2000. In NASA Langley
Workshop on Formal Methods.

300

Bibliography

[FJ97] Konrad Feyerabend and Bernhard Josko. A visual formalism for real time requirement
specifications. In Proceedings of the 4th International AMAST Workshop on Real-
Time Systems and Concurrentand Distributed Software, ARTS’97, Lecture Notes in
Computer Science 1231, pages 156–168, 1997.

[GL94] Orna Grumberg and David E. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843–871, May 1994.

[Gre02] Bertrand Gregoire. Automata oriented program verification. Master’s thesis, Facultes
Universitaires Notre-Dame de la Paix, Namur, Belgium, September 2002.

[Har87] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8(3):231–274, June 1987.

[HLN+90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. STATEMATE: A working environment for the de-
velopment of complex reactive systems. IEEE Transactions on Software Engineering,
16(4):403 – 414, 1990.

[HLR93] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. Synchronous observers and
the verification of reactive systems. In Algebraic Methodology and Software Technology,
pages 83–96, 1993.

[HN96] David Harel and Amnon Naamad. The STATEMATE Semantics of Statecharts. ACM
Transactions of Software Engineering Methods, 5(4):1–36, Oct 1996.

[Hol00] Leszek Holenderski. Compositional verification of synchronous networks. In FTRTFT,
pages 214–227, 2000.

[Hol05] H.J. Holberg. Erfahrungsbericht über formale methoden in den bereichen model check-
ing und automatic test vector generation im industriellen umfeld. Technical report,
Virtuelles Engineering Kompetenzzentrum (VISEK), To Appear 2005.

[HP98] David Harel and Michal Politi. Modeling Reactive Systems with Statecharts: The State-
mate Approach. McGraw-Hill, Inc., New York, NY, USA, 1998.

[iL00] i Logix. Statemate MAGNUM, 2000.

[iL04] i Logix. www.ilogix.com, 2004.

[JEKD90] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Sequential Circuit Verification
Using Symbolic Model Checking. In Proceedings of the 27th ACM/IEEE Design Au-
tomation Conference, pages 46–51, Los Alamitos, CA, June 1990. ACM/IEEE, IEEE
Society Press.

[Jon91] Capers Jones. Applied software measurement: assuring productivity and quality.
McGraw-Hill, Inc., 1991.

[Jos87] B. Josko. MCTL: An extension of CTL for modular verification of concurrent systems.
In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Proceedings of the Conference on
Temporal Logic in Specification, volume 398 of LNCS, pages 165–187. Springer, 1987.

301

Bibliography

[Jos93] Bernhard Josko. Modular Specification and Verification of Reactive Systems. Carl von
Ossietzky Universität Oldenburg, 1993. Habiltationsschrift.

[Klo03] Jochen Klose. Live Sequence Charts: A Graphical Formalism for the Specification of
Communication Behaviour. PhD thesis, Department für Informatik, C.v.O. Universität
Oldenburg, 2003.

[KT00] Jochen Klose and Andreas Thums. The Statemate Reference Model of the Reference
Case Study ’Verkehrsleittechnik’. Technical report, University of Augsburg, 2000.

[KV98] Orna Kupferman and Moshe Y. Vardi. Modular model checking. Lecture Notes in
Computer Science, 1536:381–401, 1998.

[KV00] Kupferman and Vardi. An automata-theoretic approach to modular model checking.
ACMTOPLAS: ACM Transactions on Programming Languages and Systems, 22, 2000.

[KVW00] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic approach
to branching-time model checking. Journal of the ACM, 47(2):312–360, 2000.

[KW01] Jochen Klose and Hartmut Wittke. An Automata Based Representation of Live Se-
quence Charts. In Proceedings of TACAS 2001,number 2031 in LNCS. Springer Verlag,
2001.

[LIS02] Andrew Lapping, Mark Irving, and Andy Stringer. De-Mystifying Signalling Priciples
Through Modelling and Simulation., 2002.

