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Zusammenfassung

Bewegung ist eine der Eigenschaften visueller Szenen, welche von

der Retina kodiert werden müssen. Dieser Kode ist in den Aktions-

potentialfolgen (Spike Trains) retinaler Ganglienzellpopulationen

repräsentiert und wird über den optischen Nerv an das Gehirn

übertragen. Die hohe Geschwindigkeit dieses Prozesses spiegelt die

Herausforderung durch die Natur wider, welcher das visuelle Sys-

tem durch schnelle und effiziente Kodierung nachkommt. Die die-

ser Arbeit zugrunde liegenden Untersuchungen wurden anhand ex-

trazellulärer Ganglienzell-Populationsantworten durchgeführt, die

aus der isolierten Retina der Schildkröte Pseudemys scripta ele-

gans gewonnen wurden. Die Retina wurde hierbei durch ein be-

wegtes Lichtmuster stimuliert. Ein Ziel der Arbeit war es zu prü-

fen, ob eine Subpopulation systematisch ausgewählter Zellen einer

zufällig ausgewählten signifikant überlegen ist. Ausserdem wurden

verschiedene schnelle Kodierungsstrategien unterschiedlicher Kom-

plexität vergleichend bewertet. Alle diese Kodierungsstrategien be-

zogen nicht mehr als drei Aktionspotentiale pro Zelle ein, welche

innerhalb eines Zeitfensters von 150 ms nach einer internen Re-

ferenz ausgelöst wurden. Diese frühen Spikes der gesamten Popu-

lation wurden im Rahmen einer linearen Diskriminanzanalyse zur

Rekonstruktion der Bewegungsreize verwandt. Die Resultate der

Analysen weisen deutlich die Überlegenheit ausgewählter Subpo-

pulationen nach. Darüber hinaus resultiert nur eine geringfügige

Verbesserung aus der Hinzunahme weiterer Spikes im Anschluss an

den jeweils ersten, welcher die Latenzkodierung definiert. Schlies-

slich erlaubt eine Kombination beider Teilergebnisse die Bestim-

mung einer optimalen Zellanzahl für die schnelle und effiziente Sti-

mulusrekonstruktion.
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Summary

Motion is one of the properties of visual scenes that must be en-

coded by the retina. This code is represented by spike trains pro-

duced by populations of retinal ganglion cells and transmitted via

the optical nerve to the brain. This is a quick process that repre-

sents a natural challenge for the visual system to encode and decode

visual information in a fast and efficient way. The analyses of this

thesis were carried out on extracellular responses of a population

of retinal ganglion cells from the isolated retina of a turtle Pseude-

mys scripta elegans. The retina was stimulated using a moving

light pattern. One of the goals of this work was to check if se-

lected cell sub-populations were significantly superior to randomly

selected ones. Additionally, a set of fast coding strategies of dif-

ferent complexity were evaluated in a comparative manner. These

coding strategies involved no more than the first three spikes per

cell fired within a time window of 150 ms following an internal re-

ference. These early spikes of the whole population were employed

to reconstruct the stimuli using a classifier based on linear discrimi-

nant analysis. Our results indeed prove the superiority of selected

sub-populations. Moreover, only a minor improvement results from

including spikes following the first one defining the latency code.

Finally, the combination of both results allows to determine an op-

timal number of cells for fast and efficient stimuli reconstruction.
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Chapter 1

Introduction

1.1 The retina

The vertebrate retina is a neural network composed by several types of cells

organized in form of layers and placed on the posterior inner surface of the

eyeball. The retina tissue is constituted by: a) photoreceptors, b) horizontal

cells, c) bipolar cells, d) amacrine cells and e) ganglion cells. The organization

of these layers is presented in Figure 1.1. The main function of the retina is

to encode the characteristics involved in any visual scene, i.e. color, contrast,

surroundings, brightness, shapes, motions, etc. This code is produced finally

by the layer of ganglion cells in form of electrical signals that are transmitted by

the optic nerve to different areas of the brain for decoding and reconstruction

of images (Dayan and Abbott, 2001, pp. 51-54). The retina originates during

the embryonic stage, when the brain develops and some of its nerve fibers

prolongate in outwards sense. Therefore, the retina is considered part of the

central nerve system. The first stage of the early visual processing is the

layer of photoreceptors, whose input is the visual information in form of light

stimuli or photons that come from the environment passing through the entire

eyeball. Before light reaches the photoreceptors it finds a dark epithelium,

which prevents reflections into the layer of photoreceptors and protects the

cells from excessive light radiation. A brief description about the cells that

compose the retina and their functions for encoding of visual information are

presented below.
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1.1 The retina

Figure 1.1: Simplified schematic distribution of the cellular layers in
the retina. It can be noticed that light stimulus must go through
all layers of the retina before reaching the photoreceptors.

1.1.1 Photoreceptors

As mentioned above, encoding of the visual information starts when light sig-

nals (photons) go through the anterior surface of the eye and reach the layer

of retinal cells composed by photoreceptors (rods and cones), which transduce

light stimuli into electrical signals. The number of rods and cones depends

on species and whether their active life is predominantly diurnal or nocturnal.

The function of rods is to capture the few photons available in environmental

conditions with low light levels, whereas cones are responsible for encoding of

colors present in visual scenes with adequate lighting (Wässle, 2004). Usually,

the membranes of the photoreceptors are in contact with the epithelium and

contain a protein known as opsin, which in turn bears a variation of vitamin

A called retinal. This complex is called rhodopsin in rods and photopsin in

cones. In this way, when photons fall into the layer of photoreceptors, are ab-

sorbed by these molecules and the signal transduction of light stimuli initiates.

In normal darkness conditions, both cones and rods release to horizontal cells

and bipolar cells an excitatory neurotransmitter known as glutamate.

2



1.1 The retina

1.1.2 Horizontal cells

Horizontal cells interconnect laterally groups of photoreceptors and dendrites

of bipolar cells providing inhibitory signals that cause lateral inhibition. These

inhibitory signals are produced when another neurotransmitter known as

GABA (Gamma-Aminobutyric acid) is released by horizontal cells. In this

way, when a photoreceptor is stimulated by light, the photoreceptor hyperpo-

larizes and glutamate release is reduced. In turn, GABA release from horizon-

tal cells is also reduced causing an inhibitory effect on the photoreceptors and

a negative feedback. The introduction of this lateral inhibition by horizontal

cells avoids that the excitatory signal spreads around wide areas of the retina,

limiting the action of the light stimulus inside the respective receptive field.

This mechanism is important for detection of borders and contrast encoding.

1.1.3 Bipolar cells

Bipolar cells transmit signals from the photoreceptors layer to the ganglion

cells layer. Their inputs are synaptically connected with the axons from either

rods or cones, reason why they are denoted as rod bipolar or cone bipolar

cells according to the type of photoreceptor connected to their inputs. More-

over, only one rods connect with their respective bipolar cell, whereas more

than one cone may connect to a single bipolar cell. It is worth pointing out

that cone bipolar cells connect directly to ganglion cells, whereas rod bipolar

cells synapse initially to amacrine cells before transmitting signals to ganglion

cells. These connections allow the transmission of signals from photoreceptors

to amacrine and ganglion cells in separated and specialized channels. Both

rod and cone bipolar cells are also classified into two types: ON and OFF.

This classification depends on their reaction when glutamate is released by the

photoreceptors. Normally, the photoreceptors are hyperpolarized when they

detect photons and the release of glutamate decreases, so ON bipolar cells

depolarize (or activate) and OFF bipolar cells hyperpolarize (or deactivate).

Both ON and OFF bipolar cells tile the retina, providing an additional mech-

anism for detection of edge contrast even when the edge is located exactly

between two adjacent photoreceptors.

3



1.1 The retina

1.1.4 Amacrine cells

There exists a wide variety of amacrine cells whose presence and functions

depend on species (Kolb, 2003). These cells can be classified according to their

morphological types, although the functions of most of them have not yet been

totally understood. However, a special type of amacrine cell known as AII has

been well studied. AII amacrine cells release glycine as neurotransmitter and

their inputs are connected to ON rod bipolar cells, which means that an AII

cell activates when center of its receptive field is stimulated by presence of

light. In this way, AII cells collect information from rod bipolar cells and

convey simultaneously via gap junctions depolarizing signals to ON (ON cone

bipolar cell and ON ganglion cells) and OFF systems (OFF cone bipolar cell

and OFF ganglion cells). AII cells associate in turn with another type of

amacrine cells called A17 in order to convey signals to ganglion cells. These

cells release GABA as neurotransmitter and collect also information from rod

bipolar cells to amplify and modulate the signals that are transmitted from

rod bipolar cells to AII cells. Nevertheless, it is not yet completely understood

how A17 cells perform this function (Kolb, 2003). In general terms, there

exists evidences that the role of amacrine cells involves enhancing vision in

dim light environments, lateral inhibition between bipolar and ganglion cells

and, possibly, a complementary definition of center and surround in receptive

fields further than the performed by horizontal cells.

1.1.5 Ganglion cells

The layer of retinal ganglion cells (currently known with the acronym RGC) is

the final stage of visual information processing in the retina. Ganglion cells re-

ceive signals from bipolar and amacrine cells establishing connexions with their

ON and OFF pair systems, so they are classified in two types: ON and OFF. In

this way, ON center ganglion cells activate when a spot of light stimulates the

center of its receptive field if inactivates when the stimulation is produced on

the surround. On the other hand, OFF center ganglion cells inactivate when

light falls onto the central area of the receptive field and activates when light

stimulates the perifery. This mechanism entails that the ganglion cells trans-

mit information about contrast of a visual scene based on differences in firing

4



1.1 The retina

rates in the center and surround of the receptive field. Furthermore, processing

of the spatial frequency in a visual scene depends on the size of the receptive

field; high spatial frequencies stimulate small receptive fields, whereas low spa-

tial frequencies stimulate large receptive fields. Figure 1.2 represents how ON

and OFF ganglion cells response to light stimuli depending whether this falls

either onto the center or the surround of their receptive fields.

Figure 1.2: Responses of ON and OFF ganglion cells depending on
the area of their receptive fields stimulated by spot lights.

Certain types of ganglion cells are tuned to detect different features of visual

scenes, such as wavelength (color), size, brightness and motion. A special

type of ganglion cells that detect sudden changes in visual scenes and react

to spatiotemporal contrast modulations are Y cell, which produce transient

responses and are considered as triggers of visual alerting functions (Demb

and Sterling, 2001; Demb et al., 2001). Y cells are in turn classified in ON

and OFF types; they are the largest ganglion cells in the retina and have

the capacity to transmit information faster than other types of ganglion cells.

Although only 5% of ganglion cells are Y cells, their dendrites are enough large

to collect information from extensive retinal areas, in such a way that Y cells

have wide receptive fields. Moreover, Y cells perform a nonlinear summation

of their inputs. For this reason, they are sensitive to small and sudden motion

detected in areas beyond their receptive fields, which is probably mediated by

some amacrine cells (Demb et al., 1999).

There exist also specific direction selective ganglion cells, whose activity

5



1.1 The retina

was been initially modeled by Barlow and Levick (1965). According with this

model, a direction selective (DS) ganglion cell receives information from two

neighbouring image locations, by means of one excitatory input and one de-

layed inhibitory input (Figure 1.3a). The DS cell reacts to a motion in the

preferred direction but not in the null direction. More recently, a model de-

scribed by Fried et al. (2002, 2004) establishes interactions between excitatory

and inhibitory inputs that differ between the preferred and the null direction

(Figure 1.3b). The DS ganglion cells receive direct excitatory inputs from the

preferred side and direct inhibitory inputs from the null side. The excitatory

inputs in turn receive presynaptic inhibition from the null sides, whereas the

inhibitory inputs receive presynaptic inhibition from the preferred sides.

Figure 1.3: Scheme proposed to model the functions of direction-
selective (DS) ganglion cells. a) initial model proposed by Barlow
and Levick (1965). b) model presented by Fried et al. (2004). In
both cases, the cells receive excitatory (left) and inhibitory (right)
inputs (This figure has been taken modified from Wässle (2004)).

The output of the ganglion cells are temporal sequences of sharp depolar-

ization electric waves, which are commonly denominated in the literature as

action potentials or spikes. These signals are triggered inside the ganglion cells

by voltage-gated ion channels in the cell membrane when the membrane po-

tential reaches a high-enough level (Gollisch, 2009). Thus, the encoded visual

information is contained in the temporal sequences of these spike trains (re-

view: Meister and Berry, 1999). Subsequently, the signals are transmitted into
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1.2 Coding strategies

the brain via optic nerve for the corresponding decoding and reconstruction of

the images or visual scenes.

1.2 Coding strategies

As mentioned in Section 1.1.5, the encoded visual information is contained in

the spike trains fired by the ganglion cells layer and depend highly on the nature

of the visual stimulus that is arriving into the retina; one or more spikes can be

fired when a ganglion cell depolarizes in response to a stimulus. A prototype

of one of these spikes is depicted in the upper panel of Figure 1.4. Normally,

analysis of neural code is not focused on the shape of these spikes, but on the

times in which their peaks (or eventually their valleys) are located, as well

as the number of spikes (spike count) fired within a time window (Figure 1.4

lower panel). Basically, three coding strategies can be evaluated for analysis of

retinal code: a) spike count, b) latency and c) spike timing, which are described

in the following Subsections.

Figure 1.4: Representation of three spikes fired by a neuron after its
stimulation.
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1.2 Coding strategies

1.2.1 Spike count

A first attempt for analysis of neural code based on spike count was presented

by Adrian (1926). This approach established that the number of spikes pro-

duced by a neuron depends on how strong is the stimulus, i.e. the stronger

the stimulus, the higher frequency of fired spikes by a neuron (or a population

of neurons). Spike count may be evaluated estimating the number of spikes

elicited in a time window over several trials of a stimulus, whose averaging

leads to the construction of a post-stimulus time histogram (PSTH) such as

described in Figure 1.5.

Figure 1.5: Scheme of the spikes elicited by a neuron in three trials.
A. The number of spikes in each time window depends on the stim-
ulus. B. Post-stimulus time histogram (PSTH) calculated when the
number of spikes elicited in each bin across trials is averaged.

As can be noticed, a reliable and efficient evaluation of spike count demands

long observation periods and many redundant neurons. This situation is in-

compatible with the sensory processing due to the extremely short integration

time of the nervous system and the reaction speed of the brain. On the other

hand, neurons in vertebrate retina fire with remarkable precision (Meister and

Berry, 1999; Uzzell and Chichilnisky, 2004), for which spike timing informa-

tion may be ignored in retinal codes based on spike count. For these reasons,

8



1.2 Coding strategies

reconstruction of visual stimuli by evaluation and decoding of spike count is

not biologically realistic (Gautrais and Thorpe, 1998).

1.2.2 Latency

Transmission of information from photoreceptors to ganglion cells requires a

time that normally depends on the properties of the stimulus. Generally, this

time is inversely proportional to spike count, i.e. strong stimuli induce high

spike counts and short latencies, whereas weak stimuli provoke the opposite

situation 1. For this reason, the first spike that conveys the encoded visual in-

formation is fired with a delay from the temporal onset of the arriving stimulus.

This time is known as latency, which could be sufficient for encoding purposes

from a ideal point of view (Gerstner and Kistler, 2002, pp. 20-21). In contrast

to spike count, a code based on latency turns out quite fast and efficient to

evaluate. Theoretically, no spike is fired always in the same time point when a

neuron responds to a repeated stimulus, but this time point variates within a

time window (Figure 1.6A). The cause of this fact is the component of stochas-

ticity found in the spike trains from single neurons or populations of neurons.

Therefore, the encoded information provided by latency can be analyzed from

the probability distribution obtained from the variations of these time points

(Figure 1.6B).

Two kinds of latency can be defined: external latency and relative latency.

External latency refers to the standard definition of latency that has been men-

tioned in the last paragraph, i.e. the time between the onset of the stimulus

and the time point in which the first spike is fired. In biological sense, this

approach is feasible only if the brain obtains information about the exact time

of the onset. One probably biological source of this reference could be supplied

when information about an oncoming movement is produced as a corollary dis-

charge of the neuronal movement commands (Sommer and Wurtz, 2002), even

though decoding by evaluation of external latency may not be feasible if the

change of stimulus is produced externally. Instead, a code based on relative

latency can be analyzed without prior knowledgment of any external onset. In

1This assumption is not always true; one exception of this rule are the biphasic OFF
ganglion cells in the salamander retina (see (Gollisch and Meister, 2008)).
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1.2 Coding strategies

Figure 1.6: Representation of the latency times of a neuron according
to two different stimuli. A. A strong stimulus (stimulus A) provokes
responses with short latencies, whereas a weak stimulus (stimulus
B) provokes the opposite situation. B. Scheme of the distribution
probabilities for the two latency responses denoted as tA and tB

respectively.

this approach, the relative onset may be estimated averaging the activity of a

population of neurons. In this sense, Gollisch (2009) argues that this informa-

tion in relative spike timing could be detected by downstream brain regions

through delay lines and coincidence detection (Figure 1.6B). The explanation

of this behavior is the strong correlation of the times in which the first spikes

are fired among a population of ganglion cells; one cell tends to fire a spike

following another one that fired a spike some milliseconds ago. This mecha-

nism could be caused by the electrical connections among nearby ganglion cells

through gap junctions, which induce concerted firing patterns whose latencies

can be narrowly synchronized in times less than 3 ms (Brivanlou et al., 1998;

Hu and Bloomfield, 2003). Another correlated neuronal activity can be found

due to shared input into ganglion cells from bipolar or amacrine cells (Levine,

1997; Murphy and Rieke, 2008).

1.2.3 Spike timing

Spike timing refers basically to the analysis of the time points in which a

neuron (or a population of neurons) fires its spikes in response to a stimulus

(review: Lestienne, 2001), so it may be suggested that this coding strategy
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1.2 Coding strategies

Figure 1.7: Scheme of relative latency from a population of three cells
denoted as cell A, cell B and cell C. The temporal information of
the first spike (latency) fired by each cell is referred to the time
in which changes in the average of the population activity occur
(dotted line).

may convey more detailed information than spike count and latency. Moreover,

spike timing can be thought as an extension of the latency, because it is not

only analyzed the temporal information of the first spike, but of all the spikes

fired within a time window. Such as explained in Subsection 1.2.2, the analysis

may be focused on the probability for a spike to be fired within a specific time

window (Figure 1.8).

Figure 1.8: Modulation of the time points of spikes fired in response
to two different stimuli.

11



1.2 Coding strategies

1.2.4 Population code and decoding of stimuli

Several researches have demonstrated that the activity of ganglion cells are

strongly correlated among them, i.e. nearby ganglion cells tend to get active

together (or inactive together) more often than would be expected by chance

(Nirenberg et al., 2001). Particularly, there exists evidence of the concerted

and synchronized activity of pairs and groups of ganglion cells under a variety

of visual stimuli (Mastronarde, 1989; Meister et al., 1995; Schneidman et al.,

2006; Shlens et al., 2006; Pillow et al., 2008). Such evidences have been found

due to the use of multielectrode arrays in in vitro biological experiments (Take-

tani and Baudry, 2006) with dissected retinas from different species, which

allows to record simultaneously the spikes from populations of ganglion cells

in response to diverse visual stimuli. In these experiments, the photoreceptors

are stimulated by light patterns whereas the multielectrode array detects the

extracellular electrical responses produced by individual ganglion cells (Meis-

ter et al., 1994; Berry et al., 1997, 1999; Fernández et al., 2000; Segev et al.,

2004; Gunninga et al., 2005).

The retina can be viewed as a neuronal system in which the photorecep-

tors represent the input of a signal (visual information) and the ganglion cells

represent the output of the processed signal (encoded visual information). Hy-

pothetically, if the relationship input/output of a ganglion cells is known, it

is possible to determine the code used by the retina to represent any visual

scene (Figure 1.9). Therefore, visual stimuli can be reconstructed by compu-

tational procedures to decode the spike trains produced by a population of

ganglion cells (Bialek et al., 1991; Nirenberg and Latham, 1998). One of the

first attempts to decode a time-dependent visual stimulus from the responses

of a population of ganglion cells was introduced by Warland et al. (1997).

In this work, the authors utilized the isolated retina of a tiger salamander

and the stimuli was a spatially uniform field whose intensity varied randomly

over time. Subsequently, two decoding strategies (linear reconstruction and

artificial neural network) were applied to reconstruct the stimuli. One of the

main observations in that work was the influence of the number and type of

ganglion cells on the quality of reconstruction of stimuli; the performance of

reconstruction improved as more nonredundant cells were included, whereas
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1.3 Saccades and fast decoding of dynamic motion

inclusion of cells of the same type did not produce evident improvements in

the reconstruction. In addition, linear reconstruction was shown to be as ef-

fective as the neural network, so most of the information about these stimuli

were represented by linear operations on the code. In fact, subsequent stud-

ies have demonstrated that the choice of the classification method does not

play a relevant role in the reconstruction performance (Nicolelis et al., 1998).

Nevertheless, reconstruction methods based on Bayessian classifiers (Zhang

et al., 1998; Kass et al., 2005; Winzenborg et al., 2010), linear discriminant

analysis (Fernández et al., 2000; Greschner et al., 2006), principal component

analysis (Tovée et al., 1993), as well as supervised and non-supervised neural

networks (Ferrández et al., 1999) have been widely applied with relative good

performance.

Figure 1.9: Schematic representation of a standard procedure for re-
construction of visual stimuli. A Gaussian distribution of intensities
was applied onto the retina and a multielectrode array recorded the
spike trains elicited by the ganglion cells. Subsequently, the spike
trains were decoded to obtain an estimation of the stimuli. Scheme
taken and modified from Warland et al. (1997).

1.3 Saccades and fast decoding of dynamic

motion

1.3.1 Saccade movements

The early visual system receives continually natural stimuli that must be en-

coded by the retina in very short periods of time. The brain in turns decodes

at amazing speeds this information, which is a fundamental function for sur-
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vival and everyday activities of animals and humans. One of these functions is

related with detection and tracking of moving objects and prediction of their

future positions. Typical examples include the capacity of an animal to de-

termine how fast must run pursuing its prey according to the velocity that

employees to escape; another case is when a person has to determine if the

velocity of a vehicle allows him/her to cross a street before it comes. These

tasks are performed when the eyeball moves to change the direction of gaze for

pursuit of moving objects. Such movements are known as saccades, which al-

low the dynamic fixation on particular points in the visual scene and definition

of details (Yarbus, 1967).

The correct perception of the motion achieved by an object and decoding

of its dimensions plays an important role in the cognitive processes such as

learning, prediction, attention and selection (Barnes, 2008). These processes

influence the capacity of many living organisms to accomplish ocular pursuit of

moving objects and bodies, in other words, the skills of the oculomotor system

to detect and characterize motions (Robinson, 1965; Lisberger et al., 1987;

Pola and Wyatt, 1992; Elstrott et al., 2008; Ilg and Thier, 2008). For instance,

ocular pursuit movements maintain smooth eye velocity close to object velocity,

reducing retinal image motion and maintaining visual acuity.

Saccades movements are a property shared among the different visual sys-

tems in many alive organisms (Land, 1999), they can occur with a frequency

around three to four per second (Gollisch, 2009), and the last perception of the

image onto the retina is interchanged after each saccade movement. For this

reason, the nervous system has little time to process the encoded visual infor-

mation produced by the retina during the inter-saccadic intervals. Saccades

play also an important role in recognition of static images; small changes of

direction of gaze occur to scan the whole area of an image perceived by the

retina and it keeps the resolution of the static image reconstructed in the brain.

1.3.2 Fast decoding of dynamic motion

Although saccade movements in ocular pursuit may be voluntarily originated

by the observer, these can be induced likely without active participation as

reflexive movements (Barnes et al., 1987; Barnes, 2008). In this sense, differ-
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1.3 Saccades and fast decoding of dynamic motion

ent behavioral experiments have been performed to analyze the mechanisms

employed by the early visual system for pursuit of moving objects by means

of saccadelike stimulation. Depending on some visual parameters, such as the

luminance of the target, size, and initial position in the visual field, it has been

demonstrated that the onset of smooth target motion evokes pursuits with a

range of latency times of 65 to 130 ms (Lisberger and Westbrook, 1985; Lis-

berger et al., 1987). In other experiments with ramp stimuli (visual pattern

at rest moved suddenly with constant acceleration in a fixed direction) it was

reported that acceleration of smooth pursuit movements from one velocity to

another occurs in about 130 ms (Robinson, 1965). Even neurons in higher

visual areas have been shown to produce highly selective responses to visual

stimuli in a range between 100 to 150 ms after the onset of a new stimulus

(Perrett et al., 1982; Osborne et al., 2004; Ghose and Harrison, 2009).

One approach to evaluate the speed of visual processing in these periods of

time was introduced by Thorpe et al. (1996), whose objective was to establish

how much time did normal subjects need to identify between two categories

of images: pictures containing an animal and pictures without animals; each

presentation of the couple of images lasted 20 ms. The results of this research

showed that in most of the cases the categories were correctly identified in

150 ms. In other version of the experiment (Kirchner and Thorpe, 2006),

subjects identified the two categories making a saccade to the picture that

contained the animal. In this occasion, the fastest reliable eye movements

were initiated after 120 ms. In another work presented by Schwartz et al.

(2007), it was shown that ganglion cells from mouse and tiger salamander

retinas produced synchronous burst of spikes fired when sudden changes of

direction were detected. These bursts were measured by the peristimulus time

histograms (PSTH) from the responses of ganglion cells, which were character-

ized by presence of activity peaks greater than 10 Hz; these peaks were located

in ∼250 ms in salamander retina and ∼190 ms in mouse.

Another approach introduced in analysis of retinal code has been oriented

for decoding of motion by use of saccadelike stimulation. Specifically, some

researches have tried to determine the role of the ganglion cells from the be-

ginning until the end of a saccade movement. One study in this sense was

presented by Roska and Werblin (2003); in this work, authors played shifting
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1.3 Saccades and fast decoding of dynamic motion

natural movies to observe responses of ganglion cells in rabbit retina during

and after saccade movements. They found two types of ganglion cells according

to their reaction form: some ganglion cells were inhibited during the saccade

and fired bursts of spikes after the saccade ended to encode information of a

new moving image; another type of ganglion cells react increasing their activ-

ity by means of fired spikes during the saccade in order to encode information

while saccade movement is occurring. The authors of this work established

that the suppressed activity of some ganglion cells during the saccade could

function as a reset of the encoded visual information transmitted from the

retina. This mechanism may act as marker of the beginning of a new signal

transmission episode (Gollisch, 2009). A similar study developed by Amthor

et al. (2005) identified two different behaviors of ganglion cells in rabbit retina

by simulation of light change that are likely to occur during a saccade. In

this work, authors demonstrated that luminance characteristics of the image

played before the saccade affected considerably the responses of ganglion cells

to the image played after the saccade. Likely, authors found that outputs of

some ganglion cells were suppressed during the saccadelike stimulus, whereas

other cells enhanced their responses few hundred milliseconds after the end of

the saccade movement.

Archer fish is one of the most interesting case in nature where feeding de-

pends on the ability of an organism to pursue a prey with saccade movements.

It is widely known that archer fish can locate an insect prey from its position

underwater and shoot it down using powerful jets of water from its mouth.

The prior location of its target is normally produced by saccade movements

to shift the direction of its gaze. Rossel et al. (2002) reported that archer fish

can predict the point on the water where its insect prey will fall only about

100 ms after it shoots it down. This fast prediction allows archer fish to arrive

quickly to this point and to devour its prey.

Some previous works have demonstrated the feasibility to estimate mo-

tions directly from the relative timings in individual retinal ganglion cells of

primates. The basis of the method applied in these studies is that if retinal

ganglion cells respond identically, then a response in common should on av-

erage be produced in each cell by the time correction of the stimulus onset

over each receptive field. The motion is identified by the alignment of spike
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1.3 Saccades and fast decoding of dynamic motion

trains from the cells after the onset correction expected at the motion. The

procedure included the calculation of the cross-correlation between pairwise

cells implemented initially by Reichardt (1961) to establish standard models

of motion sensing, which were applied by Chichilnisky and Kalmar (2003) and

Frechette et al. (2005) to estimate speeds and directions respectively.

Another study about temporally precise spikes after saccadelike stimuli

was presented by Greschner et al. (2006). In this work, ON-OFF cells of turtle

retina in response to abrupt intensity changes were analyzed; these stimuli

were intended to produce specific spike patterns obtained during current sac-

cade eye movements. Two precise types of bursts separated by some ten of

milliseconds were registered: in the first burst, latencies decreased monotoni-

cally as the contrast increased, whereas latencies in the second burst showed

a nonmonotonic dependence on the stimulus, i.e. short latencies for interme-

diate contrast and long latencies for high and low contrast. This mechanism

utilized by subpopulations of ON-OFF ganglion cells were intended to improve

the discrimination of different light-intensity transitions. The authors of this

study demonstrated also that discrimination of contrasts transitions reached

its best performance if both spike count and latencies from the two bursts

are evaluated. This is an indication that identification of specific features of

a moving object during a saccade movement is impaired when information of

the target is transmitted few milliseconds after the saccade movement is over.

One study that demonstrated this fact was presented by Segev et al. (2007) by

analysis of retinal code registered from ganglion cells of archer fish. Applying

changes of light intensity as stimuli, authors found that the best distinction of

targets of different sizes was performed in periods inmediatly after saccades,

which are normally made by this kind of fish to shift the direction of its gaze

for pursuit of its prey.