[LSU95] Roger Lipsett, Carl Schaefer, and Cary Ussery. VHDL: Hardware Description and
Design. Kluwer Academic Publishers, 1995.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[McM99] K. L. McMilan. Circular compositional reasoning about liveness. In Conference on
Correct Hardware Design and Verification Methods, pages 342–345, 1999.

[MJH+98] In-Ho Moon, Jae-Young Jang, Gary D. Hachtel, Fabio Somenzi, Jun Yuan, and Carl
Pixley. Approximate reachability don’t cares for CTL model checking. In ICCAD,
pages 351–358, 1998.

[OS19] Sam Owre and Natarajan Shankar. The formal semantics of PVS. Technical Report
SRI-CSL-97-2, SRI, Menlo Park, CA, Menlo Park, CA, 19.

[Pnu85] A. Pnueli. In transition from global to modular temporal reasoning about programs.
In K.R. Apt, editor, Logics and Models of Concurrent Systems, sub-series F: Computer
and System Science, pages 123–144. Springer-Verlag, 1985.

[PS97] A. Pnueli and E. Singermann. Fair synchronous transition systems and their lifeness
proofs. Technical report, Dept. of Comp. Science, Weizmann Institute, 1997.

[QS81] J. P. Quielle and J. Sifakis. Specification and verification of concurrent systems in
cesar. In Proceedings of the 5th International Symposium on Programming, pages 195–
220, 1981.

302

Bibliography

[R.E86] R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

[RTC92] RTCA. RTCA/DO-178B, Software Consideration in Airborne Systems and Equipment
Certification, RTCA-Requirements and Technical Concepts for Aviation, 1992.

[SAC97] SACRES. Syntax of the System Specification Language within SACRES. In Deliverable
Report I1.4.A, (Esprit 20897 SACRES), 1997.

[SAC99] R. Schlör, A. Allara, and S. Comai. System verification using user-friendly interfaces. In
Design, Automation and Test in Europe / User Forum, pages 167–172. IEEE Computer
Society Press, 1999.

[Sch00] Rainer Schlör. Symbolic Timing Diagrams: A Visual Formalism for Model Verification.
PhD thesis, Carl von Ossietzky Universität/OFFIS Oldenburg, 2000.

[Som98] Fabio Somenzi. CU Decision Diagram Package, 1998. CUDD is available from
http://vlsi.Colorado.EDU/~fabio.

[SRS+03] Bernhard Schätz, Jan Romberg, Martin Strecker, Oscar Slotosch, and Katharina Spies.
Modeling embedded software: State of the art and beyond. In Proceedings of ICSSEA
2003, 16th International Conference on Software and Systems Engineering and their
Applications, 2003.

[Tho90] Wolfgang Thomas. Automata On Infinite Objects. In Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), pages 133–191. Elsevier
Science Publishers, 1990.

[Tho02] Filip Thoen. Enabling Early Software Development Through Virtual System Proto-
typing. EDN System Design Series, A Special Advertising Section to EDN(2):32–36,
2002.

[vHBK98] Reinhard v. Hanxleden, Ali Botorabi, and Slawomir Kupczyk. A Co-Design Approach
for Safety-Critical Automotive Applications. IEEE Micro Special Issue on Embedded
Fault-Tolerant Systems, 18(5):66–79, Sep/Oct 1998.

[VIS96a] The VIS Group, VIS : A System for Verification and Synthesis. In 8th international
Conference on Computer Aided Verification, number 1102 in LNCS, 1996. VIS is
available from the VIS home-page: http://www-cad.eecs.Berkeley.EDU/~vis.

[VIS96b] The VIS Group, VIS: A System for Verification and Synthesis. In FMCAD, 1996.

[Wit99] Gunnar Wittich. Ein problemorientierter Ansatz zum Nachweis von Realzeiteigen-
schaften eingebetteter Systeme. PhD thesis, Carl von Ossietzky Universität Oldenburg,
August 1999.

303

Bibliography

304

Curriculum Vitae

19.8.1965 Geboren in Hannover als Sohn von Erika (geb. Westphal) und Dieter Wittke.

1970 Einschulung in die Grundschule Trenknerweg in Hamburg.

1974 Übergang in das Gymnasium Hohenzollernring in Hamburg.