Since visual information has to cross at least 10 synaptic stages (from

photoreceptors until visual responsive neurons in the temporal lobe) in about

100 ms, it has been argued that transmission of encoded visual information

based on a single spike per neuron at each stage is totally feasible (Thorpe,

1990). Obviously, the layer of ganglion cells is considered as one of these 10

synaptic stages. Different researches have been focused their studies to decode

stimuli taking into account only the information of the first spike (latency) of a

17
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neural response after the onset of a new stimulus. In this sense, a wide number

of theoretical works have been published in identification of faces in natural

images (Gautrais and Thorpe, 1998; Thorpe and Gautrais, 1998; van Rullen

et al., 1998; Thorpe et al., 2001; Delorme and Thorpe, 2001). In an experiment

carried out with salamader retina, Gollisch and Meister (2008) demonstrated

that latency of first spikes can transmit considerable amounts of information

in encoding of images briefly displayed. In this study, the fastest responses

were registered from ON-OFF cells whose first spikes were elicited with very

high precision timings. Whereas these latency times were well differentiated

by about 40 ms according to the displayed image, the number of spikes fired

afterward in the bursts kept almost constant regardless the stimulus. There-

fore, for the stimuli applied in this study, latency code was more reliable than

encoding based on spike count.

Another work to reconstruct motion saccadelike stimuli was presented by

Thiel et al. (2007). In this work, a pattern with dark squares on a bright back-

ground was moved on an one-dimensional axis varying its speed and direction.

Two coding strategies from the spike trains were evaluated: spike count and

latency. This information was employed by a Bayesian classifier to reconstruct

velocities and velocity transitions of the motion stimuli. The main results of

this work indicated that velocities were encoded mainly by spike count in their

most stationary periods, whereas velocity transitions were encoded principally

by latencies of the responses provoked by abrupt changes of velocities in the

stimuli protocol.

1.4 Thesis overview

The present thesis is organized in in five chapters. As can be seen so far,

Chapter 1 of Introduction has been dedicated to explain basically some aspects

about the the structure of the retina and retinal code. Likewise, a state-of-

the-art of researches with saccadelike stimuli and decoding methods has been

included. These last considerations have done inherent the necessity for any

method of decoding visual stimuli to reconstruct visual scenes in fast and effi-

cient ways, which is the central issue dealt in this thesis. Chapter 2 describes

briefly the experiment performed for acquisition and storage of the database
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analyzed in the present work, as well as some procedures to preprocess and or-

ganize these data. Initially, a multielectrode array was employed to detect the

extracellular responses from a retinal ganglion cell population in the isolated

retina of a turtle. These responses were produced by stimulation of the retina

with a pattern of black points, which moved along a one-dimensional axis with

variations of speed and directions. After a spike sorting process, the responses

of 107 ganglion cells were separated. The main goal is hence to reconstruct

the motion stimuli of the experiment from the information decoded in the

spike trains of these cells. Specifically, the stimuli intended to be decoded

were velocities and velocity transitions inherent in the stimuli protocol (Sec-

tion 2.1). Likewise, Section 2.4 deals with the detection of response triggers to

be employed as internal reference for estimation of the coding strategies. As

mentioned in Section 1.2.2, decoding of stimuli taking into account these in-

ternal references may be considered as the most approached method employed

by the brain for detection and decoding of new stimuli that arrive into the

retina.

Chapter 3 is oriented to determine if systematically selected cells allow to

enhance the efficiency of a decoding procedure for visual stimuli. Firstly, this

Chapter explains the methods used to evaluate the selectivity of the cells from

their responses to the motion stimuli applied in the experiment (Sections 3.2

to 3.6). Such methods evaluated the unicellular selectivity according to the

following properties: a) characteristics of their raster plots, b) reliability, c)

directionality, e) discriminability and f) transmitted information. After this

explanation, it is indicated how the best cells were selected depending of their

selectivity to motion assessed by each of the properties above mentioned. With

these cells, small sub-populations were constructed and employed for decod-

ing the stimuli by means of a classifier based on linear discriminant analysis,

orienting this procedure for classification on a single trial basis. The decoding

was accomplished from the temporal information of the first and the second

spikes elicited by individual cells when a new stimulus is detected. In other

words, the timings of the first and the second spikes were the coding strategies

evaluated for reconstruction of motion stimuli using each of the small sub-

populations (Section 3.8); it is worth mentioning that the timing of the first

spike represents the information of latency. There are two particularities in
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the estimation of such coding strategies. The first one is the fact that they

were evaluated after the internal triggers detected by the procedure described

in Section 2.4, and the second particularity is their estimation within a short

time window after the internal triggers, specifically 150 ms having into account

the considerations of fast visual detection indicated by Perrett et al. (1982),

Osborne et al. (2004) and Ghose and Harrison (2009). In addition, Chap-

ter 3 explains the performance measure employed to assess the classification in

Section 3.9. Therefore, velocities and velocity transitions were reconstructed

utilizing each of the sub-populations constructed with the cells selected by the

methods above mentioned. The results were compared with reconstructions

obtained from sub-populations composed by randomly selected cells and it was

found that the best method for selection of cells is the one that assess their

discriminability properties. Moreover, the probability distributions of the re-

constructions between cells selected by discriminability and random cells were

shown to be significant separable. For this reason, the analysis accomplished

in the following chapters were based on sub-populations constructed with cells

selected by discriminability evaluation.

There are three main issues inherent in the Chapter 4. The first one de-

scribes the decoding of stimuli in similar way as accomplished for selection

of cells in Chapter 3. The difference is that in Chapter 4 the analysis of the

coding strategies is expanded to: a) only first spike (latency), b) first spike

combined with second spike and c) first and second spikes combined with

third spike (Section 4.1), which were likewise estimated in short windows of

150 ms. Evaluation of both second and third spikes is considered as an indirect

form to include information of spike count in the classification method. In this

way, the idea is to determine if inclusion of fast coding strategies beyond the

latency entails improvements if the classification efficiency of velocities and ve-

locity transitions. Additionally, two more performance measures are described

in Section 4.3, which assessed separately the performance of the method for

prediction of speeds and direction of the motion stimuli. It was found that the

temporal information of the second spikes combined with the one of the first

spikes provided an improvement in the prediction of velocities; this improve-

ment got even higher when the decoding were accomplished by combination

of the temporal information from the first, second and third spikes. A bit
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different were the results in the reconstruction of velocity transitions, because

the improvement in the classification performance reached by combination of

first, second and third spikes was not markedly different from the ones by the

combination of only first and second spikes. In any way, it has been clearly

observed that the second and third spikes contain information correlated with

the spike count and allowed to improve the classification performances beyond

the ones reached by only evaluation of latency.

The second issue dealt in Chapter 4 is the improvement of the classifi-

cation efficiency using sub-populations constructed with different numbers of

ganglion cells (Sections 4.2 and 4.4); as expected, the classification performance

improved as the number of cells increased. By application of the performance

measures explained in Section 4.3, it could be observed that misclassification

of directions were more marked in small sub-populations than in large ones.

In contrast, there is few differences between classification of speeds in small

and in large sub-populations. Furthermore, when the classification efficiency is

plotted in function of the increase of cells, it can be observed a kind of satura-

tion or plateau at a intermediate number of cells, which is more evident in the

reconstruction of velocities than in reconstruction of velocity transitions. This

means that the contribution of cells gradually included in the sub-populations

diminished as their number approached to the largest sub-population. This is

a first indication that a number of cells less than the total number detected in

the experiment (107 cells) can be enough (optimal) for reconstruction of the

motion stimuli. Thus, Section 4.6 describes a method to find a more explicit

and optimal number of cells, which is accomplished comparing the contribu-

tion to enhance the classification efficiency from the largest sub-population

with the contributions provided by each of the others sub-populations.

The third and last issue dealt in Chapter 4 is the analysis of the classifica-

tion method when the time points of the triggers were modified. The idea was

to examine how sensitive is the reconstruction method to variations in time of

the internal triggers detected by the algorithm. Two procedures were employed

in this step. The first one was to introduce delays homogeneously across all

the single trials of the responses from individual cells; the second procedure

consisted to introduce likely time delays across the trials but generated in a

random manner (Section 4.7). It was observed that the homogeneous delaying
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of the triggers enhanced the classification of the velocities and diminished the

classification of velocity transitions. From analyse published by Winzenborg

et al. (2010) using the same database of this thesis, it was observed that most

of the information of velocities is encoded by spike count, whereas accelera-

tions and changes of direction are mostly encoded by latencies. Therefore, a

possible explanation of the improved classification efficiency for velocities is

that the coding strategies may be estimated in more stationary periods of the

responses, specifically the second and third spikes (indirect forms to estimate

spike count). In contrast, these delayings could deteriorate the information

of latency and diminish the reconstruction of velocity transitions. In the case

of random delaying of the triggers, the reconstruction of both velocities and

velocity transitions were diminished.

Finally, Chapter 5 presents the conclusions of this research. All the cal-

culations in this work were carried out with with the software Matlab® Version

7.2.0.232 (R2006a).
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Chapter 2

Experiment

This chapter is dedicated to introduce a brief idea about the experiment

performed to acquire the signals of the database analyzed in this thesis, al-

though this experiment is described in detail by Greschner et al. (2002) and

Thiel et al. (2007). In addition, this chapter includes also some methods for

preprocessing of these signals, which have been likewise presented by Winzen-

borg et al. (2010). These concepts are important for the comprehension of

certain procedures and methods dealt with in the following chapters of this

work.

2.1 Electrophysiological recordings

The extracellular recordings from a population of retinal ganglion cells were

acquired by in vitro stimulation of the dissected retinas of a turtle (Pseudemys

scripta elegans). The experiment involved the utilization of a multi-electrode

array (MEA) of 100 electrodes (Figure 2.1a) inserted from the pigment epithe-

lium side into the layer of retinal ganglion cells. The retina was stimulated with

a template that consisted of small black squares placed on a transparent back-

ground that moved linearly across the retina at fixed orientation angle with

variation of direction and speed (Figure 2.1b). The protocol was controlled

by a computer that variated pseudorandomly the presentation of the stimulus

velocities (Figure 2.2). The size of the template was large enough to cover all

the area of the retina and the stimuli spectrum consisted of nine velocities rep-
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resented by Ω = {-2.5, -1.875, -1.25, - 0.625, 0, 0.625, 1.25, 1.875, 2.5}. Neg-

ative velocities indicate leftward motions and each velocity was kept constant

during an interval of 500 ms. Motion sequences with this stimuli spectrum

were presented during 365 seconds, ensuring that the sequences sampled all

velocities. Transitions from one velocity to itself were excluded, in such a form

that the experiment presented 72 possible changes or transitions from an ini-

tial velocity to a final one; each one of these 72 transitions were presented 10

times in each sequence. The authors conducted the experiment eight times, in

such a mode that the final database contained the responses of a population

of ganglion cells from eight repeated sequences of the stimuli protocol.

(a) (b)

Figure 2.1: (a) Utah 100- electrode array (Cyberkinetics,Foxborough,
MA) used to record the response of retinal ganglion cells (Jones
et al., 1992). (b) Detail of the spatial random pattern moved along
one axis to generate the visual stimuli. The gray square in the center
indicates the size of the electrode array. Movement to the right is
referred to as positive and movement to the left as negative velocity
(modified from Thiel et al. (2007)).

2.2 Spike sorting

It is quite often for a single electrode in this kind of multi-electrode arrays to

detect the electrophysiological responses of more than one cell. This situation

is not convenient because normally it is necessary to achieve unicellular anal-

ysis of the responses measured from a population of ganglion cells. In such

cases, a mixture of two or more unicellular responses are present in a single

channel of one of the electrodes in the array. For this reason, a spike sorting
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2.3 Offset correction

Figure 2.2: Scheme of the setup employed in the experiment.

was performed with the software Spike-Sorter, which is based on a supervised

k-means clustering of the individual responses shapes. These procedure sep-

arated the extracellular recordings of the multielectrode array into 107 spike

trains of individual ganglion cells, whose time points were stored for subsequent

analysis. Figure 2.3 shows a stimulus segment of five seconds with the spikes

elicited by each cell of the population according to the temporal application

of the stimuli.

2.3 Offset correction

Normally, when the transition from a stimulus to another one occurs, there is a

time between the instant in which the photoreceptors detect the signals of the

new stimulus and the moment in which these processed signals reach the layer

of ganglion cells. This time represents a delay that should be compensated

for the correct temporal assignment of the retinal responses to the stimuli. In

other words, it should be ensured the correspondence of stimuli and responses

of ganglion cells in the reconstruction. To compensate this delay, a time shift

was introduced into all the time points of the spike trains in the database
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Figure 2.3: Top: five seconds segment of the stimulus protocol with
positive and negative velocities indicating motion to the right and
left respectively, including the velocity of 0 mm/s as non-motion.
Bottom: population raster plot of the spike trains recorded from
the retinal ganglion cells.

(Thiel et al., 2007; Winzenborg et al., 2010). The calculation of this time shift

consisted initially of the estimation of a post-stimulus time histogram (PSTH)

from the spike activity of the 107 pooled ganglion cells with bin sizes of 1 ms.

Subsequently, the PSTH of the transitions from 0 to 2.5 mm/s was chosen due

to the earliest and strongest responses produced by this specific transition in

the activity of the population. To detect the beginning of the activity increase

in response to the velocity of 2.5 mm/s, the mean and the standard deviation

of the activity before the transitions were calculated for the last 250 ms. In this

way, the starting time of the spike population activity was defined as the time

in which the population activity exceeded the mean activity plus three times

its standard deviation. Finally, the shift time was estimated as the median

of the distance between the time in which the population activity began in

response to 2.5 mm/s and the time of the transition, which had a value of 56

ms. Hence, this time was subtracted from all the time points of the spikes

sorted as mentioned in Section 2.2.

26



2.4 Detection of trigger events

Figure 2.4: Post-stimulus time histogram (PSTH) of the transitions
from 0 to 2.5 mm/s. The blue arrow indicates the time in which the
population activity exceeded the mean plus three times the standard
deviation estimated for velocity 0 mm/s. The vertical dashed line
represents the exact time of the transition. This figure has been
taken and modified from (Winzenborg, 2007).

2.4 Detection of trigger events

Generally, the brain does not know the exact times in which a new stimulus

arrives onto the retina, for which the decoding of the spike trains should be

performed relative to internal cues in the nervous system, such as mentioned

in Section 1.2.2. In this thesis, an algorithm presented by Winzenborg et al.

(2010) was applied for detection of stimulus changes based on the activity

of the pooled ganglion cells. This algorithm is based on the concept that

strong variations in the activity of the population indicate that a new stimulus

have arrived. Hence, the time points in which these variations occur can be

employed as relative triggers, from which the features of the retinal code may

be estimated and evaluated.