7.6.1984 Erlangung der Allgemeinen Hochschulreife.

1.2.1985-7.1987 Ausbildung zum Maschinenschlosser im Hamburger Berufsbildungszentrum HBZ
e.V. in Hamburg.
Bestehen der Gesellenprüfung am 12.6.1987.

1.9.1987-31.12.1988 Zivildienst als Rettungshelfer beim Rettungsdienst Friesland.

1.10.1989-7.1997 Studium der Informatik an der C.v.O.-Universität in Oldenburg. Ab WS 94/95
Tätigkeit als wissenschaftliche Hilfskraft in den Projekten KORSYS und FORMAT.

10.7.1997 Abschluss des Studiums mit der Diplomarbeit ”Eine graphische Design-Umgebung für
STD-Spezifikationen”.

1.7.1997 Einstellung bei OFFIS e.V. im Bereich ”Sicherheitskritische Systeme” (SC) als wissen-
schaftlicher Mitarbeiter.
Seitdem Mitarbeit in den Projekten VFORMAT, SACRES, SAFEAIR und Autogen. In diesen
Projekten zuständig für graphische Spezifikations-Formalismen und die Integration der en-
twickelten Werkzeuge.

18.11.2005 Disputation

1.1.2006 Mitarbeiter der OSC Embedded Systems AG

305

	Titel
	Zusammenfassung
	Abstract
	Acknowledgements
	Contents
	Introduction
	Reactive Safety Critical Embedded Systems
	Model Based Development
	Formal Verification
	Organization of this Thesis

	Development Process
	Model Based Development Process
	The V-Model
	Placement of STVE-Techniques in the Model Based Development Process

	Using Statemate
	Statemate
	Execution of Statemate Models
	Case Study: Radio-based Signaling System

	Model Checking
	Synchronous Transition Systems
	Kripke-Structures
	CTL Model Checking
	Fairness
	Symbolic Model Checking
	LTL Model Checking
	Invariance Checking
	Verification using Synchronous Observers
	Bounded Model Checking using Satisfiability Checking (BMC)
	Abstraction
	Verification Tools integrated with STVE

	System Representation for Formal Verification
	A Compositional Semantics for Statemate Models
	Compositional Synchronous Transition Systems
	Real-Time Aspects for the Verification of Statemate Models
	System Representation for Formal Verification

	Requirement Capturing for Open Embedded System
	Robustness Analysis and Formal Debugging
	Certification Techniques
	Timed Symbolic Automata (TSA)
	Timed Symbolic Automata
	Verification using Fair Synchronous TSA-Observers
	Partially Ordered TSA
	Global Constrainedness
	Non-Failure Acceptance
	POTSA with Activation Control (POTSAAC)
	Observer Generation for POTSAAC
	Related Work

	Observer Pattern
	Related Work

	Symbolic Timing Diagrams (STDx)
	Diagrams
	Building STDx-specifications from Diagrams and Declarations
	Preparation of STDx-Specifications for Application of Unwinding
	Unwinding of Symbolic Timing Diagrams
	Related Work

	Verification Techniques for Complex Embedded Systems
	Structure of the Statemate Verification Environment
	Optimizations and Abstractions in the Verification of Statemate Models
	Compositional Verification
	Extending Verification to Complete Systems
	Compositional Techniques - Related Work

	Application of Verification Techniques - Experiences and Results
	Application of Robustness Analyses and Formal Debugging
	A Synchronous Variant of the Radio-based Signaling System
	Stabilization
	Robustness Checks
	Summary of the Application of Analyses
	Application of Formal Debugging
	Summary of the Application of Formal Debugging

	Application of Verification using Observer Pattern
	Summary of Application of Observer Pattern Verification

	Application of Verification using Symbolic Timing Diagrams
	Component Proof for ACTIVATE_CROSSING_CTRL
	Compositional Verification of CROSSING
	Compositional Verification of SYSTEM
	Summary of the Application of STDx Verification

	Conclusion and Outlook
	Outlook

	Bibliography
	Curriculum Vitae

	link: Zur Homepage der Dissertation