The first step to accomplish the detection of these triggers consisted to cal-

culate a PSTH in similar form as mentioned in Section 2.3. Subsequently,

two windows were defined: a large one of 400 ms and a shorter one of
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45 ms located after the large window. From the spike activity of the pop-

ulation within the large window it was calculated the mean and standard

deviation. Additionally, a factor of two standard deviations were added to

the mean value for estimation of an upper bound. In the same form, a

lower bound was defined subtracting this factor of two standard deviations

from the mean of the population activity. In this manner, a trigger was de-

tected when the mean activity of the short window was larger than the up-

per bound or less than the lower bound. These two windows moved along

each of the eight sequences of population activities obtained after the experi-

ment for detection of all the possible triggers. Nonetheless, as a protection

against accumulation of triggers, the algorithm did not detect any trigger

until 50 ms after the detection of the last one. In the following chapters,

the acronym et will refer to the triggers detected by means of this method.
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Chapter 3

Selection of cells methods and

coding strategies

It is reasonable expected that not all the cells recorded in the experiment

(Chapter 1) have the capacity to encode motion stimuli. In fact, it has been

found that between 30 and 40% of the ganglion cells in the turtle retina are

direction selective; most of these cells vary their frequency of fired spikes in

function of the speeds inherent in motion stimuli (Bowling, 1980; Ariel and

Adolph, 1985; Ammermueller et al., 1995). Hence, it was considered the hy-

pothesis that collection of motion selective cells enables and progressively im-

proves the decoding of the stimuli analyzed in this thesis, whereas the inclusion

of randomly selected cells deteriorates the decoding efficiency. To assess this

hypothesis, some response properties of the cells (explained from Sections 3.2

to 3.6) were evaluated under the supposition that they reflect the responsivity

of the cells to encode motions. In the issues dealt in this chapter, responsivity

refers to the covariation between stimulus velocity and firing rate produced by

each ganglion cell. Such covariation can be defined as ∂r/∂v, where r denotes

the firing rate and v is the stimulus velocity. Subsequently, small hierarchi-

cal sub-populations of ganglion cells were constructed with the ranked results

of these properties. Finally, the classification efficiency obtained from these

sub-populations were compared with those obtained from randomly pooled

populations, in order to determine the best method for cells selection.
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3.1 Tuning curves of motion selective cells

3.1 Tuning curves of motion selective cells

To explain the fact that not all the neurons detected in the experiment (see

Section 2.1) are motion selective, Figure 3.1 shows the tuning curves of latency

and spike count of two cells, which do not respond similarly to variations of

velocity 1. To obtain the tuning curves shown in Figure 3.1, the estimations of

spike count and latency in each response trial from individual cells was made

within the first 150 ms after the detected trigger events (Section 2.4) because

behavioral responses are typically observed to occur in times less than 150 ms

(Thorpe et al., 1996). The cell whose tuning curves are depicted with the gray

lines shows a more defined dynamic range between the slowest and the fastest

velocities applied during the stimulation in vitro of the retina. In contrast,

the cell represented by the black tuning curves responds similarly to all the

velocities, which allows to infer that this cell is less selective to motion that

the other one.
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Figure 3.1: Tuning curves of (a) latency and (b) spike count from the
responses of two cells to each of the nine velocities of the stimuli
spectrum (see Section 2.1). The black line represents a cell with
low covariation between its responses and the stimulus velocities,
whereas the gray line represents a cell with strong covariation. The
mean and standard deviation were determined for 640 stimulus pre-
sentations.

1In the response trials that did no present any spike inside a time window of 150 ms after
the trigger, an artificial value of 150 ms was assigned. This situation will be explained in
detail in Section 3.8
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3.2 Visual selection

A set of methods for cells selection are presented in the following subsec-

tions. The methods are denominated as follows:

– Visual inspection of raster plots

– Reliability

– Directionality

– Discriminability

– Transmitted information by calculation of Shannon’s mutual information

Each of the above mentioned properties was evaluated from the firing patterns

of individual cells, notwithstanding the fact that retinal network activity and

circuitry can influence the characteristics among their responses. Subsequently,

the computed values of each of these properties were ranked in a hierarchical

manner together with their respective cells, i.e. from the cells with the highest

computed value to the cells with the lowest one.

3.2 Visual selection

This method was applied by visual inspection on the rasters plots generated

from the responses of individual cells to every velocity of the stimuli spectrum.

The purpose was to look for cells with reliable firing patterns after the onset

of the stimulus whose raster plots were produced by 640 presentation of each

velocity. This evaluation was made under the assumption that motion selective

cells exhibit a noticeable firing activity during the first milliseconds of their

responses. Thus, cells that did not present this feature in their raster plots

were excluded. Figure 3.2 shows the raster plots of two cells in response to a

same velocity; based on this visual assessment 61 cells were selected.

3.3 Reliability

In this method, the reliability of the firing activity of the cells across trials was

evaluated during the first milliseconds of their responses after the trigger events
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Figure 3.2: Raster plots of two cells with different firing activity in
response to two stimulus velocities. The upper panels present the
raster plots of a selected cell produced by velocities of 0.625 mm/s
and 2.5 mm/s, whereas the lower ones represent the responses to
the same velocities of a removed cell. The visual inspection of the
firing activity was focused within the dotted line ellipses.

(see Section 2.4). Specifically, it was assumed that the stimulus selectivity is

represented by low variability of the spike response to repeated presentations

of each velocity (v) from the stimuli spectrum Ω indicated in Section 2.1.

The spike timing reliability of every response’s cell was quantified employ-

ing a correlation measure proposed by Schreiber et al. (2003). The aim of this

procedure is to map every single trial response onto a d-dimensional vector ~σi.

Reliability means that all vectors of the trial ensemble point in nearly the same

direction in the related d-dimensional space or that the average angle between

vector pairs ~σi and ~σj is small. Computation of the average cosine then leads

to a number which identifies perfect reliability (zero variability) with the value

one.

To accomplish the computation of reliability, the spike trains were binned

with a time window of 1 ms in the 200 ms following each trigger event. This

time was stated under the consideration that, for most of the transitions, the

highest firing activity is found in this interval. The bin width, denominated as

∆t = 1 ms, matches the regular time scale of a single spike and defines timing

precision. The vector that results from this mapping presents a dimension

of d = 200, which was convolved with a Gaussian window of mean zero and

32



3.3 Reliability

standard deviation 5 ms. The final expression of these vectors is given by

~σi, i = 1, . . . , n, where n represents the 640 trials or stimulus repetitions. The

spike response reliability Γ was then computed as:

Γ =


 2

n(n− 1)

n∑

i=1

n∑

j=i+1

~σi · ~σj
|~σi| |~σj |


 . (3.1)

Notice that 0 ≤ Γ because all vector components are non-negative. When

computing this measure for neurons with different spike rates (α = 〈k〉/(n∆t)

where k denotes the number of ones in a binary sequence) it results obvious

that it is biased toward higher spike counts. This bias was corrected by sub-

tracting the average reliability resulting for an ensemble of 640 independent

Poissonian spike trains (Figure 3.3). Therefore, the bias-corrected values Γvc
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Figure 3.3: The reliability measure (Equation 3.1) is biased toward
higher spike rate. This can be seen when simulating 640 independent
Poissonian spike trains for a given spike rate and computing the
reliability measure. In panel (a) the resulting average is plotted
with solid line whereas the dashed lines below and above indicate
the 5% and 95% quantiles, respectively. The crosses exemplify the
reliability values computed for each of the 107 cells from the spike
response to the 640 trials with a specific velocity. In panel (b) we
show the same data after bias correction.

were computed for all 107 cells (c) and all 9 stimulus velocities (v). Ranking

cells according to Γ for each stimulus separately and comparing the top ten

lists showed pronounced differences of absolute values. This could be seen as

an indication that some stimuli were easier to detect (large Γv
∗
) than others
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3.3 Reliability

(small Γv
∗
). In order to pool populations that could handle all tested stimuli

comparably, the cells were assessed according to relative values γvc , i.e. all

absolute values Γvc were normalized to the related maximum as follows:

γvc =
Γvc

max
c
{Γvc}

. (3.2)

To characterize cell c across all velocities, its overall reliability was defined as

the average:

γc =
1

9

∑

v

γvc . (3.3)

The computed mean values of reliability obtained from the responses of each

cells are presented in Figure 3.4(a) in form of a hierarchical ranking of cells.

Likewise, a scatter plot between the mean of the reliability calculated from each

cell and their respective spike count values is shown in Figure 3.4(b). It can

be observed that reliability is anti-correlated with the spike rate (correlation

coefficient/p-value: −0.21/0.034) 2.
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Figure 3.4: (a) Hierarchical presentation of the mean overall reliability
values. (b) Scatterplots of mean reliability values vs. average spike
rate rc of each cell. Notice that here the average is performed across
trials and all nine velocities.

2The data of correlation coefficient/p-value presented in this Chapter were calculated by
means of the function corrcoef of Matlab® Statistics Toolbox
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3.4 Directionality

3.4 Directionality

One extension of the considerations from Figures 3.1(a) and 3.1(b) is the selec-

tivity to direction that a cell can exhibit from its firing rate, which should be

reflected by their respective tuning curves. The responses of a direction selec-

tive cell can produce asymmetric tuning curves, such as observed in Figure 3.5.

In this Figure, the asymmetric tuning curves depicted with black lines indicate

a selective to leftward motion cell. In this way, directionality is a measure that
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Figure 3.5: Tuning curves of (a) latency and (b) spike count from the
responses of two cells to each of the nine velocities of the stimuli
spectrum. Both cells present similar values of latency and spike
count in response to leftward motion (negative velocities). In con-
trast, the cell represented by the tuning curves with black lines
present lower firing activity and larger latencies for rightward mo-
tion. The means and standard deviations were also computed from
640 stimulus presentations.

expresses the asymmetry of the tuning curve of a cell, which was calculated in

this case via:

δ̂c =
〈α+
c 〉 − 〈α

−

c 〉

〈α+
c 〉+ 〈α

−

c 〉
(3.4)
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3.4 Directionality

where 〈α+
c 〉 and 〈α−c 〉 are the average spike counts over all rightward and left-

ward motion respectively 3, i.e.:

〈α+
c 〉 =

1

4

∑

v>0

αc(v) and 〈α−c 〉 =
1

4

∑

v<0

αc(v) . (3.5)

Highly left-selective and right-selective cells will yield δ̂c = −1 and δ̂c = 1

respectively, while a perfectly symmetric tuning curve (non-direction-selective

cell) will result in δ̂c = 0. Since it is necessary to differentiate only between

non-selective and selective to direction cells, regardless of the direction (left

or right) for which they are selective, it was considered just the modulus |δ̂c|.

This definition is less stringent than the definition of reliability expressed in

Equation 3.1 because it is insensitive to shifting spikes across bins as long

as it preserves the total number of spikes. Figure 3.6(a) shows the ranked

computed values of directionality from individual cells. Like in the case of

reliability (Figure 3.4(b)), directionality is also anti-correlated with the spike

rate (correlation coefficient/p-value: −0.24/0.015).
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Figure 3.6: (a) Hierarchical presentation of the overall directionality
values. (b) Scatterplots of directionality values vs. average spike
rate rc of each cell.

3Here and in the evaluations of discriminability and Shannon’s mutual information (Sub-
sections 3.5 and 3.6 respectively), as well as in the evaluation of fast coding strategies
(Section 3.8), the calculations were made within the 150 ms following the trigger events (see
Section 2.4).
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3.5 Discriminability

3.5 Discriminability

The measure of discriminability was defined to balance the beneficial effect of

responsivity and the detrimental effect of response variability, which is closely

related to d′ used in signal detection theory (Green and Swet, 1966). In general

terms, the discriminability of each cell was computed as the ratio between

its responsivity and its response variability, where responsivity and response

variability are defined in terms of mean firing rate and standard deviations of

firing rate respectively. As in the evaluation of directionality (Subsection 3.4),

the discriminability is also insensitive to shifting spikes across bins, since the

calculation is performed only from the information of spike counts. To be

precise, for each cell c the spike count distribution pc(N |v) was considered,

which describes the probability to observe N spikes of cell c in a time window

T and conditioned by the velocity v; its mean and standard deviation are

denoted as µN(v) and σN (v) respectively. Notice that spike counts are related

to the tuning curve through division by the length of the counting window T ,

i.e. αc(v) = µN(v)/T with T=150 ms. Choosing zero velocity as a reference,

the discriminability of velocity v for cell c was computed as:

d′c(v) =
|µN(v)− µN(0)|
1
2
[σN (v) + σN (0)]

. (3.6)

so, the discriminability of each cell c across all velocities was characterized as:

d′c = max
{
〈d′+c 〉, 〈d

′−

c 〉
}
, (3.7)

where

〈d′+c 〉 =
1

4

∑

v>0

d′c(v) and 〈d′−c 〉 =
1

4

∑

v<0

d′c(v) . (3.8)

In contrast to the anti-correlations observed between reliability and direc-

tionality with spike rates (Figures 3.4(b) and 3.6(b)), there is a high signifi-

cant positive correlation between discriminability and spike rate observed in

Figure 3.7(b) (correlation coefficient/p-value: 0.55/ ≪ 0.001). In addition,

there exists a significant correlation between reliability and discriminability

represented in the scatter plot of Figure 3.8 (correlation coefficient/p-value:

0.40/≪ 0.001). This fact demonstrates that apart from a large group of cells
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Figure 3.7: (a) Hierarchical presentation of the overall discriminability
values. (b) Scatterplots of mean discriminability values vs. average
spike rate rc of each cell.

which, indeed, show a joint increase of discriminability and reliability, there are

also a few cells which combine high discriminability with rather low reliability.
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Figure 3.8: Scatter plot indicating a high significant correlation be-
tween reliability and discriminability.
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3.6 Transmitted information

3.6 Transmitted information

In this method, the Shannon’s mutual information (Brunel and Nadal, 1998;

Bonnasse-Gahot and Nadal, 2008; Borst and Theunissen, 1999) was computed

from the responses of individual cells according to: spike count, latency and

spike timing.

3.6.1 Spike count information

To calculate the information conveyed by spike counts, the number of spikes

within the window time of 150 ms after the trigger events was estimated from

single trials of individual cells. Subsequently, the Shannon’s mutual informa-

tion (Ic) was computed as follows:

Ic (r, v) =
∑

v

∑

r

P (v)P (r|v) log2

(
P (r|v)

P (r)

)
(3.9)

where P (s) is the prior probability of occurrence of the stimulus velocity v, i.e.

1/9. P (r|s) is the conditional probability of the spike count given by r when

a stimulus s is presented and P (r) indicates the probability of the number of

spikes fired when any stimulus occurs.

3.6.2 Latency information

The information conveyed by the latency was calculated dividing the time

window of the responses from individual ganglion cells into bins of 2, 3, 4, 5,

6, 8 and 10 ms. It was detected the bin that contained the first spike and the

Shannon’s mutual information was calculated in similar form as indicated in

Equation 3.9, in such a way that:

Ic (bt1 , v) =
∑

v

∑

r

P (v)P (bt1 |v) log2

(
P (bt1 |v)

P (bt1)

)
(3.10)

where P (bt1 |v) denotes the conditional probability of the bin that contained

the first spike when a stimulus velocity v was presented; P (v) is again the prior

probability of occurrence of the stimulus v and P (bt1) denotes the probability

of the bin with the first spike given any velocity of the stimuli spectrum.
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3.6 Transmitted information

3.6.3 Spike timing information

The calculation of the information transmitted by the spike timing was also

achieved dividing the responses from individual ganglion cells into bins of 2,

3, 4, 5, 6, 8 and 10 ms and estimating the number of spikes in each bin. Re-

gardless of the bin size employed for this calculation, the resulting sequences

might cause a huge number of possible responses and problematic calculations

of their corresponding probabilities. For instance, sequences with 75 digits are

obtained if the bin size is 2 ms. For this reason, the calculation of the Shan-

non’s mutual information for spike timing information is somewhat different

compared to the calculations described in Sections 3.6.1 and 3.6.2. In this

case, the dimensionality of the responses was initially reduced using a method

presented by Foffani and Moxon (2004) for prediction of stimuli. Basically,

the method consisted of creating a set of templates based on the peristimulus

time histograms (PSTH) with a portion of the collected single-trial responses

(training set). Subsequently, the Euclidean distance is calculated between each

single-trial of the another portion of data (test set) and every PSTH-templates,

in order to predict the stimulus from the spike timing information contained in

each trial. The predicted stimulus was assigned to each single trial according

to the shortest Euclidean distance between each of them and every PSTH-

template, such as proposed by Foffani et al. (2009). In this way, the Shannon’s

mutual information was computed as follows:

Ic (v̂, v) =
∑

v

∑

v̂

P (v)P (v̂|v) log2

(
P (v̂|v)

P (v̂)

)
(3.11)

where P (v̂|v) is the probability of predicted velocity v̂ when a velocity v is

applied, P (v) is the prior probability of occurrence of the velocity v and P (v̂)

is the probability of the predicted velocity v̂ regardless the true velocity. The

conditional probability P (v̂|v) was calculated as follows:

P (v̂ = i|v = j) =
1

N

∑

t∈j

(
min
v′

[X (v′, t)] ≡ i
)

(3.12)
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3.6 Transmitted information

where

X (v′, t) =





∑
b

(rb (t)− r̄b (v′))
2 v′ = j

∑
b

(
rb (t)−

(
r̄b (v′)−

rb(t)
N

)
N
N−1

)2
v = j,

(3.13)

N represents the number of trials per stimulus, t ∈ j indicates the trials

corresponding to the velocity v = j, the minimum is estimated across all

velocities v′; rb (t) denotes the single trial response in bin b of trial t, and

r̄b (v′) is the PSTH-template in the bin b corresponding to the velocity v′,

which was calculated as:

r̄b (v
′ = k) =

1

N

∑

t∈k

rb (t) (3.14)

To ensure the cross-validation in the prediction of velocities, before the calcula-

tion of the Euclidean distance X (v′, t) the single trial response rb (t) belonging

to stimulus j was removed from the PSTH-template corresponding to stimulus

v′ = j, which is indicated by r̄b (v′).
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Figure 3.9: Box plots diagrams of the mutual information distribu-
tions according to the evaluated properties of the firing patterns
(spike count, latency and spike timing); each box plot was con-
structed with the 107 values of Ic.
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Figure 3.10: (a) Scatterplots of spike timing information vs. spike
count information of each cell. In this case, the spike timing in-
formation was calculated using a bin size of 2 ms. (b) Hierarchical
presentation of the Shannon’s mutual information values in bits.

3.7 Construction of sub-populations to choose

the best method

In order to determine which of the methods described above (visual inspection,

discriminability, directionality, reliability and mutual information) is most effi-

cient for stimulus reconstruction, the top 10 cells from each hierarchical rank-

ing were compiled (Figures 3.4(a), 3.6(a), 3.7(a) and 3.10(b)). In the case

of the method based on visual inspection (Section 3.2), it was selected the

cells with the best 10 firing patterns observed in their raster plots. Naturally,

this procedure is highly subjective to the judgment of the observer. Table 3.1

shows the cell’s numbers compiled in each sub-population from the original

range of cells (1-107). It can be clearly noticed that ranking with respect to

different response features generally yields differently ordered lists. It can be

also observed from Table 3.1 that the top 10 of discriminability, reliability and

mutual information share various cells among them, whereas the top 10 list of

directionality does not share any cell with some of the other three lists.

To determine explicitly the best method for cells selection, the motion

stimuli were reconstructed using 10-cells sub-populations constructed with the
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3.8 Fast coding strategies evaluated

Rank Visual Discriminability Reliability Directionality Mutual
inspection information

1 9 25 79 36 25
2 11 79 61 97 80
3 25 95 52 69 17
4 61 84 9 39 79
5 67 105 24 34 26
6 79 9 17 11 9
7 85 61 95 53 41
8 89 80 1 64 105
9 99 17 99 73 28
10 105 28 41 102 84

Table 3.1: Top 10 lists of the hierarchical ranked cells.

cells of Table 3.1; each sub-population for each of the five methods above

explained. This procedure is described in the following Sections.

3.8 Fast coding strategies evaluated

The temporal information of the first two spikes fired by individual ganglion

cells in the 10-cells sub-populations was employed to reconstruct the motion

stimuli, specifically velocities and velocity transitions. Let nck be the instant

in which a spike k is fired by the cell c with k = {1, 2, . . . , K}, where K is

the number of spikes fired within the first 150 ms of single-trials following the

trigger events. The time points of each of the two spikes were computed as

follows:

tck =





150 ms nck ∈ (et, et + 150 ms] = ⊘,

nck else
(3.15)

where et indicates the trigger events and the subindex k determines the spike

assessed (k=1 for the first spike and k=2 for the second spike) 4. The informa-

tion of tc2 was included as an indirect form to evaluate the spike count, due to

the correlation between the frequency in the firing activity and the interspike

intervals (the shorter the latency, the higher the firing activity and vice versa).

4Strategy tc
1

is the event-based latency coding already presented by Winzenborg et al.
(2010)
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3.8 Fast coding strategies evaluated

If some or both of the spikes k were absent, an artificial value of 150 ms was

assigned to tck (tck ≥150 ms), i.e. in cases when the cell c fired the k-th spike

outside this time window or when it did not fire any spike during the trial. In

principle, this situation could mean lack of information. However, the obser-

vation that cell c did not fire a second or even no spike at all in the 150 ms

following the trigger event, could indicate valuable information (a missing spike

can contribute up to one bit). These data were organized in a matrix as shown

in Table 3.2; each row represents a single-trial population response, where T

indicates the number of single-trials for each stimulus (S = {S1, S2, . . . , S9} for

velocities and S = {S1, S2, . . . , S72} for velocity transitions) and each column

represents a variable for the stimuli classification (estimations of tc1 and tc2,

with c = 1, 2, . . . , 10).

Cell 1 Cell 2 . . . Cell 10
t1
1
t1
2
t2
1
t2
2

. . . t10
1
t10
2

1
.

S1 .
. Training set (7 subsequences)
T Test set (1 subsequence)
T+1

.
S2 .

. Training set (7 subsequences)
2T Test set (1 subsequence)

. .

. .

. .
(SN -1)T+1

.
SN .

. Training set (7 subsequences)
SNT Test set (1 subsequence)

Table 3.2: Dataset organization for the classification of SN stimuli,
where N = 9 for velocities and N = 72 for velocity transitions.

Subsequently, the classification of the stimuli (velocities and velocity tran-

sitions) was performed using an algorithm based on discriminant analysis in-

cluded in the function classify of Matlab® Statistics Toolbox. This step

required the division of the data with a jack-knife procedure into two sets:
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3.8 Fast coding strategies evaluated

training set and test set. The training set consisted of the rows of the matrix

corresponding to seven repeated sequences of the experiment, whereas the test

set was constructed with the rows belonging to one of the eight repetitions of

the experiment (see Section 2.1). This division of the data set guarantees in

any classification procedure the cross-validation, i.e. trials employed for test-

ing are not used for training. In this form, the training set was employed by

classify as input argument to optimally fit the coefficients of a set of linear

discriminant equations by maximising the F-ratio between- and within-scatter

(see Dunteman (1984, pp. 107-152) and Manly (2004, pp. 105-108)).

Likewise, the operation of classify requires for the training set to include

the relation between coding elements (in this case the variables tc1 and tc2)

and stimuli, whereas in the test set the coding elements are inputs into the

discriminant equations previously constructed by classify. In this way, one

trial of the test set is classified, as much as be possible, inside its corresponding

stimulus. To give an idea about this procedure, Equation 3.16 shows the

general form of a linear combination of the variables inside a set of discriminant

equations for classification of the stimuli in a population of 10 cells:

ZS = WS, 0 +WS, 1t
1
1 +WS, 2t

2
1 + . . .+WS, 10t

10
1

+WS, 11t
1
2 +WS, 12t

2
2 + . . .+WS, 20t

10
2 , (3.16)

where the terms WS, 1, WS, 2, . . . , WS, 20 represent the optimally fitted dis-

criminant coefficients and WS, 0 is a constant for each stimulus. A stimulus

is hence successfully classified by ZS if the mean value of its variables differs

considerably from the variables of the other stimuli. In a case like the one pre-

sented in this work, in which there are more than two stimuli to reconstruct, it

is possible to construct several linear combinations of variables for separation

of stimuli. In general terms, if there are S stimuli, S-1 discriminant functions

can be computed, which are uncorrelated among them. So, the first function

of the set given by Equation 3.16 can be broken down as:
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3.9 Evaluation of the performance of reconstruction

Z1 = W1, 0 +W1, 1t
1
1 +W1, 2t

2
1 + . . .+W1, 10t

10
1

+W1, 11t
1
2 +W1, 12t

2
2 + . . .+W1, 20t

10
2 , (3.17)

which, returns the maximum possible difference between stimuli. The second

one,

Z2 = W2, 0 +W2, 1t
1
1 +W2, 2t

2
1 + . . .+W2, 10t

10
1

+W2, 11t
1
2 +W2, 12t

2
2 + . . .+W2, 20t

10
2 (3.18)

detects as much as possible differences of the stimulus that are not exhibited

by Z1; Z3 reflects as much as possible of the group differences not displayed

by Z1 and Z2; and so on. Ideally, the first few functions may be enough to

represent all the important differences among the stimuli (Fernández et al.,

2000; Greschner et al., 2006). Therefore, each single index ZS compiles the

information contained in the variables tc1 and tc2, setting the basis to assign

features estimated from each single-trial to its respective stimulus. In this

way, the information of each single-trial of the test set, given by the estimated

data from tc1 and tc2, is assigned to the stimulus S providing the largest dis-

criminant ZS of all the stimuli. The repeated sequences of the experiment

were permuted eight times to construct different training and test sets. This

procedure for classification of the stimuli was accomplished for all the 10-cells

sub-populations constructed as explained in Section 3.7.

3.9 Evaluation of the performance of recon-

struction

The performance of the reconstruction accomplished by linear discriminant

analysis was evaluated comparing the estimated and true stimuli (velocities

and velocity transitions). Initially, it is described in the present Section the

percentage of correctly estimated stimuli, which is denoted as EP in Equa-
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3.9 Evaluation of the performance of reconstruction

tion 3.19 5,

EP (N) =
100

|Ttest|

∑

t∈Ttest

δ (ŝ(t)− s (t)), (3.19)

where |Ttest| is the size of the test set and δ is the delta function (δ(0) = 1

and 0 otherwise). With the aim to determine if the systematic cells selection

produces better classification efficiency, the stimuli were reconstructed using

100 sub-populations composed by 10 randomly selected cells each. The results

of the classification efficiency for velocities and velocity transitions, measured

by Equation 3.19, are presented in form of box-plots in Figure 3.11. Each box

plot was constructed with eight values of EP due to the eight permutations

of training and test sets, except for the estimations obtained from the sub-

populations constructed with random cells. In this last case, a mean of the EP

values was calculated from each of the 100 sub-populations; these means were

in turn averaged to obtain the data used in the construction of the box-plots

for sub-populations with randomly selected cells.

It can be observed in the plots of Figure 3.11 that the median values ob-

tained from evaluation of discriminability are larger than those obtained with

the other methods. To accomplish a more explicit comparison among them,

an evaluation of pairs was made using an ANOVA test and posthoc 5% hsd-

test (also known as Tukey-Kramer test) included in the function multcompare

of Matlab® Statistics Toolbox. Basically, this function returns a matrix of

pairwise comparison results with information about which pairs of distribu-

tions are significantly different and which are not. An ordinary t-test was not

applied in order to avoid that the confidence level value be applied to each

comparison. In this last situation, the chance of incorrectly finding a signif-

icant difference would increase with the number of comparisons. Therefore,

a multiple comparison procedure provides an upper bound on the probability

that any comparison will be incorrectly found significant. The procedure to

compare the distributions showed in Figure 3.11 was performed with a confi-

5Two more performance measures were calculated: absolute error of the speeds recon-
struction (ES) and percentages of correct estimated directions (ED). These measures will
be explained in Section 4.3 when it is described the reconstruction of stimuli with variations
of the number of cells in the population. The three performance measures (EP , ES and
ED) were previously applied in the work presented by Winzenborg et al. (2010)
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3.9 Evaluation of the performance of reconstruction

Discriminability Mutual information Visual inspection Reliability Directionality Randomly
26

28

30

32

34

36

38

C
la

ss
ifi

ca
tio

n 
ef

fic
ie

nc
y 

(%
)

Discriminability Mutual information Visual inspection Reliability Directionality Randomly

4

6

8

10

12

C
la

ss
ifi

ca
tio

n 
ef

fic
ie

nc
y 

(%
)

a

b

Figure 3.11: Box plots diagrams for reconstruction of velocities (a)
and velocity transitions (b) using 10-cells sub-populations and eval-
uating the properties of their firing patterns.

dence level of 0.005.

Table 3.3 contains the output of this multiple comparison performed by

multcompare, which is formed by three main columns; the first one contains

the pairs of distributions whose comparisons are tested; these distributions are

the same showed in the box plots of Figure 3.11. The second column contains

three sub-columns that represents the differences between the distributions

compared for reconstruction of velocities. Specifically, the values in the second

sub-column are the results when the means of the second distributions were

subtracted from the means of the first ones, whereas the first and third sub-

columns contain the bounds of 95% confidence intervals for the true means.

If the confidence interval does not contain 0.0, then the difference between

distributions is significant at the 0.05 level. The information in the third main
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3.9 Evaluation of the performance of reconstruction

column is the same of the second column but for reconstruction of velocity

transitions.

Compared groups Velocities Velocity transition

Discriminability Mutual information -1.44 0.86 3.17 -1.32 0.69 2.72

Discriminability Visual inspection -1.08 1.22 3.53 -2.21 -0.19 1.82

Discriminability Reliability 1.42 3.73 6.04 -1.31 0.70 2.72

Discriminability Directionality 3.49 5.80 8.11 0.67 2.70 4.72
Discriminability Random 5.19 7.50 9.81 0.71 2.73 4.75
Mutual information Visual inspection -1.95 0.35 2.66 -2.91 -0.89 1.12

Mutual information Reliability 0.55 2.86 5.17 -2.01 0.00 2.02

Mutual information Directionality 2.62 4.93 7.24 -0.01 2.00 4.02

Mutual information Random 4.32 6.63 8.94 0.01 2.03 4.06
Visual inspection Reliability 0.20 2.51 4.82 -1.12 0.89 2.92

Visual inspection Directionality 2.27 4.58 6.89 0.87 2.89 4.92
Visual inspection Random 3.97 6.28 8.59 0.91 2.93 4.95
Reliability Directionality -0.24 2.06 4.37 -0.02 1.99 4.02

Reliability Random 1.46 3.77 6.08 0.01 2.03 4.05
Directionality Random -0.60 1.70 4.01 -1.98 0.03 2.05

Table 3.3: Results of the multiple comparisons for classification of
velocities and velocity transitions. The comparisons that are not
significantly different are represented by values marked with bold.

Based on the observations from Figure 3.11 and Table 3.3, it was de-

termined that the cells selected by discriminability (see section 3.5) of-

fer the best reconstruction performance. Therefore, the posterior anal-

ysis will be performed with the cells ranked by means of this method.
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Chapter 4

Reconstruction performance vs

population size

This chapter is dedicated to describe the procedure to reconstruct the motion

stimuli (velocities and velocity transitions) based on the information transmit-

ted by only three spikes in varying population sizes. These sub-populations

were constructed from the cells ranked by their discriminability (Figure 3.7(a)),

due to their tendency to provide the best classification performance for sub-

populations of 10 cells (Section 3.5). For this analysis, the number of ganglion

cells included in each sub-population covered a range between 5 and 100 cells

with increases of 5 cells, so the decoding of the signals is carried out in 20

different sub-populations of ganglion cells. This last issue will be explained in

detail in Section 4.4.

4.1 Coding strategies

The reconstruction of visual motion was performed evaluating fast coding

strategies in a similar form as explained in Section 3.8 from individual cells

of each sub-populations. Nevertheless, in this analysis the reconstruction was

performed including the temporal information from the third spike fired by

individual cells (tc3) within the defined time window of 150 ms following the

trigger event (see Section 2.4). The estimation of tc3 was included in the anal-

ysis under the assumption that it is an additional indirect form to obtain
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4.2 Estimated velocities vs. true velocities

information about the spike count. Likewise, tc3 was estimated according to

the Equation 3.15, which has been applied for the first and second spikes, de-

noted as tc1 (latency) and tc2 respectively. Hence, three coding strategies were

defined, which are summarized in Table 4.1.

Coding strategy’s acronym Description

t1 tc1
t1&t2 tc1 combined with tc2
t1&t2&t3 tc1 combined with tc2 and tc3

Table 4.1: Coding strategies evaluated in the reconstruction of motions
stimuli

It is worth to notice that the second coding strategy (t1&t2) of the above

mentioned Table, had been already evaluated to determine the best method

for selection of cells in Section 3.8. Comparisons of t1 with strategies t1&t2 and

t1&t2&t3 allows to assess the improvements in reconstruction efficiency when

the temporal information of one or two more spikes are included in the analysis.

The classification of the motion stimuli (velocities and velocity transitions)

was accomplished in similar form as described in Section 3.8, i.e. using an

algorithm based on discriminant analysis included in the function classify of

Matlab® Statistics Toolbox. Likewise, the data were organized in similar form

as shown in Table 3.2. Table 4.2 represents the matrix when the classification

was accomplished by evaluation of the coding strategy t1&t2&t3. Naturally,

classification of stimuli evaluating only t1 or t1&t2 entailed the remotion of the

columns tc2 and tc3 according to the case.

4.2 Estimated velocities vs. true velocities

A first approach to evaluate the performance of the reconstruction of velocities

is shown in the four matrices of Figure 4.1. It can be identified in each matrix

an ascending diagonal from the lower left corner to the upper right one; each

of the patches that form this diagonal represents a pair of one actual velocity

and the probability that it has been reconstructed correctly. The gray scale

establishes that the darker each patch on this diagonal, the higher probability

to predict correctly the velocity located in this indice of the matrix (black =
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4.2 Estimated velocities vs. true velocities

Cell 1 Cell 2 . . . Cell N
t11 t12 t13 t21 t22 t23 . . . tN1 tN2 tN3

1
.

S1 .
. Training set (7 subsequences)
T Test set (1 subsequence)
T+1

.
S2 .

. Training set (7 subsequences)
2T Test set (1 subsequence)

. .

. .

. .
(SN -1)T+1

.
SN .

. Training set (7 subsequences)
SNT Test set (1 subsequence)

Table 4.2: Dataset organization for the classification of the stimuli by
evaluation of the coding strategy t1&t2&t3 in a sub-population with
N ganglion cells

100%, white = 0%). The matrixes in turn are organized in two columns and

two lines. A comparison between both columns allows to assess visually the

effect of changing between two coding strategies: t1 (left panels) and t1&t2&t3
(right panels). In contrast, a comparison between both lines shows the effect

of using a large sub-population composed of 100 cells (top panels) vs. a smaller

sub-population with 5 cells (bottom panels). According to the observations of

each matrix, the tendency to correctly classify the velocities is more evident

when the velocities were reconstructed with large sub-populations. In addition,

adjacent reconstructions on the diagonal can be observed, indicating slight

differences (higher or lower) of the reconstructed speeds compared to the true

speeds.

Furthermore, it can be observed an off-diagonal from the left upper corner

until the lower left one of each plot, which is more accentuated in the recon-

structions using 5 cells; this off-diagonal indicates velocities whose speeds have

been correctly classified (or slightly misclassified) but not their directions. The
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(b) t1&t2&t3 100 cells
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(d) t1&t2&t3 5 cells

Figure 4.1: Graphical representation of velocity reconstruction with
true velocities ordered along the abscissa (v) and reconstructed ve-
locities along the ordinate (v′). Since the stimulus protocol guar-
anteed that all velocities occurred with equal frequency the gray
values within a matrix column should sum up to a constant.
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4.3 Additional performance measures

observation of Figure 4.1 suggests difficulties to predict correctly direction of

motion in small sub-populations regardless of the coding strategy evaluated.

This fact causes a diminished reconstruction performance for sub-populations

constructed with few cells, even when they are top-ranked cells. Another detail

observed in the plots of Figure 4.1 is the high probability to classify correctly

the velocity of 0 mm/s. This situation may be explained on the basis that

the cells fire very few spikes in 150 ms when the velocity stimulus is 0 mm/s,

for which the artificial value of 150 ms is assigned in a high proportion to

the variables tc1, tc2 and tc3 allowing a better accuracy in the prediction of this

velocity. Additionally, it is likely to find cases in which slow speeds are mis-

classified as 0 mm/s and vice versa. Deviations in the classification of speeds

and misclassification of directions are analyzed in detail by calculation of addi-

tional performance measures: absolute error and percentage correct estimated

directions, which will be described in Section 4.3.

4.3 Additional performance measures

4.3.1 Absolute error of speeds reconstruction

As can be noticed, deviations in the prediction of speed and misclassification of

direction do not have influence on the calculation of the percentages of correct

estimation, which has been expressed by Equation 3.19. Therefore, one of the

additional performance measures included in this thesis evaluates the possible

misclassification of speeds based on their mean absolute error expressed by

Equation 4.1:

ES(N) =
1

chance

1

|Ttest|

∑

t∈Ttest

|ŝ(t)− s(t)|, (4.1)

where

chance =
1

|Ω|2
∑

θ∈Ω

∑

θ′∈Ω

|θ − θ′|, (4.2)

In case of the expression given by Equation 4.2, N is the size of the popu-

lation and Ω is the stimuli spectrum that had been indicated in Section 2.1.
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4.4 Reconstruction of stimuli

4.3.2 Percentages of correct estimated directions

The performance of the method of reconstruction for estimation of the motion

directions was evaluated by:

ED (N) =
100

|Ttest|

∑

t∈Ttest

δ (signum (ŝ (t))− signum (s (t))) (4.3)

where

signum(a) =





1 a > 0

0 a = 0

−1 a < 0

(4.4)

4.4 Reconstruction of stimuli

4.4.1 Reconstruction of velocities vs. number of cells

The performance in the reconstruction of velocities according to the size of the

sub-populations (N) and coding strategies evaluated is analyzed in Figure 4.2 1.

In principle, it is evident that the values of correct estimations are always above

the chance level for every coding strategy evaluated and population size. In

this case, the chance level is 1/9 = 0.11 or 11.11% (dotted line) because the

nine velocities of the stimulus protocol. From Figure 4.2a it can be observed

that the larger sub-population, the higher percentage of correct estimation

(EP ), although when the sub-populations get a size greater than about 40 cells

there exists a saturation in the values of EP . The decoding of the velocities

evaluating only the temporal information of the first spike (t1 indicated with

the gray line) is sufficient to reach percentages of correct estimation, whose

mean values vary between ∼ 27% (for the smallest sub-population constructed

with 5 cells) and ∼ 46% (for the greatest sub-population constructed with

100 cells). It can be also observed that the performance of classification was

1Here and in the following figures that show the results of classification, the values of
mean and standard deviations were determined by permutation of training and test sets
from the eight repeated sequences of the experiment, such as explained in Section 2.1. In
addition, the location of these points over the curves are slightly shifted to avoid possible
horizontal overlapping of the standard deviation bars between them.
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4.4 Reconstruction of stimuli

systematically improved when the temporal information of the second and

third spikes were included in the analysis (t1&t2&t3 indicated with the black

line); in this case, the mean values of EP variates between ∼ 31 and ∼ 49%,

for the smallest and the greatest sub-populations respectively. It can be also

noticed that the standard deviation bars in Figure 4.2a are not overlapped

among them when the sub-populations contain less than 80 cells. Moreover,

the saturation in sub-populations with more than 40 cells coincides with a

reduction of the standard deviation values of EP , which hold specially for

the sub-populations of 45, 50 and 55 cells. Figure 4.2b shows the differences

(∆EP (N)) between the improvement reached when t2 and t3 were also included

for the classification (gray line) in contrast with the improvement including

only t2 (black line) 2. These differences were calculated in terms of the absolute

improvements and in function of the size of the sub-populations (N) as follow:

∆EPt1&t2&t3−t1
(N) = EPt1&t2&t3

(N)− EPt1(N) (4.5)

∆EPt1&t2−t1
(N) = EPt1&t2

(N)− EPt1(N) (4.6)

where EPt1&t2&t3
(N) indicates the mean values from the percentages of correct

estimation (EP ) by evaluation of t1&t2&t3. In similar form, the meanings

of both EPt1&t2
(N) and EPt1(N) can be inferred as the mean values of EP by

evaluation of t1&t2 and t1 respectively. It can be noticed an enhancement in

the classification provided by inclusion of both t2 and t3 to t1, which is reflected

in a profit (∆EPt1&t2&t3−t1
(N)) of ∼ 4%. In contrast, the improvement gained

when only t2 is evaluated together with t1 (∆EPt1&t2−t1
(N)) is minor, reaching

differences not larger than 3%. Both curves are characterized by a peak when

the sub-population has a size (N) about 40 cells and descend systematically

as the number of cells increases. This fact is caused probably because larger

sub-populations contain a high number of cells whose values of tc2 and tc3 were

estimated as the artificial value of 150 ms (see Section 3.8). Thus, this situation

may entail a poor benefit in the performance of classification as more cell are

2Notice that the legend of the Figure 4.2b is different from the one of Figures 4.2a
and 4.2c. A similar situation arises in Figure 4.3b
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included in the analysis, which will be explained more in detail in Section 4.6.
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Figure 4.2: Results of performance measures for classification of ve-
locities. a) Percentages of correct estimation (EP ). b) Differences
of classification between inclusion of t2 and t3 to t1 and inclusion of
only t2 (see text). c) Absolute error from the classification of speeds
(ES). d) Percentages of correct estimation in the classification of
directions (ED).

Separately in Figures 4.2c and 4.2d the misclassification in the classifica-

tion of speeds and directions are analyzed, depicting the absolute errors for

speed estimation (ES) and the percentages of directions correctly classified

(ED). From Figure 4.2c it can be observed that the correct prediction of

speeds does not seem to be better in large sub-population than in small ones.

In this sense, it is expected that the absolute error measure (ES) decreases

whereas percentages of correct estimation of velocities (EP ) and directions

(ED) increases. Just a slight difference in the prediction of speeds can be no-

ticed for sub-populations constructed with less than 15 cells, so the absolute

error gets a value of ∼ 0.3 for the smallest sub-population and ∼ 0.2 for the
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largest one regardless the coding strategy evaluated. In contrast, Figure 4.2d

shows that when the smallest sub-populations augmented their size to more

than 20 cells, the prediction of directions increased from ∼ 60% to ∼ 80%. By

this obervation it may be inferred that failures of correct estimation in small

sub-populations are caused possibly by lack of direction selective cells, such as

suggested in the analysis of the plots of Figure 4.1. Additionally, neither in

Figure 4.2c nor in Figure 4.2d there are clear signs that classification by eval-

uation of the coding strategy t1&t2&t3 is better than the one accomplished by

only t1. Another particular situation in these two Figures is that the standard

deviation bars got shorter in comparison to the ones of Figure 4.2a. This fact

can be explained because the statistical data to train the classifier augmented

when speeds and directions were reconstructed separately. In any case, the sat-

urations of the results observed in sub-populations with more than 40 cells is

evident for all the performance measures (EP , ES and ED) and are sufficiently

far from their respective chance levels.

4.4.2 Reconstruction of velocity transitions vs. number

of cells

In addition to the reconstruction of the velocities, the coding strategies were

also evaluated to reconstruct velocity transitions. The purpose of this step is

to assess the capacity of the coding strategies to transmit information of cer-

tain characteristics of motion given by acceleration, deceleration and sudden

changes of direction. In this study, the reconstruction of velocity transitions

involves the simultaneous prediction of the velocities before and after the trig-

ger event that detects the arrival of a new stimulus (see Section 2.4). The

coding strategies employed were the same evaluated for reconstruction of ve-

locities and indicated in Table 4.1 and the results are presented in similar form

like in Figure 4.2.

Figure 4.3a shows the enhancement in the percentages of correct estima-

tion (EP ) as the size of the sub-populations (N) increases, which are likewise

located always above the chance level for every coding strategy evaluated and

population size. In this case, the chance level is 1/72 = 0.014 or 1.4% (dotted

line) because the 72 velocity transitions of the stimulus protocol. By eval-
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uation of the coding strategy t1 (gray line), the mean values of EP variates

between ∼ 4.9% for the smallest sub-population (5 cells) and ∼ 19.5% for the

largest one (100 cells), with the particular situation of a marked proportional

increase of the standard deviations as the number of cells augments. Specifi-

cally, the averaged calculations of EP variate between 4.9 ±0.52 and 19.5 ±4.5,

which means an increase of the standard deviations from 10.6% for the small-

est sub-population to 23.1% for the largest one. A possible explanation of

this fact is the increase of the variables (columns in the matrix of Table 4.2)

when more cells are included into the sub-populations. Another explanation is

the increase of stimuli that have to be classified, i.e. from nine stimuli in the

case of velocities to 72 stimuli in the case of velocity transitions. These two

aspects produce a reduction of the statistical information from each stimulus

and consequently wider probability distributions.

Figure 4.3a shows also the improvements in the mean values of EP that

can be reached when the coding strategy t1&t2&t3 was evaluated (black line).

In this way, the results of correct estimation in function of the number of cells

variates between ∼ 6.5% for the smallest sub-population (5 cells) and ∼ 20.9%

for the largest one (100 cells); this means an improvement of ∼ 14% in the

classification. On the other hand, in the evaluation of both coding strategies

t1 and t1&t2&t3 it is possible to distinguish a saturation in the mean values

of the percentages of correct estimation when the sub-populations contained

more than 40 cells. Nevertheless, this saturation is not so noticeable like the

one observed for classification of velocities in Figure 4.2a. Moreover, it can

be observed clearly that the standard deviation bars from the evaluation of

both coding strategies, t1 and t1&t2&t3, are widely overlapped for all the sub-

populations. However, this fact may be explained due to the reduction of the

statistical information for classification of velocity transitions, which has been

mentioned above.

Figure 4.3b presents the differences (∆EP (N)) between the improvement

reached when t2 and t3 were included together to t1 for the classification (gray

line) in contrast with the improvement including only t2 (black line). These

differences were also calculated by Equations 4.5; as can be noticed, there are

not evident increases in the classification of velocity transitions when the third

spike is included in the analysis. In both cases, inclusion of t2&t3 to t1, as
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well as inclusion of only t2, provided an enhancement of classification between

∼ 1.4 and ∼ 3.2%, depending of the number of cells (N). A possible expla-

nation of this behavior is that in this study the estimation of the temporal

information of the third spikes was included as an indirect way for estimation

of spike count; according to the work published by Winzenborg et al. (2010),

most of the information of velocities is encoded by spike count, whereas the

information of velocity transitions is best encoded via latencies. In the case of

the work presented in this thesis, the third spikes (tc3) could be included infor-

mation that is somehow uncorrelated with the latencies (tc1) when one wants

to decode velocity transitions instead of velocities. Nonetheless, the second

spikes (tc2) were also included in the classification procedure as indirect way to

estimate spike count, whose combination with latencies improved the classifi-

cation of velocity transitions 3. Additionally, it can be observed in Figure 4.3b

an apparent peak of improvement when the sub-populations contain about 40

cells, specially by evaluation of t1&t2&t3. Like observed in Figure 4.2b, both

curves descend systematically as the number of cells (N) increases. However,

a possible reason of this behavior is possibly the large artificial estimations of

150 ms assigned to tc2 and tc3, as presented in the analysis of Figure 4.3b.

The analysis of misclassification is performed separately from velocities be-

fore the triggers (Figures 4.3c and 4.3e) and after the triggers (Figures 4.3d

and 4.3f). In Figure 4.3c it is observed that estimation error of speeds in the

velocities before the triggers did not decreased considerably as the size of the

sub-populations (N) increased, such as had be observed in Figure 4.3c for clas-

sification of velocities. Only minor reductions of the absolute mean error (ES)

can be noticed when the reconstruction is performed from sub-populations

with less than 30 cells. In addition, there is no reductions of the absolute error

by evaluation of t1&t2&t3 in relation to the the evaluation of only t1 either.

Nonetheless, the values of ES keep substantially low (between ∼ 0.3 to ∼ 0.5)

compared with the chance level indicated by the dotted line, regardless the

coding strategy evaluated. In contrast, Figure 4.3d shows that the speeds are

likely to be wrong classified when the sub-populations contained less than 25

3In fact, from the study presented by Winzenborg et al. (2010), classification of velocity
transitions by evaluation of only latency is better than by evaluation of latency combined
with spike count
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Figure 4.3: Results of performance measures for classification of ve-
locity transitions. a) Percentages of correct estimation (EP ). b)
Differences of classification between inclusion of t2 and t3 to t1 and
inclusion of only t2 (see text). c) and d) Absolute mean errors (ES)
from the classification of speeds in the velocities before and after
trigger respectively. e) and f) Percentages of correct estimation in
the classification of directions (ED) for the velocities before and
after trigger respectively.
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4.4 Reconstruction of stimuli

cells; for the smallest sub-populations (5 cells), the mean values of ES were

∼ 0.51 by evaluation of t1 and ∼ 0.46 by evaluation of t1&t2&t3. However,

when the number of cells in the sub-populations got larger than 25 cells, the

mean values of ES stabilized systematically until the largest sub-population

(100 cells), getting a value of ∼ 0.36 by evaluation of t1 and ∼ 0.34 by eval-

uation of t1&t2&t3. The analysis of Figure 4.3d shows also that the mean

values of the curves are noticeably separated for sub-populations constructed

with less than 65 cells, which suggests a slight improvement in the detection

of speeds when t2 and t3 are combined with t1. For instance, by evaluation of

t1&t2&t3 and using a sub-population with intermediate size (50 cells), the av-

eraged value of ES is 0.37 ± 0.02 for velocities before the trigger and 0.39 ± 0.1

for velocities after the trigger.

Figure 4.3e shows the percentages of correct estimations (ED) for velocities

before the triggers. From the observation of this Figure, it is evident that the

smallest sub-populations exceeded hardly the chance level (40.74%). For in-

stance, in the sub-population of 5 cells the mean value of ED by evaluation of

t1 is ∼ 41.4%. Nevertheless, the performance in the prediction of motion direc-

tions shows a gradual enhancement as the number of cells augments, reaching

a mean value of ∼ 52% for a sub-population with 30 cells. From this point,

the contribution per cell included gets less significant, so the performance in

the prediction of directions reaches a maximum of ∼ 58.6% for the largest

sub-population (100 cells). The inclusion t2 and t3 to the analysis improves

slightly the classification (between ∼ 2.2 and ∼ 4.1% depending on the number

of cells in the sub-population).

The tendencies observed in Figure 4.3e can be likewise observed in the

prediction of directions after the triggers shown in Figure 4.3f, excepting that

in this last case the performance is better. For instance, by evaluation of t1
and from the smallest sub-population (5 cells) the mean value of ED reaches

∼ 58.4%, whereas for the largest one the mean value is ∼ 61.8%. That means

an improvement of ∼ 18% for classification of motion directions after the trig-

gers in comparison to the classification before the triggers. Furthermore, in-

clusion of t2 and t3 does not entail an improvement in this performance.
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4.5 Selected cells vs. random cells

In Section 3.9 it was accomplished a procedure to confirm the hypothesis that

ganglion cells selected with systematic methods allow to obtain better classi-

fication performances of motion in comparison with randomly selected cells.

This analysis was based on the evaluation of the coding strategy t1&t2 utilizing

sub-populations constructed with the top-10 cells from the rankings of each

evaluated method (visual inspection of rasters plots, reliability, directionality,

discriminability and transmitted information). In addition, their classification

performances were compared with the obtained using 100 sub-populations con-

structed each with 10 selected randomly cells. In this way, it was observed that

cells selected by evaluation of their discriminability features allow to obtain

the best classification performance and were thus selected to reconstruct the

stimuli, such as has been described in Sections 4.2, 4.4.1 and 4.4.2.

In the present Section, it is evaluated this hypothesis in sub-populations

constructed with different number of cells (N). Figure 4.4 shows the dif-

ferences between the percentages of correct classification (EP ) for velocities

and velocity transitions using the sub-populations selected by evaluation of

their discriminability, in comparison with sub-populations constructed with

cells randomly selected 4. Initially, Figure 4.4a shows the values of EP for

reconstruction of velocities (black solid line) in the same form as indicated in

Figure 4.2a. Likewise, the classification using sub-populations with randomly

selected cells are depicted with light gray solid curves. These curves have been

overlapped trying to give a fair idea about the reconstruction efficiency from

their respective sub-populations. According to the analysis of Figure 4.2a,

there is a predominant benefit caused by the selection of cells when the recon-

struction is accomplished using small sub-populations. Specifically, the overlap

between the black curve (selected cells) and the light gray curve (random cells)

is not very marked when the sub-populations were constructed with less than

40 cells. In addition, since the selection of cells to construct the random sub-

populations was repeated 100 times, the averaged mean values ẼP (N) for each

4In this case, the location of these points over the curves were also slightly shifted to
avoid possible horizontal overlapping of the standard deviation bars between them. This
was intended for a better visualization of the results

63



4.5 Selected cells vs. random cells

of these sub-populations were calculated as follow:

ÊP (N) =
1

100

100∑

i=1

ẼPi (N), (4.7)

where ẼPi (N) represents the mean value of the percentages of correct estima-

tion computed in an iteration i from a sub-population with N random ganglion

cells. The values of ÊP (N) are depicted by the black dashed curve in Fig-

ure 4.4a. In addition, it is possible to obtain one idea about the benefit of the

selection of cells by the difference between the classification with systematically

selected cells and randomly selected ones 5. This difference was calculated as

follow:

∆EP (N) = EP (N)− ÊP (N) , (4.8)

where EP (N) indicates the mean values computed from the percentages of cor-

rect estimation in each sub-population with N systematically selected cells 6.

The values of ∆EP (N) are thus represented by the curve in the Figure 4.4b.

As expected, the improvement in the performance of estimation is more evi-

dent when the velocities were estimated using small sub-populations; it can be

noticed a peak of more than 9% in the values of ∆EP (N) when the comparison

is made for sub-populations of 20 cells and the curve descends gradually as the

number of cells (N) increases. Figures 4.4c and 4.4d show the same analysis

for reconstruction of velocity transitions. From the observation of Figure 4.4c

it can be noticed that the standard deviation bars of the black curve (selected

cells) are more overlapped with the ones of the light gray curve (random cells),

which indicates that the benefit of the selection of cells in the reconstruction

of velocity transitions is minor. The curve in Figure 4.4d represents the differ-

ence computed from Equation 4.8. In this case, it can be also noticed a peak

for sub-populations of 20 cells, indicating a peak of a bit more than 5% in the

values of ∆EP (N).

For a better understanding of these comparisons, a t-test was accom-

5Systematically selected cells are those that result from the calculation of discriminability.
6Notice that the values of ∆EP (N) calculated by Equation 4.8 is different from the ones

computed by means of Equation 4.5.
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Figure 4.4: Comparison of the classification efficiency between sub-
populations constructed with cells selected by discriminability and
sub-populations with random selected cells. Figures a and b show
the results for reconstruction of velocities, whereas Figures c and d
are the results of comparison for reconstruction of velocity transi-
tions (see text). The coding strategy evaluated was t1&t2.
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4.6 Optimal size of sub-population

plished by means of the function ttest2 of Matlab® Statistics Toolbox. Ba-

sically, the p-values were computed for each number of cells N between the

sub-populations with systematically selected cells and each of the 100 sub-

populations constructed with random cells. In this way, the function ttest2

performs a t-test of the null hypothesis that data in vectors x and y are in-

dependent random samples from normal distributions with equal means and

equal but unknown variances, against the alternative that the means are not

equal. In this case, x is the vector of computed values of EP from the sub-

population with systematically selected cells and y represents the vectors of

the calculations of EP using one of the 100 sub-populations with random cells.

The null hypothesis was rejected at the 5% significance level and the p-values

were computed by ttest2 as the probability, under the null hypothesis, of

observing a value as extreme or more extreme of the test statistic calculated

as follow:

t(N) =
x(N)− y(N)√
σ2
x(N)

nx(N)
+
σ2
y(N)

ny(N)

(4.9)

where x(N) and y(N) are the vectors means, σ2
x(N) and σ2

y(N) are the sam-

ple standard deviations and nx(N) and ny(N) are the vectors sizes. Figure 4.5

presents the averaged p-values computed between the pairs of vectors denoted

by x and y. The means and standard deviations were calculated due to the

100 iterations of t-test for each number of cells (N). In the case of velocities,

values p<0.005 were obtained for sub-populations that contained between 5

and 60 cells. In contrast, values p<0.005 were obtained for velocity transi-

tions only from the sub-populations with 15 and 20 cells. This fact confirms

that the profit of selecting cells in major for prediction of velocities using

sub-populations of small and medium size than for prediction of velocity tran-

sitions.

4.6 Optimal size of sub-population

The results presented in Sections 4.4.1, 4.4.2 and 4.5 have allowed to observe

that the percentages of correct classification (EP ) augmented as the number of

cells (N) of the sub-populations increased. Nevertheless, there are some values
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between the percentages of correct estimations from sub-populations
with systematically selected cells and sub-populations with random
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of N from which the contribution of the cells included to enhance the results of

classification is minor. This situation is clearly evident due to the saturation

or plateau in reconstruction of velocities (Figures 4.2a and 4.4a) and in lesser

extent in reconstruction of velocity transitions (Figures 4.3a and 4.4c). In this

step, it is defined an optimal number of cells (N) for reconstruction of motion

relative to the maximum contribution given by the largest sub-populations.

To give a better idea about it, let EP (Nmax) be the classification performance

obtained from the largest number of cells (in this case, Nmax=100) 7, the

contribution (K (N)) per cells included in the sub-populations to enhance the

classification performances was calculated relative to EP (Nmax) as follow:

K (N) = EP (Nmax)−EP (N) (4.10)

where EP (N) is the percentages of correct classification in function of N

calculates from Equation 3.19. Subsequently, it was defined a level of K (N)

7The values of EP were obtained by evaluation of the coding strategy t1&t2&t3 and using
the sub-populations constructed with systematically selected cells.
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4.7 Dependence of the trigger

to establish the point in which the contribution per cells included in the sub-

populations starts to minimize. The procedure to fix this level is somehow

subjective, since it may depend on the own considerations of the observer. To

clarify this procedure, the level has been established as 5% of the maximum

contribution given by K (N), which is represented by the horizontal dotted

lines in the plots of Figure 4.6 8. The vertical dotted lines match the level

of 5% with the optimal number of cells (N) that would be relative enough

to obtain good performances of reconstructions, which are indicated by the

arrows inside the plots (∼ 55 cells for velocities and ∼ 84 cells for velocity

transitions). Contributions of cells included in the sub-populations beyond

the number indicated by the arrows do not entail a significative improvement

of the classifications.
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Figure 4.6: Contribution (K (N)) per cells included in each sub-
population. The calculations were accomplished relative to the
classification performance reached for Nmax=100. (a) K (N) for
velocities; (b) K (N) for velocity transitions.

4.7 Dependence of the trigger

The accuracy in the estimation of tc1, tc2 and tc3 is highly influenced by the

triggers (et) detected in the procedure briefly described in Section 2.4. Hence,

8Naturally, it could be likewise valid to establish this level in ranges close to 5%.
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4.7 Dependence of the trigger

the classification efficiency of velocities and velocity transitions may depend

highly on the performance of the algorithm to detect the triggers that have

been applied in this work. The task to obtain an algorithm for detection of

transitions without errors is very difficult. On the one hand, different param-

eters of the algorithm had to be adapted to find its best performance, which

was established to minimize the detection of false triggers (Winzenborg et al.,

2010). On the other hand, there are transitions of stimuli very hard to detect,

specifically those ones whose speeds do not change considerably and whose

directions are the same before and after the stimulus transition. In the present

work, it was introduced a procedure to modify the time points of the triggers et
and evaluate the classification efficiency for velocities and velocity transitions.

In this procedure two kinds of variations were included. The first one con-

sisted of inclusion of a time delay after every trigger detected by the algorithm.

The times of these delays were 10, 20 and 30 ms, in such a way that all the

trials in the data set were homogeneously delayed including each of these time

values. The second variation was accomplished by random delays obtained

by means of Gaussian noise with standard deviation values of 2, 4, 6, 8 and

10 ms. Subsequently, the temporal information of tc1, tc2 and tc3 (Section 4.1)

was estimated again and the stimuli (velocities and velocity transitions) were

reconstructed as described in Sections 4.4.1 and 4.4.2 by evaluation of the

coding strategy t1&t2&t3. To determine how much the results of classification

were improved or diminished due to these modifications in the triggers (et),

an index ID (improvement-diminishing) was computed as follow:

IDEP (N) = ẼPt1&t2&t3
(N)− EPt1&t2&t3

(N) (4.11)

where ẼPt1&t2&t3
(N) and EPt1&t2&t3

(N) represent the percentages of correct es-

timations with and without delayed triggers respectively. In similar form,

the indexes to determine how improved or diminished were the estimations of

speeds and directions of the motions are indicated as follow:

IDES (N) = ẼSt1&t2&t3
(N)−ESt1&t2&t3

(N) (4.12)

IDED (N) = ẼDt1&t2&t3
(N)− EDt1&t2&t3

(N) (4.13)
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4.7 Dependence of the trigger

Plots in Figure 4.7 show the results of these calculations for classification of

velocities. As can be observed, the estimation of velocities enhanced as the

time of delay increased. This fact can be explained because the delay times

included after the triggers et may entail the estimation of the time points given

by tc1, tc2 and tc3 within time windows of trials that contain a more stationary

response.
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Figure 4.7: ID indexes computed with homogeneous delaying in the
classification of velocities for a) percentages of correct estimation
(EP ), b) absolute mean errors (ES) and c) percentages of correctly
estimated directions (ED). The legend indicates the notation of the
results according to each of the three time delays introduced.

The improvement in the estimation of velocities augmented as the time

delay increased, reaching for instance enhancements between 4 and 5% when

the delay time is 30 ms (Figure 4.7a), as well as improvements between 3 and

4% in the estimation of directions (Figure 4.7b) and reductions in the absolute

errors (Figure 4.7c). These improvements have a slight tendency to be more

evident as the number of cells (N) in the sub-populations increased, specially

from Figures 4.7b and 4.7c. Likewise, the differences between estimation of

velocities with time delays of 20 and 30 ms are not so far away from each other.
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This fact allows to suppose that improvements caused by the inclusion of these

time delays would not be very significant whether the estimations of tc1, t
c
2 and

tc3 were performed beyond 20 or 30 ms after the triggers et. Furthermore,

inclusion of time delays longer than 30 ms would entail longer times required

by the brain to process the encoded information from the retina, which would

not be feasible from a biological point of view.

Figure 4.8 shows the calculations of the indexes IDEP (N), IDES (N) and

IDED (N) when the triggers et were randomly delayed. As expected, the clas-

sification performance diminished as the standard deviation of the Gaussian

noise augmented. From the observation of the Figure 4.8a it can be noticed a

slight reduction until ∼ 1% when the standard deviation value of the Gaussian

noise did not exceed 6 ms. Reductions until ∼ 2.4% can be found whether the

Gaussian noise is applied with a standard deviation of 10 ms. Naturally, this

observation is consistent with the enhancement of the absolute errors (Fig-

ure 4.8b) and decrease of the percentages of correctly estimated directions

(Figure 4.8b) as the standard deviation values increased. In this last case, the

prediction of direction was diminished in ∼ 1% with the maximal standard

deviation (10 ms). Despite the obervations, the random time delays employed

to modify the position of the triggers did not entail a strong reduction in the

performance for classification of velocities; the largest reduction in the mean

values of EP (∼ 2.4%) is small whether it is compared with the maximum

mean values of EP obtained without delayed triggers by evaluation of the cod-

ing strategy t1%t2%t3 (between∼ 31 and ∼ 49% observed from Figure 4.3a).

In the case of velocity transitions, the homogeneous delaying produced also

a slight reduction in the classification performance, which variates between

∼ 0.5 to ∼ 2% when the triggers were delayed in 30 ms (Figure 4.9a); reduc-

tions caused by time delays of 10 and 20 ms were not quite different from those

when the time delay is 30 ms. It can be observed from Figures 4.9b and 4.9d

that the classification performance of velocity transitions was diminished be-

cause the delaying of the triggers entailed a reduction in the estimation of

velocities before the transition of stimuli; the absolute error values augmented

(Figure 4.9b) and the percentages of correctly estimated directions reduced to

∼ 2% when the time delay was 30 ms. In contrast, the velocities after the

transitions were better classified (Figures 4.9c and 4.9e), although it is clear
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Figure 4.8: ID indexes computed with random delaying in the classi-
fication of velocities for a) percentages of correct estimation (EP ),
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that this fact is caused by the tendency to estimate the coding strategies in

more stationary periods of the response after the triggers, such as observed in

the plots of Figure 4.7. It is probably that information about the stimuli before

the transitions, which are present during few milliseconds after the detected

triggers (et), disappeared when these ones were delayed. The reduction in the

classification performance is not considered significant either. In this case, the

largest reduction in the mean values of EP (∼ 2%) is small compared with the

maximum mean values of EP obtained without delayed triggers, i.e. ∼ 20.89%

from the largest sub-population (100 cells) by evaluation of the coding strategy

t1%t2%t3 (Figure 4.3a).

The plots in Figure 4.10 show the calculations of the indexes IDEP (N),

IDES (N) and IDED (N) when the triggers et were randomly delayed. It can

be noticed that the deterioration of the reconstruction has a tendency to get

worst as the number of cells in the sub-populations increased, specially when

the standard deviation of the Gaussian noise applied had values of 6, 8 and

10 ms. In this last case, the mean values of EP were diminished to ∼ 3.5%

by reconstruction from the largest sub-population (100 cells). In comparison

to the maximum deterioration caused by homogeneous delaying observed in

Figure 4.9a (∼ 0.5 - ∼ 2%), it could be suggested that the larger deterioration

caused by random delaying (∼ 0.5 - ∼ 3.5%) is consequence of the additional

misclassification of velocities after the trigger (Figures 4.9c and 4.9e).
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Figure 4.9: ID indexes computed with homogeneous delaying in the
classification of velocity transitions for a) percentages of correct es-
timation (EP ); b) absolute mean errors (ES) and d) percentages of
correctly estimated directions (ED) before the delayed triggers; c)
absolute mean errors (ES) and e) percentages of correctly estimated
directions (ED) after the delayed triggers. The legend indicates the
notation of the results according to each of the three time delays
introduced.
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Figure 4.10: ID indexes computed with random delaying in the clas-
sification of velocity transitions for a) percentages of correct esti-
mation (EP ); b) absolute mean errors (ES) and d) percentages of
correctly estimated directions (ED) before the delayed triggers; c)
absolute mean errors (ES) and e) percentages of correctly estimated
directions (ED) after the delayed triggers. The legend indicates the
notation of the results according to each of the standard deviation
values.
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Chapter 5

Summary and conclusions

In this thesis, it has been developed a method oriented to reconstruct visual

motion stimuli (velocities and velocity transitions) in a fast and efficient way,

i.e. by decoding of information in a short time window (150 ms) and using

a minimum possible number of cells. The following Sections summarize the

analysis accomplished in this work with the corresponding discussions and

conclusions.

5.1 Selection of cells

Five methods for selection of cells have been presented in this thesis: a) visual

inspection of raster plots, b) reliability, c) directionality, d) discriminability and

e) transmitted information by calculation of Shannon’s mutual information.

Whereas the first method involves the subjectivity inherent in one observer

to describe the raster plots, the other four methods analyze the responsivity

of individual cells based on different properties computed from their firing

patterns. Naturally, it can be suggested that the higher responsivity of a cell

the higher capacity that this has to detect changes of stimuli, even when these

changes are minor. It is important to remind that each of the properties above

mentioned were quantified and ranked from the highest to the lowest value.

In this manner, a hierarchical ranking of cells was obtained for each of these

properties according to their respective ranked values.

Initially, it was assumed that the responsivity of the ganglion cells may be
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5.1 Selection of cells

directly estimated from its firing rate; the direction selective cells modulate

their responses in function of the speed (Figure 3.1) and direction (Figure 3.5)

of the applied stimulus velocity. In such a way, the calculation of directionality

was intended to assess the asymmetry of the tuning curves based on variations

of their firing rates in response to every stimulus. However, the directionality

values from each cell shown to be anti-correlated with the firing rate, which

determined via estimation of spike count (Figure 3.6(b)). This anticorrelation

was probably caused by the high variability of the responses, which may entail

a reduction in the responsivity of the cells. For this reason, the measure of

discriminability was introduced to quantify the responsivity of every cell taking

into account such variabilities in their responses. Specifically, the calculation

of discriminability was based on the standard deviation of the spike count

values from each cell in response to one of the applied stimulus velocities.

In this case, it has been observed a noticeable positive correlation between

discriminability and firing rate (Figure 3.7(b)). Likewise, it was suggested

that responsivity could be evaluated from the timing of their spikes. This

property was quantified via reliability measure, assuming that responsivity

would be higher in cells with reliable firing pattern across trials in response

to a stimulus velocity. Since this measure is based on spike timing instead of

firing rate, it would be obvious for reliability to be anti-correlated with spike

count (Figure 3.4(b)). However, such anti-correlation could indicate that the

measure of spike timing reliability prefers cells that respond very weakly to

stimulus velocities.

In order to evaluate of the methods for selection of cells, the reconstruction

of velocities and velocity transitions was accomplished (see Sections 3.7 to 3.9).

Specifically, small sub-populations of 10 cells each were constructed using the

top ten cells from each of the hierarchical rankings. Subsequently, a coding

strategy based on the temporal information of the first two spikes was defined,

whose estimation was made within the 150 ms following the response triggers

(defined as time points in which substantial changes of the population firing

rate occur). The reconstruction within this short time window was imposed

on this analysis because behavioral response is typically observed to occur not

later. The spike times of individual cells were estimated via single-trial and

then the decoding was performed by means of a classifier based on linear dis-
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criminant analysis. In this task, the results of classification were compared

with sub-populations made with randomly selected cells. It was observed that

the sub-populations constructed with cells selected by evaluation of discrim-

inability allowed to obtain the better classification efficiency (Figure 3.11). In

any way, it has been somehow surprise that spike count discriminability turned

out to be more efficient than a reliability measure for spike timing.

5.2 Evaluation of fast coding strategies

The reconstruction of velocities and velocity transitions was accomplished in

similar form as in the selection of cells. However, in this step a wider analysis of

the fast coding strategies was included. These coding strategies were basically

defined as follow: a) latency or first spike timing (t1), latency combined with

second spike timing (t1&t2) and latency combined with second and third spikes

timings (t1&t2&t3). Estimation of t2 and t3 entailed to include two interspike

intervals into the analysis, i.e. t2 - t1 and t3 - t2. Since latencies in this

study have shown to be inversely proportional to firing rates, t1 alone can

be considered as the simplest way to estimate spike count. Therefore, it was

established the hypothesis that including the interspike intervals could improve

the reconstruction of the motion stimuli, having into account that estimation

of t2 and t3 have been considered as indirect forms to estimate firing rate.

Another consideration is that the firing frequency of the cells have shown to

be very low in 150 ms, for which simple spike counts are too coarse to resolve

complex stimuli; the possibility to reconstruct important stimuli features, via

directly estimated spike count, is relatively limited.

It has been observed from results in Sections 4.2 and 4.4 that latencies

(represented by t1) contain most of the encoded information for reconstruction

of motion stimuli. As expected, the coding strategies represented by combina-

tions of t1 with t2 and t3 led to moderate improvements in the reconstructions,

probably because the estimate provided by the latency is already quite ac-

curate. Furthermore, a particular situation observed in these results is the

difficulty to decode directions correctly using sub-populations made with less

that 30 cells. Probably, few selective to direction cells were included in the

highest places of the discriminability ranking. In any way, the whole database
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acquired from the experiment contains a reduced number of this kind of cells.

Likewise, this analysis shows that reconstructions are significative better in

sub-populations with systematically selected cells than in sub-populations con-

structed with randomly selected cells 1. This fact is specially noticeable when

the reconstructions were accomplished using sub-populations constructed with

less than 45 or 50 cells (Figure 5.1a).

In addition, inclusion of t2 and t3 as indirect ways to estimate spike count

has shown to be complement of the encoded information supplied by only t1.

Levels of classification reached with large sub-populations evaluating only t1
can be also obtained without loss of efficiency using reduced sub-populations

and combining t1 with t2 and t3 (Figure 5.1b). The reason is that building

sub-populations by systematically selected cells with highest discriminability

rapidly accumulates the major share of efficiency, whereas the remaining bulk

of cells does not contribute much more. To strive for small sub-populations is,

of course, motivated by an economic rationale. From the plots of Figure 5.1 it

can be observed that the maximum classification efficiency is actually achieved

when all the cell were collected in the largest sub-population. If there were no

computational or metabolic cost per cell added the recommendation would,

indeed, be to perform the reconstruction with all accessible cells, the more the

better.

The discriminant analysis used for reconstruction in this study has pro-

duced similar results in comparative studies with other reconstruction meth-

ods, e.g. Bayesian classifier (Winzenborg et al., 2010). Therefore, it is consid-

ered that the conclusions drawn here are not reconstruction method specific.

Additionally, there is no evidence that use of different classification methods

lead to variations in the classification efficiency (Warland et al., 1997; Frechette

et al., 2005).

1It is worth remembering that systematically selected cells are those that result from the
calculation of discriminability
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Figure 5.1: Reconstruction efficiency measured via percentages of cor-
rect estimations (EP ). The curves displayed in both panels are
smoothed versions of related curves seen in panels a of Figures 4.2
and 4.3. Since this figure should only support the argumentation
of the discussions, the tick marks have been omitted along the or-
dinates. a) Illustration of the efficiency gain when changing from
randomly compiled sub-populations to ensembles that preferentially
combine ganglion cells with high discriminability. The well sep-
arated error bars indicate that for small sub-populations the dif-
ference is indeed statistically significant. b) Efficiency gain when
supplementing the latency t1 by spike times t2 and t3. Even though
the gain is moderate (vertical arrow) the flat profile makes clear that
the efficiency of the latency code t1 for a large population can be
maintained for a much smaller sub-population when supplementing
spike times t2 and t3 (horizontal arrow).

5.3 Optimal number of cells for reconstruction

of the stimuli

Finally, an optimal number of cells for reconstruction of the motion stimuli

was defined by means of a partially subjective method. In this case, optimal
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number of cells means a sub-population size from which inclusion of more cells

does not allow a substantial improvement of the classification efficiency. The

specification of a minimum number of cells, sufficient to reach good recon-

struction performances, is physiologically motivated due to the cost that may

imply the inclusion of more cells into the sub-populations. The analysis shown

in Section 4.6 stated a break point from the curves EP vs. N of 55 cells for clas-

sification of velocities and 84 cells for velocity transitions (Figure 4.6). These

break points were estimated relative to the maximum contribution, i.e. from

the classification efficiency reached using the largest sub-populations. Nev-

ertheless, other methods lead to similar results. For instance, by calculation

of the smallest slope when it is considered the contribution per included cell
∂EP

/
∂N .
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